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Abstract. We give a criterion that the two point function for a Gaussian lattice
with random mass decay exponentially. The proof uses a random walk
representation which may be of interest in other contexts.

Random mass gaussian lattices are lattice systems where the single site distri-
bution has the form

/CO \

j dσ(a)e~aφ2\dφ.
\ o /

An example is -p. Related systems have been discussed quite frequently, at

least in one dimension [I].1

Let dσ(d) be a Borel measure on (0, x) such that

I dσ(a)(l +αΓ 1 / 2 <x. (1)

For μ ̂  0, define

Let L.x ClRd be a unit lattice centered on the origin, parallel to the coordinate axes.
d

L denotes the finite part of LΓS contained in the box [~[ [ — /,-+ 1/2, lj— 1/2] where

(/;.) are given integers. On the space IR'L', where \L\ denotes the number of lattice
points in L, define the probability measure

J e L

(φ,ADφ)=-Σ(Φι~Φi')2 W
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ZL μ is the normalisation. AD is the finite difference laplacian with Dirichlet
boundary conditions, so the sum in (4) is over nearest neighbor lattice points in L^
and φt = 0 iϊlφL.

The measure for the random mass gaussian lattice is to be obtained by taking
limits L^LX, μ^o in that order. By Griffith inequalities the moments of dPL μ are
monotone increasing as |L| increases and μ decreases, therefore existence reduces
to uniform upper bounds.

In order to state and prove the theorem, we define for π^o,

^7 .μ.,= ίΠ^,,>1)^
 4τΦ) (6)

leT

T is a lattice wrapped around a torus. Given L, it is defined by identifying the
d

boundary points of L.xn Y[ [ — ^.— 1/2, /;.+ 1/2] in the obvious way. Δτ is the
j=1.

finite difference laplacian with periodic boundary conditions defined by an
equation like (4) in which /, /' are summed over nearest neighbors in T.
Corresponding to dPL μ is a measure dPT μ obtained by replacing L by T, ΔD by Δ τ

and ZL?μ by ZΓ>μ>0. The periodic pressure is defined by

Pμ,n= lίmT\-ilogZτ^n. (1)

Theorem. The two point function

^^JdpL.μΦιΦι

exists and is 0(e~M|i~; |) as \l — /'|->oo for some M>0 provided

Remarks. The inequality /4^0 is an obvious consequence of the definitions. We
think A>0 will hold for d^3, provided dσ(d)^δ(a). For d<3, one must either
place additional restrictions on dσ(a) near a = 0 to ensure even existence as μ-+0 or
look at correlations of different quantities such as gradφ. The proof will use the
following proposition1 which may also be of interest.

Proposition. Let b = (b^ be a strictly positive function on T. Then

ω is summed over all random walks on T of arbitrarily many nearest neighbor steps
starting at /, ending at ΐ . n(l, ω) is the number of times ω hits I. The left hand side
means the /, Γ entry of the matrix inverse.

Proof of Proposition. (AT = A.)

(8)

ί + ... (9)

This is a reformulation of a well known theorem in random walk
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This is the resolvent expansion in the off diagonal elements. The last line can be
rewritten as the right hand side of the proposition because (2 d) ~ l (2 d + Δ )
generates random walk. (It is a matrix with positive elements which sum to one.)

Proof of Theorem by a Griffiths inequality

Q^ldP^φtφ^ldP^φtφ,. (10)

Substitute for dmμ(φ) using (2). The right hand side becomes (Z = ZT <μ _ 0 , A=AT)

l/2Z-lIY[dσ(ak)άQΓll2(2(μ + a-A))(μ + a-A)u^ (11)
k e Γ

= l/2Z- 1 f Πdσ(ak)dφkexp{-(μ + ak)φϊ}(μ + a-Δ)ΰϊe(+'*φ). (12)
keT

Therefore by the proposition

co k e T

•z-'JΠ^W^'^
keT

We now apply Osterwalder-Schrader positivity in the form of the chess board
estimate [2] (Lemma 4.5) to show

1 Π dm^^φy+ ̂
leT

^Π^T^A (14)
leT

Combine (10), (13), and (14) and pass to the limit L^L^ using definition (7).

Inn [ J P L , < / > r ^ l / 2 l Π (2dΓ"(''ω>

4 "-Ί. (15)

The last inequality is using the fact that each ω must visit at least | / —1'\ lattice
points and Pμ n^Pμί for n^ 1. Proof concluded.

Remarks. (1) Representations like (13) can be obtained for n point functions.
(2) By using

2π

representations like (13) can be obtained for rotators with n components. Despite
the complex numbers in (13) one still obtains positive measures dm (φ).
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