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Abstract. We develop a technique for reducing the problem of the ultraviolet
divergences and their removal to a free field problem. This work is an example
of a problem to which a rather general method can be applied. It can be
thought as an attempt towards a rigorous version (in 2 or 3 space-time
dimensions) of the analysis of the structure of the functional integrals
developed in [9], the underlying mechanism being essentially the same as in
[11,3].

1. Introduction

The free euclidean field in Rd is the gaussian field with co variance operator :

C = (1-DΓ\ (1.1)

where D is the Laplace operator in Rd.
We call (φξ)ξe^d the random field with the above covariance and we shall

represent φ as a sum of independent, identically distributed up to scale factors,
random fields (φ^ξeR* N = Q,l,.... The field φ(N} has, by definition, the following
covariance operator :

DΓ1 (1.2)
and γ will be appropriately chosen close to 1. From (1.2) it follows that if d^3 the
kernel C($ of C(N} in IRd is finite when ξ = η:

— f\ά\f
= C(N}_ (d-2)N _ f U K

~ ~

Hence it will be convenient to introduce the normalized field :

(N) (N)

Z(N)
ξ
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and to represent φ as:

00

Φξ= / j \/ ^CγJ (1.5)

We shall furthermore define the cut-off fields φ[=N] with length cut-off γ N as:

N
,n[<N] V 1 /Ox> Λ>(d-2)/c _(fc) / I s-\
Ψξ~ — 2u V ^Cγf ξ ' V ^ 0/

Such fields are, also, normalizable: their normalized representatives can be defined
as:

(1.7)

which obey the recursion relation:

-i)
(1.8)

where:

Γ« = ,)(d-2)N

-2)N

τ~
y-1

N

(1.9)

= 2.

We shall call P the probability distribution of z(ί} and ^ shall be the
expectation operation (i.e. integration) with respect to P f. We define also PN

If / denotes a cube centred at the origin the "bare interaction" is defined as1

-Λ f '(φ[-N])4 dξ. (1.10)

The "third order renormalized interaction" is defined as :

y(N)_y(N)
yl — K0,J 2! °'J (2) 2! °

(N)\2\

3!
(1.11)

1 As usual

where Hn is the w-th Hermite polynomial, e.g. H4(x) = x4 — 3x2 + |.
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where

\ <(O2>(2, = ̂ ^ ί dξdη(C^f : (ΨψΎ : , (1.12)
L Z j2

(1.13)

(C'p2 (Cp>)2, (1.14)

and

C\f^\φψ»^PN(dz). (1.15)

The "ultraviolet problem" that we study in this paper is the following : prove
the existence of E + (λ)9 E_(λ) such that:

(1.16)

if I/I is the volume of /

ii) limλ-3E±(λ) = 0. (1.17)

The technique that we use would allow to treat more general problems and
does not distinguish between the d — 2 and the d = 3 cases.

Our technique is inductive: we shall obtain the estimates by successively
integrating over z(N\ z(N~ 1), . . ., and it will be necessary to really do only one step in
this process. The structure of the integrals does not change after each integration
because of our scale invariant choice of the regularization. The fields z(N\
z(N~l\..., are, in fact, essentially identical in a probabilistic sense and are
independent : the distribution of z(N} is the same as that of the field z(0) regarded on
a scale y~N. In probability one has z(ξί) = z(β)ξ and this makes it convenient to
introduce the random field

•^ξ —zy-Nξ (1-18)

which will be useful later. All the fields Z(Λ° are identically and independently
distributed.

We have tried to make a self contained exposition, of our results. However we
think it essential that the reader gets, before looking at the details of this work,
some non-superficial familiarity with [2]. In the theory in [2], first reference, we
think, the deceiving "simplicity" of the superrenormalizable scalar field theories
becomes transparent and does not disappear in the mist of some heavy technical,
and uninteresting, details.

2. Reduction to Perturbation Theory

To evaluate the integral in (i.16) we shall use a technique which relies on the
estimates in Lemma 1 below and which is described in a slightly more general
setting.
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We shall, for definiteness, only consider the d = 3 case.
Let 5,5", D,D' be non negative integers and let τc>0, β Let J,7 be two

sets in ]R3 such that Jd and / is a cube centred at the origin. Define, for

7 = 1

where

1) d(ξ1,...,ξp) or, more generally, if E15 E2, ...,Ep are p sets in IR3,
d(El9E29 ...9Ep) denotes the length of the shortest connected graph linking
E1? ...,Ep ("graph distance of E19E2, ...,£;).

2) The functions A\\\, which will be denoted A9 will be supposed to have some
boundedness properties which can be most conveniently described in terms of a
pavement Q± of Rd with cubic tesserae with side size 1 and with sides parallel to the
coordinate axes. If the generic tessera of Qί is denoted by A the boundedness
condition is

1 X id if X ... X / l g X ^ α

4l l=sup

(2.2)

where the supremums are over the possible choices of the tesserae A19 ...,Ap9 A[,
A'ί, ...,A'q,Aq in Qι and over the possible choices of p,q, nl9 ...,np, m1? ...,mq.

We wish to estimate expressions like2

JexpWz), (2.3)

where V3 is a function which is simply related to a function of the type (2.1), [cf.
(2.9) below], and P is the gaussian process on <?'(ΊR.d) whose covariance operator is
the inverse of [cf. (1.2)]

A = (γ2-lΓ1(^-D)(y2~D). (2.4)

The technique to estimate (2.3) is to introduce, for some β>0, the P-
measurable events :

(2.5)

where A is a tessera of Q15 and their complements. We shall denote χB

Δ the
characteristic function of EE

A and j^j = 1 — χ% the characteristic function of the

2 Cf. Sect. 4.
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complements of EB

Δ : obviously

i- Σ ( Π t f U Π r f ) , (2-6)
RcQi \AeR / \AφR ]

where R = ( A 1 9 A 2 , . . .) denotes a subset of Q ! which will often be identified with the

set R= (J At. Then (2.6) implies

)= X J#j&expF,P(<iZ), (2.7)
RcQi

where Kc = complement of R in Qx

x £ = Π x * j & = Π t f (2.8)
ΛeK Λetfc

We now suppose that 3c1? ρx >0 such that

1) Vj(Z)^Hj(Z) if χB

Qί(Z) = l,

2) VjW^CtB^AIlRnJl + Hj^Z) if

for all K3R, Rcβi In the sequel we shall only be interested in

R = {Δ\AeQ1,d(A,R)^B3}. (2.10)

Then, obviously

(2.12)

Therefore concrete estimates can be obtained as soon as one finds a way of
estimating integrals like :

RCQ,. (2.13)

In [2] we developed a method of analysis of integrals like (2.13): the analogue in
the present case, of the results of [2] would be the following lemma :

Lemma 1. Let y be fixed close enough to 1. Given ί^O, integer, there exist functions
£*, G, G', ρ, ρ', ρ" >0 depending only on t, D, D', K such that, if B > J3* and if R is any
subset of Qi •'

nJ\δ'(B, \\A\\))

. eχp > (J^P(JZ))1/2, (2.14)
U = i κ ! J

vv/iere ^Γ( k) denotes the truncated P-expectation of order k 3 and

δ(B,\\A\\) = G[_(U\\Beee'^B^t+1+e-s"B2 + s'^B^,

δ'(B, \\A\\) = G'\\A\\Bΰeβ'^Be. (2.15)

3 See Appendix A for a precise definition of the truncated expectations ^Γ, $T
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Furthermore, if B > 5* :

[X̂
U=ι

j
•exp X - r - . (2.16)

The above lemma, which we prove in Sect. 5 and 6, allows, as it will be shown
in Sects. 3 and 4, to reduce the problem of estimating the integral in (1.16) to a
"perturbation theory" of order 3 problem.

The remarkable fact, in our opinion, is that the "reduction to perturbation
theory" is achieved via some laborious but completely straightforward algebra :
the real difficulty in the whole proof is that of proving Lemma 1.

3. The Lower Bound

The idea is to obtain the lower bound in (1.16) by recursively applying Lemma 1 to
analyze :

u=o / u=o

where χ is the characteristic function of the event4

sup

<Bk(l+ykd(I,A)) VJeβ (3.2)

where Qk is a pavement of Rd with cubic tesserae with side size y~k and sides
parallel to the coordinate axes of IRd β will be chosen once and for all equal to 1/4,
say.

The first remark is that V^\ defined in (1.11), thought as a function of Z(N), cf.
(1.18), at X(N~1} fixed and such that χ*__1(χ(N-V) = l, has the form (2.1) with /
replaced by γNI and A such that :

2 ) 9 (3.3)

where A is a fixed constant and in general :

1) fc = 0,l,... (3.4)

The estimate (3.3) easily follows from the explicit expression (1.12)-:- (1.15) and
(1.10) and some patience. Therefore Lemma 1 can be immediately applied to
(3. 1)5 : taking into account the necessary change of scale and the associated scale

The power (1 +/c)4 and the choice β = \ are not optimal but just arbitrary and convenient. The
factor is also quite arbitrary and has been included to improve the small λ estimates

(N)5 Notice that \Xf~1)\<B', \z(

ξ

N}\<}/i-}-ΓNB-}/ΓNB' = B imply, for 5>0, that \X(

ξ

N)\<B; also
\X[N~ί}-X<f~ 1 } |^B\f- l \ζ-η\} β , \z(

ξ

N)-z(

η

N)\^B(\ξ-η\yN)β imply \X(

ξ

N}-X(

η

N>|^β(|ξ-?y|//
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factors one finds from (3.3), (2.16), (2.15):

101

3 β>T(τ/(N}. h \

exp Σ M '
=ι

where, for suitable g, G, ρ>06:

k = 0,1, .... (3.6)

Formulae (l.ll)-f-(1.15) show that the expression in curly brackets in (3.5) is a
polynomial in λ of degree 6. To give (3.5) a form suited for further analysis denote,

given a polynomial in λ, p(λ) = Σ cn^n '-

((>= Σ <αn
(3 7)

Then another algebraic analysis of the form (l.ll)-f-(1.15) of F7

(]V) shows that,
possibly changing G, ρ, g in (3.6):

3

Σ

if XN-ί(

k! Σ
ω N\y I •>
—rr~

(3)

(3.8)

= l Hence

^ Π\ f c = 0 =l (3)

exp-2ε(JV)|/|. (3.9)

The very remarkable fact is that the function in square brackets in (3.9) has still
the same structure (2.1), if thought as a function of Z(JV~υ at fixed X(N " 2), and the
new structure functions A' are such that ||4ΊI verifies a bound like (3.3), with IV — 1
replacing N, iϊ χ*_2(X(N~2}) = L

This property is not obvious and is an important aspect of the theory to check
it by an explicit, quite long but straightforward, calculation of the various gaussian
expectations appearing in the r.h.s. of (3.9), see Appendix B.

Then it appears natural to define, inductively, for J C I :

y(N) _ y(N)

y(N-k) =

(3.10)

o,

6 4-1/2 is not optimal and in (3.6) we could replace λ4~ί/2 by A4(log(e + A~1))D + D/. The constant
Q is some maximal constant introduced to avoid using too many constants and, finally, g, G, ρ are
J5-dependent (but finite for B>B*)
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for fc=l,2, ...,JV+1. It turns out that V$~l) = Q.
In Appendix B we give the explicit expressions for FjN~k) cast in the form (2.1):

it can be verified on such expressions, with some patience, that the structure
functions A(N~k} of V^~k\ thought as a function of Z(N~k\ verify, if
χff_k_1(X^N~~k"^) = l, the bound:

where A, ρ are suitable constants.
Furthermore, if \X(

ξ

N ~k}\^BN_k for all £eJ:

Y N~k+l^ \ ^l_j/(N-fc) <β(jv-fc+1)|/|, (3.12)
A j! J

where ε can be taken that defined in (3.6), possibly readjusting there the G,ρ
parameters.

Therefore Lemma 1 of Sect. 2 immediately implies, by the already remarked
scale in variance properties of the gaussian measures P(ί} that:

/N-k+l

f(expίf-*+ 1>) Π X?(X(

\ i = o
fN-k

>(rvr> — p(N — k-\-]}\T\}ϊ(?τ-nV(N~k^\ ΓT vB(Y(ΐ)\ \ P (dτ\ Π ΠϊίL— I t/Λ U ^\-^ ' ^ l ^ -"-/ | * / I V M " T / I I I /Ci v^^ / I /V 1f\ / ' \ )

~ \ i = C

Hence, by iteration, (3.8) and (3.13) imply:

(3.14)

i.e. one can take

for suitably chosen G _ , ρ _ . This is the desired lower bound for the integral in
(1.16).

4. The Structure of V}h) and the Upper Bound

To show that the upper bound can be deduced from the first estimate (2.14) in
Lemma 1 we have to go into a somewhat more detailed analysis of the structure of

This function is, in general, a polynomial of degree not larger than 8 in the field
φ[-h] which we simply denote φ, calling X =X(h\ z = z(h},X'=X(h_1}, φf = φί=h~1\
The monomials composing the polynomial will have the following structure:
either they have the form, (κ> 0):

(λy2h)p(λ2hyh)q(λ3h

Λnί...npm1...mqm'1...mr
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q p r

with p + 2g-f-3rfg3, £ m + £ n.+ £ ^^8, m.^0, n f^0, rnj^O, or they have

the form, (κ>0):

? ' Λ.Λi ε ^ι\l/2 (4 A)

here K > 0 is /, J, ΛΓ-independent.
To describe the properties of the functions A, which depend also on N, h, we

use the previously introduced pavements Qh of 1R3 with cubic tesserae with side
size y~h. Then there exists Ά>0, /, J, JV, /i-independent, such that

Λnί...npm1...mqm
r

ί
(^3h\p + q + r Γ
U J J

Zli X ... * Δp + q + r ,.

γ6" \ \Aξη\dξdη^A
Δ\ x Δ2

,, ...,Ap+q+reQh. Here r-3 f t = volume of ΔeQh.

To help the intuition it is important to reali/e that if

(44)

then in (4.1), (4.2) the terms which contain a power /ίp have a magnitude < b8(y ~h)p,
if b> 1, i.e., despite the appearances, the larger the value of p is the smaller the
corresponding terms are. This claim can be easily checked by writing the integrals
(4.1), (4.2) as sums of integrals over the tesserae of Qh and, then, applying the
estimates (4.3). This essentially means that, when (4.4) holds the counterterms and
the higher order terms are negligible compared to the "bare interaction" (linear in
λ).

We shall write the sum of the terms in (4.1), (4.2) collecting them in groups
which appear naturally if one computes explicitly Vjh\ cf. Appendix B.

Namely :

(4 5)

where V^h\ V$\ have already been defined in Sect. 2 (we recall that the superscript
denotes the high frequency cut off of the field), $>h denotes the integration with
respect to the variables z(h+1\ ...,z(N) and Af} is a sum of functions of the type (4.1),
while W M s , 'ύ

(4.6)
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i.e. (cf. p. 2, Footnote 1)

L—i > i
ί = h

} . (4.7)

So we shall rewrite (4.5) as

and we shall also need the fact that WjP is the only term in (4.8) which will be
thought of the form (4.2).

For the analysis of the upper bound it is convenient to introduce a new
interaction V$h} obtained from V$h} by eliminating from J points where the field X is
large or rough.

For this purpose, given X(h\ z(h} we define in general:

;, \Xf\ ^ Bh(l + yhd(ξ, /))}, (4.10)

:^\\yh(ξ-η)\^ l\Xf-X(?\

'l+γhd(ξ,I))}. (4.11)

Rh(z(h}} = {Δ\ΔeQh such that IξeΔ where

\zf\>B'h(l + yhd(ΔJ)) or 3ξ,ηeΔ where

\zf-z(f>\>B'h(yh\ξ-η\)ί/4(l+yhd(Δ,I)) and \ξ-η\yh^ί}9

(4.12)

where Bh was introduced in (3.4) and B'h will be chosen as7

So Rh = (Δί,Δ2,...) is a sequence of zΓs in Qh: however in the following we shall

identify Rh with (J A ClR3.

We can now define Vf} in terms of the functions V,W,Δ describing V^h}:

^ = C|.
N-l

ί = Λ + 1

This function does not have the structure (2.1) because it is not "polynomial" in X:
the X's enter also in the ^-functions and in the domains of integration. It is

7 Of course 50 is not optimal: it is however a simple convenient choice. Neither the (1 4- h2) factor is
optimal
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therefore useful to introduce yet another function H(f> which, if thought as a
function of Z(h] has the structure (2.1):

, + 4V 1 _

-^W-,)). (4.15)

Clearly the function Hf(X(h}) has, Vfe, the structure (2.1) if thought as a function
ofZ (Λ) [since D*.^-1*), Dr

h_ ^(X(h~ l } ) are z(Λ)-independent], with J replaced by
/J.

The coefficient functions of H^ denoted H(h\ verify8 :

\\H(h)\\^λHy-hBl_^λ3 (4.16)

if H, σ are suitably chosen constants.
There are some simple algebraic relations among V$h\ Vjh\ Vf\ H(j} which

either immediately follow from (4.2), (4.9), (4.14), (4.15) or from (3.10), (4.14), (4.15)
after some simple gaussian integrations.

Such properties are the aspect that we need of the formal positivity of λ : φ4 : for
φ_ large. Technically they hold because of the positivity and the bounds (4.3) on
Aξ, Aξη and because of the very special recursive form of V^h\ A crucial role is
played also by the superrinormalizability which allows to say that if h is large the
terms in the Fw's are of different orders of magnitude (according to the powers of
λ that they contain): the terms with λp have order γ~hp, cf. (4.8).

Lemma 2. 3 an integer valued function h(B,λ) and two constants C,B>0 such that
for all h^h(B9λ), VJC/, VB^B:

i) V™^Vf> (4.17)

ii) V®> £ (cλeΈλ3γ2hBl) γ-3hΦ(RhnJ)) + H™^ , (4. 1 8)

where Rh = {A\AeQ»d(A,Rh(^))£(B'J^
= number of elements of Rh intersecting J.

(4.19)

iv) h(B, λ) = 0 if λ is small enough (but this property does not hold uniformly in
B).

In Appendix C we illustrate the proof of Lemma 2.

8 The natural estimate would have (λ-\-σλ3) instead of λeσλ* in (4.16). It is however notationally
convenient to use the bounds λe5λ*

9 Again c is a maximal constant introduced to avoid using too many symbols
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It is now possible to complete the derivation of the upper bound.
Choose once and for all B = B + B*, cf. Lemmas 1 and 2.

The inequality (4.17) shows that the integral:

fexpΐ>WpN(<fe) (4.20)

provides an upper bound to our integral (1.16).
To estimate (4.20) via Lemma 1 we apply the identities (2.6), (2.7):

), (4.21)

where χ^, χ^ are defined by (2.8), (2.5) with, naturally, / replaced by γhl F7

(/l) is now
to be thought as a function of the field Z(/l). It is immediately realized that, the scale
factors are such that ffi(Zw) χ%h

ΛR(Z(h))=l, if and only if Rh(z(h}) = y~hR : this gives
to (4.21) a simple meaning.

After the appropriate scalings we can try to apply the method of Sect. 2 to
estimate (4.21): therefore we apply (4.18) to (4.21) to obtain:

}Ph(dz(h})} exp cλeτλ3y2hBΈ

hy ~™Φ (Rnyhl) , (4.22)

where R is defined here by (2.10) with B'h replacing B.

We can now apply Lemma 1 because, H(h\ as a function of Z(h\ has the form
(2.1), cf. (4.15): we obtain, using (4.19) to elaborate the curly bracket term arising
from the application of (2.14) to our case:

f (exp V^}Ph(dz(h}) ^ (exp V}h~ 1}) (exp |/| y3*

RcQi

+ δ'(ffh9 ||fl<fc> ||)] * (Λn/J)) - ( J jgHz^P^zW))1/2 (4.23)

provided h^h(Bλ).
The dangerous-looking sum in (4.23) can be easily bounded by the use of the

following tail lemma (cf. [8], Proposition 4) :

Lemma 3. 3c l 5c 2>0 such that if R = (A1,A2, ...)CQ± and I is a cube centred at the
origin :

J χB

R(Z)P0(dZ) ^ Π exp(Ci - c2B
2(ί + d(A, /))) . (4.24)

ί

After the obvious change of scale we deduce from Lemma 3 that the integral in
the r.h.s. of (4.23) can be bounded by :

Ci - c2Bh\l + d(Δi9 yhl))) (4.25)
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which permits to bound the sum over R in (4.23) by calling μh the term in square
brackets in (4.23) :

/ h ~ * l / l (4.26)

for a suitable c3 >0, \/h.

Recalling (2.15) and (4.16) the error terms in (4.23) give rise to the following
expression

)9 (4.27)

where εh(λ) can be thought as given by (3.6), possibly readjusting there the
parameters g, G.

Hence (4.23) becomes, for h^h(B,λ):

j (exp V™)Ph(dz) ^ (exp V? ' *>) (exp |/| sh(λ)) (4.28)

which by iteration implies, if h^h(B, λ):

h = h

Vί -i^) (4-29)

and, if λ is so small that h=Q, we can take in (1.16), cf. (3.15):

E+W= Σ e»W = £_(λ) (4.30)
h = 0

or generally if:

Er(λ)= sup supd/Γ1^*-1^)) (4.31)

we can take

£+μ)=£_μ)+£:' μ). (4.32)
This concludes the theory of the ultraviolet bound to third order.

The following sections will be devoted to the proof of the Lemma 1.
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5. Geometric Preliminaries to the Proof of Lemma 1. The Integration Grid

The proof of the main lemma is identical in spirit to that of [2] : this can be fully
realized after acquiring the basic properties of the gaussian processes associated to
the fourth order differential operator (2.4), of strong elliptic type, and a good
understanding of the theory of the Dirichlet problem associated to (2.4).

Before formulating the basic propositions on the above questions we must do a
somewhat complicated geometric construction whose motivation becomes trans-
parent only after seeing its use in the proof of Lemma 1.

The construction which follows is identical to the one of [8] where we called it
the construction of an "integration grid" for the measure P associated to (2.4).

Let <21? Q2,..., g4 be four pavements of 1R3 with cubic tesserae with side size 1.
We suppose that the centers of the tesserae of such pavements are on the step-1

lattices of R3 with origin, respectively, at the points

ξk=
2

 2k_~l (HΛ) ^ = 1,2,3,4 (5.1)

and with edges parallel to the coordinate axes of 1R3.
After constructing such pavements we turn each tessera into a smooth region

by some deformations.
Let δ be smaller than 1/80 (cf. Sect. 4 of [8]).
i) Shrink each tessera about its center by a homothety factor (1 - δ): after this

first operation the four deformed pavements are no longer such because they leave
unpaved corridors of width < 1/40 between them.

ii) Turn every corner into a smooth corner and, also, every edge, of any order,
into a smooth edge.

Fig. 1. Case d =

iii) We now wish to modify more the boundaries of <22, g3, Q4 in such a way
that they intersect in a smooth way between each other and with the boundaries of
Q1. We also want that the modified regions are conically regular for cones with
opening zero at least (cf. Appendix A, definitions). We add the further condition
that if two points belong to the same boundary Σ' which has been deformed in
order to cross smoothly another boundary Σ and if they lie on opposite sides of Σ
then their distance is larger than say, 5/100: in other words, upon crossing, the
surfaces must stay adherent for a while.
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Fig. 2

The 2-dimensional situation is easily described by pictures and the last
condition means that if a crossing is enlarged in scale it looks like:

Fig. 3

We also require that in the deformations we only allow displacements of at
most δ/2.

iv) Finally we suppose that the contacts between different surfaces are of
infinite order in the following sense. Let Σ, Σ' be two boundaries which cross as in
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3 D

Fig. 4

iii); let ξeΣnΣ'. Set up a cartesian reference system with origin in ξ and with
plane x3 =0 coinciding with the tangent plane to Σ in ξ. Then the surface Σ' has a
contact of infinite order with Σ if

1) The surface Σ' can be described in the above reference system and in a
neighborhood of Σr\Σr by a function

(5.2)

where 17 is a suitable neighborhood of OeIR2.
djl dh

2) If 2 = ( j l 9 j 2 ) are two integers and if <3(^} denotes ^— ̂  — -̂  then Vα>0, Vj :

sup < + oo. (5.3)

We call β1 15 Q2 1? Q3 1? Q4>1 the sets of deformed tesserae. If we scale by a
homothety factor ( such assembly of boxes we obtain new families Qί /? . . . , Q4 Λ

The factor / will be chosen later.
As usual in the theory of partial differential equations we introduce on each

Π e β i ^ > z = l,.... ,4, a covering of d Q with regular surface elements, regularly
spaced as /->oo (see Appendix A, Definitions 3), which will be denoted σ1? σ2,... .
To each surface element we associate its local system of coordinates, cf.
Appendix A, Definition 3, see also Fig. 4. If / is a distribution in '̂(3Q) and if

.ασι, ασ2, ... is a partition of unity on dΠ associated with the regular regularly
spaced covering (see Appendix A, Definition 3), we consider the distribution ασ/
with support on σ and call ασ/ its representative in the local system of coordinates
associated with σ:ασ/e£F(IR2).

The following norms will be used to measure the magnitude of /:

.>(*'), (5.4)

where for all seIR, Vβe(0, 1):

l l f f l lc( . )» ' )=l l( i- θ)~flΊlc(«)^). (5-5)
II Λ II £<«>»*) ^

xeIR2
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In the theory of the elliptic operator A appears a "conical regularity"
parameter, associated with the theory of the double layer potentials, Θ(y) which
tends to 0 as γ ->1. We shall therefore choose the value of y, so far arbitrary, so
close to 1 that all the tesserae Π e Qt χ, i = 1, . . . , 4 are conically regular with respect
to the cones with opening Θ(y). This is possible, [cf. requirement iii) in the above
construction], since the conical regularity is a homothety invariant notion.

We are now in a position to formulate the results on the theory of the elliptic
operator A and of the associated gaussian process on

Proposition 1. 3?f0>0, τc>0 such that VY^0, Vεe(0, 1), VseR the equation:

Au = ΰ in Π

dju = z(j} on an, 7 = 0,1 '

4 1

for Π e U Qit and farz = (z(0\ z(1))e Π C^/δD)10 has a unique solution, u(z\
i=l ' j = o

taking the boundary value in the sense of the traces on surfaces parallel to the
boundary (see Appendix A, Definition 4).

Furthermore if s>ε, /^/0, 3cs'ε such that

i
<(^s,ε p-κd(σ,Δ) ^^u e

The following result on the theory of the gaussian measure P on t9
?/(Rd)

associated with the operator A will play a major role in the proof of Lemma 1. It
concerns essentially a support property for P.

Call I\χ, Z2χ, 1*3 ,̂ I"4 ^ the families of surface elements of δβ1 ^, ... , dQ
4

considered before and call Σj? = Σ 1 > ί fu ...uΣ4 ^. We shall refer to ^ as to a
"complete integration grid" for P, [8].

Given a cube / centred at the origin, let :

(5.9)

where σeΣ^, 5^ = 5(1 +d(σ, /)) and dj denotes the j-th normal derivative of z on σ
(cf. [8], Proposition 2).

Let #σ's'ε^ be tne characteristic function of EB's'ε^ which we shall abbreviate
χ^'s'^ or χ^'s or χ^ when ε appears clear or when ε, / appear clear or when ε, ̂ , 5
appear clear:

10 / i s said to be in C^ε)(δD) if

l l / l l c ι« )oD)= SUP ll/llα ε )(σ ί )

< + 00

ι= 1,.. ,n

where σ l 5 . . . , σn is the covering associated with
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Proposition 2. Fix εe(0, |) ^md s<2~, e<s. There exist constants cί,c29...ίc69J
>

1

such ί/iαί V^^:

JP(dZ) Π ^exp-qe-^l/l . (5.10)

ii) Let ScΣj, V£σ^e3 + c4log/, σeS:

-.£••)£ Π exp(c5-c6£σ

2)- (5.11)

iii) Lei χB

Δ be the characteristic function of the event

where AeQ1 (cf. (2.5)), then if BA=B(l+d(AJ)):

c^-^l/l. (5.12)
AeQi

^ ΠΔeR

iv) The estimates (5.1 1), (5.13) hold also if P is replaced by a probability measure
P° which is a gaussian measure associated with the operator A considered with
Dίrichlet (i.e. null) boundary conditions on some set (cf. Proposition 3 below).

Finally we shall need a representation for the P-distribution of a random field
Z conditioned to taking a given value Z outside a given regular region A.

Given an open set O C IR3 we call &0 the σ-algebra of P-measurable sets of
5^(IR3) associated with the functions on 5 '̂(1R3) having the form

Z->Z(/)= f f(ξ)Zξdξ Z6^'(IR3) (5.14)
R3

with /e^(R3), supp/CO. Define

OlΛ

3where Λc = complement of A in IR3 and the bar denotes closure, (AC = AC).

Proposition 3. i) P-almost surely a randomly chosen distribution Z is locally Holder
continuous with exponent ε<^. Furthermore Z has, P-almost surely, a trace on the
boundary of a given regular region A together with its first normal derivative dZ.
The pair (Z, dZ) of distributions on dA is in

C^(dΛ) x C<ε! tfΛ) , Vεe(0, ̂  , Vs < \

[8]. The trace of Z on dA is the same (except for the sign) both if dA is considered
as the boundary of A or of the complement of A.
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ii) The solution u(Z) of the equation

Au = Q in A

u = Z, du = dZ on dΛ (5.16)

u = Z in Λc

with ueCco(A) and taking the boundary value in the sense of the traces on parallel
surfaces in the spaces

is a random field in y(IRd) with samples almost surely Holder continuous with
exponent <|. We shall denote ( '̂(IR3), ̂ , P) or simply P the measure image of P
under the map Z->u(Z).

iiϊ) The random variables Z — u(Z) and u(Z) are P-independent and the variable
ζ = Z — u(Z) has the same distribution of. a gaussian random variable on &"(JR?)
whose covariance is the Green's function of -the operator A 'with null boundary
conditions on dΛ. We shall call ( '̂(IR3), Si, P°) the measure on '̂(R3) image of P
under the map Z^ζ = Z — u(Z).

iv) The map Z->(£, u(Z)) is an isomorphism (mod. 0) between the measure
spaces

( '̂(R3), ̂ , P) and (5^(R3) x «9"(IR3), ® x 3Λ, P° x P) .

v) // F is ̂  ̂ -measurable and G is $ A -measurable :

$ P(dZ)F(Z)G(Z) = $ P(dZ)G(Z) j P VO F(ζ + w(Z)) . (5.17)

The above proposition is essentially due to Pitt [10] the parts i) and ii) are
discussed in [8].

We shall use Proposition 3 via the "Markov property" (5.17). The random field
w(Z) is called the "center" of the conditional distribution in Λ of Z given its value Z
outside Λ.

A corollary of Propositions 1 and 3 is

Corollary 4. Let 0<ε<s<^ and let Ze^IR3) be such that

Π ;5fS(^) = 1 far some D e U 6ίf,
σeδ Π i = 1

with /-large enough (depending on ε,s). Then the center of the conditional
P- distribution in Π of Z given its value Z outside Q verifies the bound

-- ~

(5.18)

^O and for suitably chosen constants K(ε, s) and K.

Combining Corollary 4 and Proposition 2, iv) and (5.8) and some geometrical
considerations we obtain also the following corollary (see Sect. 5 in [9]):
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Corollary 5. Under the same assumptions of Corollary 4, there exists ρ >0 such that

if

Ze^'(lR3), Π *f(Z)=l for some Πe U Qι.<
• σeδ D * = 1

then,

qe-^IΠI, (5.19)
π, I

where c1? c2, c3, c4 can be taken the same as those in Proposition 211.

6. Proof of Lemma 1

Given RcQ1 we have to estimate, cf. (2.10), (2.13):

(6.1)

Using the notations of Sect. 5 consider the four smoothed pavements Ql Λ

62,^ 63, /> 64^ with *? = B2 and choose ε,s in (0, 1/2), ε<s. We shall then choose
B >B* with B* such that (5*)2 ̂ /0 + ̂ (6, s), (cf. Propositions 1 and 2 and Sect. 5).

Recalling the definition, preceding Proposition 2, of χB for σ belonging to the
integration grid Σ^ = Σ1 ^u. .uZ^ /? we see that:

fΠ^- (6-2)
\σφS /

Let:

= {set of the Q's which touch some σeS}

We shall need the following properties of Hj which follow easily from its

definition (2.1): given any two sets paved by Ql(R and )̂ there are constants
gl9g2,ρ such that:

-(6 4)

and

ί j p T f j j . . . 1A t jpT(u . L\

J|). (6.5)

It is perhaps worth stressing that in (6.5) the sets R, $ are arbitrary sets paved by
Qί (and have nothing to do with regions where the field z is not well behaved).
Also it should be noted that (6.5) is a simple consequence of the polynomial nature
of (2.1) and of its locality properties [expressed by the exponentials in (2.1)].
Therefore (6.5) should not be confused with the (4.19) which though quite similar,
rests on the much more detailed positivity and structure properties of V(N\

11 In (5.19) we use the choice B/2 and B in the two characteristic functions because this is the choice
that we shall need later: of course this is a quite arbitrary choice
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To apply (6.5) to the analysis of&R notice that i f = dt(S) then \ \ ^
and, also, \R\^(2B)9\R\: therefore (6.2)-(6.4) imply:

^ hi' in^S\(^PHj)P(dz)9 (6.6)
\σel /

#R£ Σ (exp0J4ll(2£)9+^(S)nJ|)
SCΣ;

• f #XβΛ*(Π (1 -^ (Π #) (expJ^a^ Pίdz). (6.7)
eS

We shall first see that (6.6), (6.7) allow to "reduce" our problem to the proof of
the following, apparently even more difficult, lemma

Lemma 4. With the above notations, given ί^O, 3M,σ1,σ2,σ3 such that VJ5 large
enough, VRCQ19VSCΣ, :

f *feβΛ*(Π (1 -a) f Π
VσeS / ̂ σίS

S expl Σ *T(H™»™(expδ(B, \\A\\)\I\)

(6.8)

with

Furthermore:

ί4,ί Π ;£UexpH,)P(dz)£(exp-δ(.B, y 11)1/1)1 \ r, I

J! fc!

While it is obvious that Lemma 4 solves the lower bound problem i.e. proves
(2.16), some more work is necessary to obtain (2.14) from (6.8).

In fact combining (6.7), (6.8), (6.5) we see that

. k = l

(6.H)

using (5.11) the sum over S can be easily estimated [as in the similar case dealt with
in the formulae (4.23)-(4.25)] and the result is just (2.14).

Hence Lemma 1 will be proven once we shall have proven Lemma 4.

We now prove Lemma 4. The proof that follows is an obvious adaptation of
the proof in Sect. 5 of [2]. We shall try to make it using notations which underline
the similarity of the hierarchical and the euclidean fields.
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Denote J0 = J\Rv(S) and let C = Rv@(S\ C1 -smallest set paved by Q1 and
such that_ G! 3 C, d(dC1? C) > 3B2.

Call P the probability measure P(dZ\ZCl) which is the P measure conditioned
to a given value Z of the field in the region Cv

Consider the A-ϊuncύons in (2.1) and set:

jnι...np_ ΓT y / K \ \ j n ι . . . n p
ξι...ξp-( 11 XjoV^M^...^

V ί > = 1 7 (6.12)
/ q \ml...mq _ ΓT / £ \ /ί'U y j m ι . . . m β

ίιίί...^q~" 11 W^W^/^ίi...^^'
. i=l

where χJo is the characteristic function of the set J0, and introduce the following
very symbolical notations:

ϊ̂ι',ϊ.'.',Xe K 1'"" PZn£'»Zn/p

and similarly:

^m1,...mqe-κd(Δι,Δ'ί,...,Δq,Δ'q)

Δl* Δ'ί'X ... X ΔQ

X Δn

(6.14)
i = ι \\^i~~^ί\ ' I

where Δ^Δ\, ...,Δ'q are tesserae of the pavement β1.
The above notation is not really necessary, of course, however we like it

because it suggests explicitly that Z is "constant and smooth" on the tesserae Δ of
Ql: this is not strictly true but the reason why the proof works is that it is
"essentially" true.

Given any set F paved by Q1 we set:

s
ff(F} — y y y Λ^,..np -κd(Δl,...,Δp)7nί γnpn\r)— L L L ΆΔ^...Δp

e ^/v ^p
p=ί «ι,...,«n Aι,...,ApcF

y y y Ami...mq -K^A^...^^ Λ ((ZΔί-
ZΔ')\mι

Lu L^ Lu ^A^...Δ'q^ 11 \\λ Λ'\l/4 l *

(6.15)

/ |Ίl/4
q=ί mi,. . . , Wo Aι,AΊ,...,Aq,A'qCF i=l \\^i ni\

*

If JQ is the smallest set paved by Qί and containing J0 we see that

HJΌ^H(JQ) (6.16)

and, therefore, we are led to the analysis of integrals like :

if Π fi(Z)}( Π ^(Z)^expH(J0)P(rfZ). (6.17)
\AeQi\R
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By the definition of P, cf. lines before (6.12), it is immediate to realize that the l.h.s.
of (6.8) is just the integral of (6.17), thought as a function of the conditioning field Z
which appears in P, with respect to the measure

AeR σeS

(6.18)

So, if we can prove that (6.17) is uniformly bounded from above by the r.h.s. of (6.8)
without the last factor, we shall have proved (6.8) itself.

Similarly to prove (6.10) we have to prove that (6.17) is bounded below by the
r.h.s. of (6.10) when R = S = Θ (in this case C = 0 = CΊ and P(dZ) = P(dZ)).

Therefore we shall prove:

AeQi\R

Π j£(Z)(expH(J0))
σeΣt\S

.k=ί kl
(6.19)

and for jR = S = 0, i.e. for C = C1 = 0:

=ι kl
(6.20)

The estimates (6.19), (6.20) can be estimated as follows (cf. [2]).
Given two different regions T,S, paved by β1? define the "interaction between

as

H(T, S) = H(T) - H(S) . (6.21)

Call (1), (2), (3), (4) the closed unpaved corridors of Ql ^ Q2 ^ β3 ^ Q4 f and
(12) = (l)n(2), (123) = (l)n(2)n(3). By the construction d((4), (123))^(5 V.

Consider the quasi-pavement Q1 ̂  and the tesserae Πeg ιχ.
Call /^largest set paved by Qί contained in (1). Let Π' be a cube inside

e whose boundary is at a distance δ -/ from 5Π '

L J

D

Fig. 5
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Recalling that ιf = B2 and that the only restriction on B was to be larger than £f
ζ c

(cf. beginning of Sect. 6), so far, we may suppose that B is so large that —- > 1.

This means that B is thought to be larger than some constant #**: to say that
B is large enough will, from now on, mean that B>B**/(ρ/2)4 where ρ is the
constant of Corollary 5, Sect. 5.

Then we notice that

H(J0) = (H(ΓJ + Σψπ} + H(C} Ξ H(J0) + H«> (6.22)
π

C} = H(JQ) — H(JQ) and, if Π is the smallest set paved by Qi and containing Π :

1). (6.23)

The short range nature of H(J\ cf. the exponentials in (2.1), allows to say that
H(c} which represents the "interaction between tesserae separated by a corridor of
size ~2δ£, can be bounded by (recalling that /2 = B4 is a measure of |δΠ|)'

(6.24)
AφR

and Sί is a suitable constant which can be easily found looking at (2.1).
Therefore our problem is to estimate

f P(dZ) IΠ fi(Z)\ ( Π £(Z)} exp Wo) (6 25)
\AφR } \σeΣί\S /

since neglecting Hc will cause, by (6.24), an error of the same form of the second
contribution to δ in (6.9) (with some other constants but with the same \\A\\ and B
dependence).

We first prove a lower bound for (6.25) supposing C = 0, i.e. R = S = 0. We have,
in this case:

> ί P(fl7\( ΓT vβ/2 C7}\ I ΓΊ^jr(αz-j [[ £dn(i)W 11 /
/ Wed)

ΓΊ ΎB^2 (t
ΔnΏ Φ0

(6.26)
C D /

where we have used the Markov property (5.17) denoting £D the Dirichlet field
relative to Π and to the operator A. We have also used the remark that if A ^ = A n Π
and A2 = ΔπOc and /eC(1/4)(zl) then:

l l / l l c ( i / ^ ) ^ l l / l l c ( i / 4 ) W l ) + l l/ l lc( i/^ 2 ) . (6 27)
Let now ρe(0, 1) be the constant introduced in Corollary 5, Sect. 5, and set

\ j n ( i ) Φ 0 C628)

zDΛz)= Π xSXnW ( Π
\ σ C D
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and denote P(dZπ/Z) the P-conditional probability for the field Z in Π given its
value Z in the corridor (1): by Proposition 3 we may identify £D + u(Z) with ZD.

Then 3/1? /2, s2 >0 such that:

D n J 0 Φ 0

Π dP(dZ0\Z)χ° *(Za))

(6.29)

where ^(J0) - number of Π's in Q l f , such that ΠnJ 0φ0: Λ%70)^|/|/73. In
(6.29) the error term arises because we replace in the intermediate integral in the
r.h.s. of (6.29) one of the two χπ'B by 1. Such error can be estimated easily by using
the inequality, valid for any random variable X with values in a Banach space and
with distribution μ :

(6.30)

where χ(\\X\\ <B) is the characteristic function of the event {X\ \\X\\ <B} and |
is the L^^-norm of the, arbitrary, function VeL^μ). The above relation applied
to P(dZΩ/Z) and combined with Corollary 5, Sect. 5, to estimate

c1e-C2βV3 (6.31)

immediately yields (6.29).

The inequality (6.30) is an elementary inequality (for a proof see [2], p. 156).
Since yΓ(70)^|/|/~3 the error term in (6.29) has the same form of the second

contribution to δ in (6.9) (with other constants) and therefore we do not have to be
worried by it anymore.

We now compute the intermediate integral in the r.h.s. of (6.29) by a cumulant
expansion, (see Appendix A, Definition 1), to order t:

=ι -

where $j denotes the truncated expectation with respect to P(dZΏ\Z) and 3s3 >0
such that :

(t+1}2

'^ \\A\\Γ 1

(6.33)

with τe[-l,l].
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We see that the error (6.33) has, apart from the different values of the constants,
the same form of the first contribution to δ in (6.9).

Combining (6.29), (6.32), (6.33) we have obtained:

[(6.25)]^

Π .(exp{ Σ ^V"U.Λ, '"'\} (exp(error)), (6.34)
D θ J 0 Φ 0 \ U = l K\ )l

where the (error) has the form δ'(B, \\ A ||) |/| with δ' given by (6.9) with, possibly,
different values of the constants M, σ1? σ2, σ3.

The next step consists in observing that the difference between
χΓί'ρB^j(ψπχ

ϋ]'B; k) and χΓl^B$j(φΏ fe) can^be bounded, in absolute value, by an
error term of the form \I\δ(B,\\A\\) where δ has the same form as the second
contribution to δ in (6.9) with possibly different constants: so

^^P(dZ)χΓ^QBeH(Γ^

kl

We now try to replace the conditional expectation SJ by the unconditional
one: of course this will be possible only "far from δΠ" To explain what this
means, let:

where Do = Q\Π / (6 35/)

and H(c) can be bounded in the same way as (6.24) (because it contains interactions
"across a corridor of width ~δ £)\ therefore, modulo an error <S'(||,4||?#)|J|, with
<5'(||4I|5£) having the same form of the second term in (6.9) with different constants
we can replace in (6.35) the sum of expectations by:

p i (636)

where we have used the Leibnitz formula for the cumulants (see Appendix A,
Definition 1).

The gaussian integrals in (6.36) should now be grouped, before explicit
computation, as:

Σ Σ
k=l kι>0
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Use now the exponential decay of the free covariance and of the center field u(Z)
from δΠ and the consequent "exponential similarity" of the free and of the
Dirichlet co variances far from dQ We shall combine this property with the
exponential decay of the "interaction" in (2.1) and, by explicit computation of the
gaussian integrals, it is easily seen that the first sum of (6.37) can be replaced by

t Σ ^ό.̂ '̂ ,638,k=l Λ ι > 0 K1IK2.
k1+k2 = k

modulo an error <5"(| |4II>£) of the same form o f δ ' , δ but with different constants.
Finally

exp -
Π ίP(rfZD|Z)χD B.expt^\.exp(error) (6.39)

, n J 0 Φ 0 /

with an error again of the by now usual form : this can be seen by doing backwards
all the preceding steps. So

[(6.25)] £ (exp Σ Σ Σ
[ DeQi / fc=l kι>0

Π
AeQi J\σeΣg

where the error (5 (1)(||4II? B) has the same form (6.9) with other constants instead of
M, σ1? σ2, σ3 and

/™=J«»\ U D' (6.41)
\ΠeQι ) ( f

i.e. we have "removed the interaction" except close to the corridor (1).
We can repeat four times the above argument [notice that the integral in

(6.30)] has the same form as (6.25) with B replaced by — and with J0 replaced by

Since d((4), (123)) is larger than 1 at the fourth step we obtain:

/ ί 4 t £τ(wl'J ιn2'J'k k }
[(6.25)] ̂  exp Σ Σ Σ Σ (ψ°ψ° 2)

kί\k2

Π
,AB(ρ/2)4/7
XΔ \Δ

^eQi

Π χ*(ρ/2)4(Z)\], (6.42)
1 1 A<7 V / ' V /

where δ(4} has the "usual form" of (6.9) and ψ^l = ψ1^ ψ^ 1=ψ^ and ψ^\ ψ^j are
defined in a way analogous to that used for \pl

Ώ and tpp: they are expressed in
terms of the new "interactions''^^1}), H(Γ2

(12)), Ή(Γ3

(123)) in the same way φ^, ip^
were expressed in terms of H(J0).
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It is quite clear that, up to an error term of the form δ(||4||5#)|/| with δ having
the same form as the second term in (6.9), the sum of expectations in (6.42) is
nothing else than

Σ
k=ί

hence (6.10) follows from (6.43), (6.42) and the above remarks by applying the
"phase space" estimate of Proposition 2, (5.12), to bound from below the integral in
the r.h.s. of (6.32).

The estimate (6.8) is obtained by some simple modifications of the preceding
argument by being careful, every time, to choose upper rather than lower bounds :
the procedure to eliminate the characteristitic functions will, of course be slightly
different. Instead of restricting the phase space by replacing B by ρB in the
corridors we shall have to increase the phase space by replacing B by B/ρ inside the
elements Π, of the integration grid, which are under consideration.

In the above proof we have avoided introducing all the corridors appearing in
the analogous proof in [2] : they seem to make the whole proof clumsy and it turns
out to be, hopefully, more clear if they are used only implicitly as in the above
scheme.

7. Concluding Remarks

1. The technique used can be clearly extended to prove perturbation theory to
"any order" in the following sense.

Define

>

and, if S denotes the expectation with respect to PN, cf. Sect. 1, let

I
t /?T(y(N) . 3L\-|

vr- Σ ̂ πh-^ (7 2)

fc=l Kl J(ί)

Then there exists E(λ;t) such that if ̂ 3

i) f(exp^f))PN(dz) = expβ£μ;ί)|/| (7.3)

for some #e[— 1, 1).

ii) l imA" i £(A;i) = 0. (7.4)

The classical theory of renormalization implies that all the terms in the sum
(7.2) with /c^4 are finite; and, as 7->oo, have a limit if divided by (/). In other
words (7.3), (7.4) mean that the ground state energy can be bounded above and
below by the result of formal perturbation theory to order t plus a remainder
which is infinitesimal of order λt+l as λ->0.

2. If one treated the case d = 2 to obtain the same results obtained in the d = 3
case in this paper, then one would have to do exactly the same calculations and the
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same steps presented here with only a few (minor) simplifications. Actually the

difference would be the absence of the term — — — -Ar- in the effective hamiltonian :
\ξ-η\ '

to say it better a term like (φξ — φn)
2 would still be present but we would not need

to multiply and divide it by \ξ — η\1/4 ana use the Holder continuity of the fields to
show that it does not cause problems.

3. The technique of this paper allows to study the integrals,

where /e^^) and to derive for the Schwinger functions bounds of the type of the
ones found by Feldman [3] before the "advent" of the cluster expansion.

4. The ultraviolet limit N-+CO of expressions like (7.4) should be possible using
techniques similar to the ones involved in this work. However the infrared limit,
|/|-»oo, is a somewhat different problem and there seems to be no other possible
approach apart from the cluster expansion [3].

5. In this paper we have tried to eliminate the "casistic" involved in the
derivation of the upper bound in [2] : it is replaced in Sect. 4 by a "mechanical"
algebraic discussion. The idea of using the functions V and H to avoid the casistics
was inspired by the work in [6].

6. The final results of this work were all well known and has been obtained by
other methods.

The idea of using conditionings and overlapping regions seems to be somewhat
new, at least in Statistical Mechanics and Field Theory : it was inspired by the
works [4, 5] and used already in [2]. Similar ideas are involved in the work [6],
independent on ours, which unfortunately has not yet appeared.

It seems to us that our work goes in the direction of extending to field theory
the work [5] : however this important point deserves further analysis.

A general background on the above problems can be obtained by [7].

Appendix A. Some Definitions

1. The "cumulants" or truncated expectations of a family of random variables x l 5

x2, ...,xs with respect to the probability measure P are

(A.1)

where fe l5...,/cs —0,1,....
The cumulants verify a summation property ("Leibnitz formula") [7]:

Σ . k' gτ(Xί,...,Xp;kίt...,kp). (A.2)
kί+...+kp = k κl '"Kpl

The cumulants make sense, in an obvious way, for any probability measure
such that J|χ.|ρdP> + oo, Vρ>0 and for i = l, ...,s.



124 G. Benfatto et al.

2. A region A of R3 is "regular" if there are a finite number of points ξly..., ξs in
dA such that, when they are chosen as the origin of a coordinate system in which
the plane x3 =0 is the tangent plane πt to dA in ξ.9 then 3ι;e^(R2) and the surface

°v

X3 = φc1,x2) x 1 ?x 2eR 2 (A.3)

coincides with dA in an open neighborhood of 0 = (0,0). Furthermore the "surface
elements" thus described cover dA.

A region A is "conically regular" for cones with opening 0e[0,f) if the cones
with apex on dA, and axis given by the outer normal (to dA) in their apex, intersect
dA in no point other than the apex if the opening of the cones is restricted to be
^θ.

3. Given a regular region ylcRd a "regular regularly spaced" covering of the
homothetic image d^A of dA is a family of coverings σ1 ?..., σn£ of d£A which, as /
varies in [1, oo], have the following properties:

i) Each σ. can be described by an "equation"

xd = ι>σfe), xeR*-1, |x|<l (A.4)

in a cartesian reference system with origin in some ξeσ in which xd = 0 is the
tangent plane to σ in ξ. Furthermore vσε@(ΊR?~l).

ii) The sets σ? described in local coordinates by

xd = vσ(x) , \x\^ (say) (A.5)

also cover d/A.
iii) If σir\σj = & then d(σί? σ;.) ̂  y^ (say)
iv) Given i there are at most C(A)d values o f j such that d(σί? σ;.) = 0.
A function / on d/A with support on σ will be represented in the local system

of coordinates associated with σi by a certain function / on R*1"1.
Let α l 5 . . . ,0 π be a partition of unity on ΰtA with functions such that

suppoί Cσ?. A family of such partitions will be called regular if 3 a sequence Ap of
real numbers such that

\\oίi\\c(p)(Rd-i)^Ap Vp^O, W^l. (A.6)

This notion is an asymptotic notion as well as the notion of regularly spaced
covering of d/A.

In the course of this work we shall only meet four families of regions depending
homothetically on a parameter /^ 1. They will be the tesserae Πeβi^, 62,^ δa.Λ
64 /• We shall suppose to have associated once and for all a family of coverings
which are regular and regularly spaced and a family of associated regular
partitions of unity.

4. Let weC°°(Π) and let z^eC^l/δΠX^O, 1, ...,m-l. We want to define the
meaning of the statement that the j'-th normal derivative of u takes the value z(j) on
$Π in the sense of the traces on surfaces parallel to the boundary. For every
surface element σ of the covering of 3D consider the functions on Rd-1
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defined as they'-th normal derivatives of u on the surface which, in the local system
of coordinates associated with σ, has the equation

Call uσ(dju}t such functions.
Then u will take the boundary value z(0), . . ., z(m~ υ in the sense of the traces on

parallel surfaces if Vσ in the covering of 3D '

lim KίδH-αΛc*) (Rd-1} = 0
t^o+ s J

7 = 0,1, ...,m-l,Vs'<s.

Appendix B

The following expressions are easily proven by induction combined with simple
algebra on Wick polynomials (see, for example [7])

j^-ι) = F(N-υ^ (B.I)

where, in general, if C{(ξ,η) = C[

ξ^
ί] and φξ = φ[

ξ=
ί}:

Wt=-3\4λ2 f dξdη(Ci+l(ξ9η^-CJiξ9η)3):(φξ^φη)
2:9 (B.2)

/ x /

»ί=T Σ C)2(4-^)! f d^(C(+1(i^)4-'-C^,f,))*-0-:(^J):, (B.3)2 e=2\tl n

Fi=-^ Σ drιΓ2ΓJ I {cί+1(ξ,»/)!'»cί+1(»,,o>"c(+1(ί:,ξ)'31

rii-2r3 I3

(B 4)
with: »

TΓ ( r M r M r s M s M s S12 !s23 !s3i'•
^ ! \ r i/ V 2 / V 3 / \ 512 / V 523 / V S31 I

if r1 + r2 + r3 = 2r, 1 ̂  r ̂  4, rf ̂  3, z = 1,2,3

0 otherwise

=y Σ 423!p (2-p)!
2

 P =o

(B.5)
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By induction :

where <$>h denotes integration with respect to z(Λ+1), ...,z(JV) and $ is the full
integration, and if we call G($, G($ the terms in the curly brackets, we have

$>=_ 1242.3, ^CN(ξ,η)3-Ch(ξ,η)3):(φξ-φη)
2:dξdη, (B.7)

I3

• (Ct(ζ, ξ) - C;(ζ, ιj) - Ch(ζ, ξ) + Ch(ζ, i/)) :(ψξφl\. dξdηdζl
)

-A 34 2-3!-61 "̂  ί (Ci+1(ξ,η)3 - Ctf,η)3) (CJ(ζ, ξ)

• Ci(ζ,η)-Cί(ζ,ξ)2-Ch(ζ,ξ)Ch(ξ,η) +Ch(ζ,ξ)2) .(φζ)
2:dξdηdζ^, (B.8)

= Σ (4 - 0 ! ί (CN(ξ, ̂ )4 -' - Cfc(ξ, ί?)4 - 0 :(^φj): rf^ , (B.9)
2 « f = 2

, ,
S12<3

, ζ)s« C,.(ζ, ξ)s» - Ch(η, ζ)s" Ch(ζ, ξ)s

/3

(B.ll)

33 i /Λ\ /4\ ίv
Σ 4 2 3!ΠΠ(2-p)! Σ ί dξdηdζ

23 Σ
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It may be helpful for some readers to see the graphical representation of the
above terms while checking the calculations :

-©)]

G (h) ~ Σ Γ same graphs as F ( h ) Ί
i L JG

#+ τr +

The above representation is highly symbolical and the subscripts point out
that the rules to associate a number to the diagrams are not the same for each
class. They can be easily read from the explicit expressions given above.

It is convenient to rewrite Ϋ(h} as

and notice

Σ J dζdξdη^+^ηf-C^η)3)

ξ, ζ) - C£η, 0) - (CΛ(£, 0 - Cftfa, ζ))]: (<Pξ - <Pη)' <PΪ •
I N-l

-A34.3! 6J Σ J χ /

• [(cί+1(C,d-cϊ+7(U))2

-(CΛ(C,ξ)-Qζ^))2] :(φc)
2:

having used the symmetry of Cζ ^ in the first integral.
We now give an example of the method to get the bounds on the ^-functions

by explicitly estimating the contribution coming from W$, for d = 3.

We have to estimate

where Δ e Qh and :

dξdη(CN(ξ,η)3-Ch(ξ,η)3)},(ΈL.l5)

(R16)
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hence, since C3

N - C3

h ̂  3C*(CN - Ch):

e-yh\ξ-«\]

+ ί Wi-tf-fjr} (R17)

Δ2,γh\ξ-η\>l \ζ~rl\ }

changing scale by a factor yh the integrals become :

A o f 12 -2Λ (R18)
l x l J

All the other estimates are very similar to this one.
Another example that we treat for purposes of illustration is, say, the first term

in the r.h.s. of (B.8).
The v4-function for this term is

λ34.3! 4.2 2(l+ΓΛ)2 *Σ (Ci+ί(ξ,ηf -C^η^^ξϊ-C^η)

- Ch(ζ, ξ) + Ch(ζ,

Using the inequality

J |C,.(C, ξ) - QC, η) - Ch(ζ, ξ) + Ch(ζ, η)\ dζ
A

γh

^cy-2h(yh\ξ-η)e~^d(Δ'ξ\ (B.20)

Vi^ft , Vγh\ξ-η\^l, VzJeβ, if c is suitably chosen.
Therefore it easily follows :

(Ay2")3 J \A™\dξdηdζ
Δ x Δ\ x A2

ί
Δι* Δ2

^0, VA,Aί9A2€Qh, if c,c are suitably chosen.

Appendix C

Proof of Lemma 2. By definition

N-l

i = h+l

The results of Appendix B, i.e. the estimates on the ,4-coefficients cf. (4.3)
show that there exist constants g, ρ, ρ' such that:

£/Λ )^*jΛι> 9uΛ +

{ N- 1

Σ
i = h + l
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Then we notice that the definitions of Rh,Dh,Dh_1 imply:

V^-i (C.3)

and, furthermore, in D^^D^vRf) the field X(h} is still quite large

ΓhBh-ι-Bh^ Bh (C4)

) _χw} ̂

(C.5)

Therefore we can use the positivity properties of F and W to conclude that if the
constants g, ρ are suitably chosen

y(h) < Γ γ(h) g „ _j_ ^j/(Λ) g - 2 r }

/) (C.6)

provided h is so large that the negative parts taken out of V(h} and W(h} overwhelm
the higher order terms.

Since such negative terms can be bounded above, respectively, by

and

-λ2c ί dξdη - yh[.CH(ξ9η)3-Ch(ξ,η)^(yh\ξ-η\)U2 (C.8

it is easily seen from the estimates on the ^-coefficients (4.3) that (C.6) always
holds for h large and, if λ is small, it holds for all /z's.

For instance we can consider the first of the two terms of third order
containing W\ to change it to the form in (C.6) we produce an error estimated, in
absolute value, by :

cA34 3! 4 2 j dξdηB4

h(γh\ξ-η\)1 + ll4(CN(ξ,η)3-Ch(ξ,η)i) (C.9)
(Dh-ι\

having used :

[cf. (B.20), also].
It remains to check the third statement of the lemma.
From the recursive structure seen in the proof on Appendix B it is easy to

3 sτ(H(h) k)
deduce the expression of ^ — — -~ — (which is a gaussian integral).

fc = i kl
In general the sum of the first three cumulants of an expression like

<c



130 G. Benfatto et al.

is exactly equal to

J V - l
I V β>

-\- > & -^fl,
' J ^ V"

+ [̂ ŝ'] + (terms of order ^4 in λ) (C.12)

and the bound in the A -coefficients allow a naive bound on the higher order
terms:

cλ4BQ

h_ve
λ~Qy~h\I\ (C.I 3)

while the term in square brackets is not positive: so

ι7~Vl (C.14)
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