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Abstract If Λμ is a vector field satisfying &iAv— dvAμ = 0 can one find a scalar
field φ such that Aμ— frφΊ A novel quantum analogue of this classical problem
incorporating locality is introduced and is shown to generate those super-
selection sectors whose charge can be strictly localized In a 2-dimensional
space-time there are further possibilities; in particular, soliton sectors can be
generated by this procedure.

1. Introduction

The possibility of describing superselection structure in elementary particle
physics in terms of observable quantities was first pointed out by Haag and
Kastler [1]. Their idea was that the charge quantum numbers should appear as
labels for those inequivalent irreducible representations of the observable algebra
whose vector states are relevant to elementary particle physics. The first attempt
to give concrete shape to these ideas was undertaken by Borchers [2]. He pos-
tulated that the relevant representations were those which are "strongly local
equivalent" to the vacuum representation and showed how the unobservable
fields could be recovered as the intertwining operators which realize this equiv-
alence. However his postulates, already suspect because his analysis apparently
ruled out the possibility of parastatistics, were shown in [3] to be violated if the
superselection sectors are generated, as in conventional field theory, by a prin-
ciple of gauge invariance of the first kind. Nevertheless a slight modification of
the terms "strong local equivalence" allowed Borchers' results for systems obeying
ordinary Bose and Fermi statistics to be recovered and extended [4].

The systematic treatment of superselection structure in [5, 6] classifies the
particle statistics compatible with locality and analyses the operations of charge
addition and charge conjugation. On its own terms, this analysis is rather com-
plete; it is true that it has not yet proved possible to show that the superselection
structure may always be described as the representation theory of some compact
gauge group. However, even if such a result holds, it would add little to our
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understanding of the structure. If it does not hold, it is conceivable, but perhaps
unlikely, that it would open new, interesting possibilities for the phenomeno-
logical classification of elementary particles.

The real weakness of the present analysis lies elsewhere: it is quite possible
that the most interesting quantum field theory models do not fall within the
scope of the analysis. This is certainly the case with quantum electrodynamics
because, as pointed out in [5], sectors with non-zero electric charge do not satisfy
the selection criterion used there. Furthermore as gauge groups of the first kind
are so intimately related to superselection structure, the question naturally arises
as to whether this is also the case with gauge groups of the second kind. Admittedly,
the naive answer is that gauge invariance of the second kind does not generate
superselection sectors but serves instead to rule out unphysical states. However,
in the absence of a deeper understanding of its intrinsic role, this conclusion is
suspect.

The approach advocated here has the great advantage of promising to resolve
these problems as well as shedding light on other structural features of quantum
field theory. Instead of studying representations that satisfy some selection cri-
terion as in [5], the superselection structure will be deduced as part of the analysis
of the "local cohomology" of the observables. The "local cohomology" may be
thought of as the quantum analogue of the cohomology of differential forms.
Here we shall only be using the local 1-cohomology of the observables. We recall
that in the cohomology of differential forms, a closed 1-form corresponds to a
vector field Aμ(x) whose curl vanishes

O (1.1)

and it is exact if there is a scalar field φ(x) such that

Aμ{x)=dίφ{x). (1.2)

These equations may be looked at in integrated form. If b is any path, i.e. a smooth
mapping of the unit interval [0, 1] into Minkowski space, we may consider the
path integral

\dψ^-ds. (1.3)
us

Equation (1.1) means that the integral round a closed path bounding a 2-dimen-
sional surface is zero and (1.2) that

A(b) = φ(b(l))-φ(b(0)). (1.4)

The most obvious way of producing a quantum analogue for the equations
is to require that Aμ(x) be a local quantum vector field satisfying (1.1) and to ask
whether there is a local quantum scalar field φ(x) satisfying (1.2). The really im-
portant new ingredient here is the locality requirement. This question, which
arises naturally in discussing certain models, has been treated by Pohlmeyer [7].
He shows, among other things, that, in a covariant theory with a mass gap in
more than two space-time dimensions, it is always possible to find such a field
φ(x). From the point of view adopted here this is a negative result, analogous to
the Goldstone theorem, showing that (1.1) cannot generate superselection sectors
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under the above conditions just as the Goldstone theorem shows that a conserved
current cannot generate new vacuum sectors in the absence of zero-mass particles.

The more interesting analogue of (1.1) and (1.2) avoids using unbounded
operator-valued distributions which, quite apart from being awkward to handle
mathematically, have the flaw of making the cohomology classes into real vector
spaces. It is based on a notion of "charge transfer" along a path. There are three
physically plausible properties of this operation1 :

a) invertibility (we can transfer charge back along the same path),
b) charge neutrality (the total charge is unchanged),
c) localizability (the operation should be localized about the path in question).

If we assume as in [5] that the observable algebra satisfies duality in the
vacuum sector, i.e. for each double cone & we have in the vacuum representation

(1.5)

Then the above properties imply that the operation of charge transfer is an inner
automorphism of the observable algebra generated by a unitary operator from
some 91(0).

If we transfer charge along a path from a) to b) and then along a path from
b) to c) we may plausibly assume that the net result is the same as if charge is
transferred along the composed path from a) to c). The really crucial restrictive
assumption we make here is that the operation of transferring charge along a
path from a) to b) is independent of the path chosen and depends only on the
endpoints a) and b). It is here that we exclude the electric charge because, by
a plausible extrapolation of Maxwell's equations, the effect of transferring charge
around a closed path should be the operation of creating a flux of magnetic field
through a surface spanning this path.

The above discussion may be summed up by saying that we assume that the
operation of charge transfer is represented by a local 1-cocycle over Minkowski
space with values in the group of inner automorphisms of the observable algebra.
The precise definition of these terms will be deferred until Section 2 where we show
that the resulting local 1-cohomology is equivalent to the approach to super-
selection structure described in [5]. However the relation between charge transfer
and superselection sectors is quite simple and has already been discussed in [5].
A limiting procedure allows one to transfer charge in from spacelike infinity; the
resulting operation is, in general, no longer an inner automorphism of the observ-
able algebra but leads to a new sector and describes the creation of a localized
charge.

It is perhaps not surprising that the above results must be modified in a
2-dimensional space-time where one may distinguish a spacelike left from a space-
like right. If one tries to create a charge by transferring charge in from spacelike
left infinity, say, the resulting operation is not necessarily localized. The operation
is trivial on the spacelike right but on the spacelike left it may correspond to
performing an internal symmetry on the system. This internal symmetry is then
the result of transferring charge from spacelike left infinity to spacelike right
infinity. If, as can happen, this internal symmetry is spontaneously broken, then

The term operation here is being used in a technical sense, see [1].
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one is describing a typical aspect of soliton behaviour and the resulting sectors
may be regarded as soliton sections. This forms the subject matter of Section 3.

To understand how the local 1-cohomology comes to be related to internal
symmetry, one may recall that, in a 2-dimensional space-time, the dual tensor of
a vector field satisfying (1.1) is a conserved current. In fact this aspect of local
1-cohomology, in contrast to its relation to superselection sectors, emerges clearly
from the discussion in [7]. Reverting now to the four dimensions of physical
space-time, the local 3-cohomology will correspond to the notion of a conserved
current, dμj

μ = O. Hence one may plausibly conjecture that soliton behaviour is
now associated with the local 3-cohomology. Indeed the higher local cohomolo-
gies promise to be an interesting field of study for other reasons as well. Thus
the local 3-cohomology in its role of generating a gauge symmetry should couple
with the local 1-cohomology to describe the measurement of charge. The local
2-cohomology, exemplified by one of Maxwell's equations $λFμv] = 0, should lead
to a description of theories such as electrodynamics with a gauge group of the
second kind.

2. Local Cohomology

We suppose given the observable net 0->2I(0), 0 e J f of von Neumann algebras
on the Hubert space J>f0 of the vacuum representation. Here Jf denotes the set
of closed double cones in Minkowski space and we shall use jf0 to denctte the
subset of double cones centred on the origin. We suppose, as usual, that Θ1 C 0 2

implies 2l(0!)c2l(02) and let 21 denote the C*-inductive limit of the algebras
21(0), 21 is supposed to be irreducible on J^o. If 0' denotes the spacelike com-
plement of 0, then 21(0') denotes the C*-subalgebra of 2ί generated by {21(0^;
Θ1CΘf, Θ^Jf}. As indicated in the introduction, we suppose that 0->2I(0) is
not only local but also satisfies the duality condition (1.5).

By a morphism of 21 we mean a linear mapping ρ:2I->2I such that ρ(AB) =
ρ(A)ρ{B), ρ(A)* = ρ(A*)9 A,BeM and ρ(I) = L We let Mor2I denote the set of
morphisms of 21. We say that two morphisms ρx and ρ2 are equivalent if there is
an inner automorphism σ such that Qι=σρ2. If we let π 0 denote the inclusion
mapping of 21 into ^S(J^0), the set of bounded linear operators on J^o, then πo°ρ
is again a representation of 21 on the Hubert space J>f0. We say that a morphism
ρ is localized in a compact subset F of Minkowski space if for any ΘeJf, ΘcF'

ρ(A) = A, AeM(0). * (2.1)

As a consequence of duality, two localized morphisms ρί and ρ2 are equivalent
if and only if the corresponding representations πo^ργ and π o °ρ 2

 a r e unitarily
equivalent. As in [5], we write ρeΛt(Θ) if ρ is localized in 0 and if, given any
translate Θ+x of 0, there is an equivalent morphism ρ' localized in 0 + x. We set
Δt = (J Δt{Θ) and refer to the elements of Δt as transportable localized morphisms.

In these terms, the basic assumption in [5] may be expressed as follows: the
relevant representations for elementary particle physics are those of the form
πo°ρ, where ρeΔt. A superselection sector may then be considered as the set of
vector states of an irreducible representation of the form πo°ρ. This description
does not do justice to the physical reasoning behind this basic assumption however
we shall see how the set Δt arises naturally when analyzing the local cohomology.
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We let Σn denote the set of n-simplexes2 in Minkowski space. To incorporate
locality into the cohomology we need a good notion of a function on Σn with
values in In 91, the group of inner automorphisms of 91, or Mor9I which preserves
localization regions. Inner automorphisms cannot, however, be localized as
sharply as n-simplexes and to cope with this we allow for a certain uniform error
specified by a double cone ΘeJίT0. We write fe C"(0) if/:!;„-• In 91 and if f(a) is
localized in 0 + α = { x + j;:%e0, y = a(to,t\...,tn)} for each aeΣn. life (J C"(0),

we say that / is a local function from Σn to In91. We write zeZ1(G) if zeC1(Θ)
and if z is a 1-cocycle, i.e. if for every ceΣ2

z(d0c)z(d2c) = z(dlC). (2.2)

We write Zι = (J Z1(Θ); an element of Z 1 will be called a local 1-cocycle.
ΘeXΌ

A local 1-cocycle is the basic object of study in this paper and is supposed to
represent the operation of transferring charge along a path as discussed in the
introduction.

If ye C°(G) and we define

dy(b) = y(dob)y(dϊb)-\ beΣ,

then dyeZ1{Θ) and we say that dy is a local 1-coboundary. More generally if z'
and z are local 1-cocycles and if we can find a y from some C°(Θ) such that

z'(b)y(d1b) = y(dob)z(b), beΣ, (2.3)

then z' and z will be said to be cohomologous. Cohomologous local 1-cocycle
should be thought of as transferring the same charge.

As Minkowski space is contractible any 1-cocycle will be a 1-coboundary
(Lemma A.2). Whilst this does not mean that any local 1-cocycle is a local
1-coboundary, it does imply that if zeZ 1 , then z(b) depends only on dob and dγb.
This has an important consequence for the localization properties of z(b).

2.1. Lemma.If zeZ\G\ beΣl9 and G^CiG + d^by^G + d^by then

z(b)(A) = A, ,4

Proof. Since (Θ1—Θ)' is path-connected, we can find bfeΣu with dob'=dob,
dγb'=dγb and Gί C(G + bJ. Hence z(b)(A) = z(b')(A) = A, AeSΆψγ) as required. G

We shall now describe a procedure which allows one to decide whether a
given local 1-cocycle z is a local 1-coboundary or not. The strategy is very simple;
suppose z = dy, ye C°(G) then we may compute y as follows: given aeΣ0,
pick beΣx, with dob = a and G + dxbcG'l9 then y(d1b)(A) = A and hence

y(a)(A) = z(b)(A),

We may use this procedure3 to define y for any given zeZ1 and it turns out, in
general, that y takes values in Δt instead of In 91.

2 The definition of an ^-simplex and other elementary notions from cohomology may be found in
the Appendix.
3 Compare the discussion of Lemma 3.1 in [5].
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2.2. Theorem. If zeZ1(Θ\ there is a unique local function y:Σ0->Δt such that

z(b)y(d1b) = y(dob), beΣ±. (2.5)

Furthermore y(a)eΔt(Θ-\-a\ aeΣ0. If z' and z are cohomologous so that there is
a local function w:Z0-»In2I such that

z/(fe)w(51fe) = w(3ofe)^(fe)J beΣ±, (2.6)

then the associated functions, y' and y are related by

y'{a) = w(a)y(a), aeΣ0. (2.7)

Hence the equivalence class of y(a) in Δt depends only on the cohomology class of z.

Proof If A e S ! ^ ) , we want to define y(a)(Λ) as in (2.4), but must first show that
this definition does not depend on the choice of dλb. However if ceΣ2, dodίc = a
and Θx C(Θ+d1 dίc)fn(Θ+dί doc)\ then by Lemma 2.1, z(δ2c)(A) = A. The cocycle
identity (2.2) now gives z(doc)(A) = z(dίc)(A), showing that y(a)(A) in (2.4) is
independent of b. It follows that y(a) is a morphism on (J 21(0) and hence extends

uniquely to a morphism of 21. Lemma 2.1 implies that y(d) is localized in Θ+a
and (2.5) will show that y(a)eAt. To prove (2.5), it suffices to prove it on each
<2I((̂ 1) and this we do by choosing ceΣ2 with doc = b and Θ1C(Θ+ dίd2c)' when
(2.5) is a consequence of the cocycle identity (2.2). Similarly we prove (2.7) on
each 21(0!) by first picking ΘeJΓ0 sufficiently large so that z,z'eZι(($) and
we C°(Θ) and then picking beΣ1 with dob = a and GXC{G + d^)' when (2.7) follows
from (2.6). D

There is one more step to take before we can claim that the local 1-cohomology
and localized transportable morphisms give equivalent descriptions of super-
selection structure because we must show that every equivalence class in Δt cor-
responds to some cohomology class. This is achieved in the following theorem.

2.3. Theorem.Lei $eJf 0

 and y:Σ0-+At be such that y(a') is equivalent to y(a)e
Δt(Θ + a) for each a,a'eΣ0. Then there is a zeZ1(Θ) such that

z(b)y(d1b) = y(dob), beΣt. (2.8)

Proof If beΣl9 y(d1b) and y(dob) are equivalent by hypothesis so let z(b) be any
inner automorphism satisfying (2.8). If Θ1 C($ + d^)'r\(O + dob)\ z(b)(A) = A, for

Hence we may find z : Z 1 ^ I n 2 I satisfying (2.8) and it automatically has the
correct localization properties although it is not necessarily a 1-cocycle. However
if h is any contracting homotopy [see Appendix, (A.7)] and we set

z'(b) = z(hdob)z(hdίb)'ί (2.9)

then z' is a 1-cocycle and still satisfies (2.8). Hence zΈZ1(Θ) as required. D

The reader may have noticed that the duality assumption has not been used
in deriving the above results. However it is only under this assumption that the
local 1-cocycles or localized transportable morphisms are necessarily associated
with superselection structure.
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The local 1-cohomology remains unchanged if we were to use some other
suitable set of simplexes on Minkowski space to define it. For example we could
use C^-simplexes or affine simplexes. One could also consider local 1-cocycles
with values in ^(21), the unitary group of 21, instead of In2ί. We say that a unitary
ue°U^S) is localized in a compact set F of Minkowski space if the corresponding
inner automorphism σu is localized there. The image of a local 1-cocycle in ^(21)
under σ is a local 1-cocycle in In21 to which Theorem (2.2) applies. Furthermore
if y:Σ0^Δt is as in Theorem 2.3, then we may proceed as above to find a local
1-cocycle z with values in ^(21) satisfying

σφ)y(d1b) = y(dob), bsΣt. (2.10)

Hence the resulting local 1-cohomology is again unchanged. This conclusion could
be criticized on the grounds that the correct notion of a local function z:Σ 1

is that there is an Θe Jf0 such that

z(a)e V 2l(0 + α(s, l-s)), aeΣ1. (2.11)
S6[0,l]

However duality (1.5) implies that every local 1-cocycle is automatically a local
function in this more restricted sense.

It is natural to ask how the analysis of superselection structure would look
if presented in terms of local cohomology. The appropriate choice of coefficients
for the cohomology here would be the algebraic system of localized morphisms
and intertwiners. Such a development might lead to further insight into the struc-
ture, particularly as regards the geometry underlying the permutation symmetry
(statistics) of a sector. However the investigation of higher cohomologies would
seem to be a more urgent task.

3. 2-Dimensional Space-Time

We turn now to consider the special case of a 2-dimensional space-time where
the equivalence proved in Section 2 is no longer valid. There are two reasons for
doing this; in the first place, a 2-dimensional space-time is, at present, a proving
ground for field-theoretical models and it is as well to be prepared for structural
phenomena peculiar to this situation. In the second place, there are physical
phenomena associated with the s-dimensional local cohomology, where s is the
number of space-dimensions. In a 2-dimensional space-time such phenomena
will appear in analyzing the local 1-cohomology. The motivating equation from
the cohomology of differential forms is now the charge conservation equation

dJ"(x) = 0. (3.1)

Using the metric tensor of Minkowski space, we get a dual tensor j*(x) whose
exterior derivative vanishes, in other words a closed s-form. Now in quantum
field theory, as is well-known, a conserved local current can be used to generate
an internal symmetry of the system. The infinitesimal generator δ of such a sym-
metry is defined as follows: if ,4e2ί(0κ), where ΘR is the double cone whose base
is the ball x° = 0, |* |^Λ,

i[J0(gefR,)9A]9 (3.2)
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where JR' > JR + ε, fR and gε are smooth functions of compact support such that
fR>{x)=l, \x\<R\ gε(x°) = 0 if \x°\>ε and jgε(x°)dx° = l and

JO(0JR)=V\XO, x)gε(x°)fR'(x)dx°dx.

If we look at this from the point of view of the dual tensor j * , we would compute
the generator as follows: let h be a smooth approximation to the ^-function,
J h(x°, x)dx°dx = l, with supp/zC$ε and let j% be the tensor obtained by smearing
j * with h. We may consider the base of &R. as an s-simplex b and then

δ(A) = i[Jt(b),A-}, AeK(GR) (3.3)

where j%(b) is the result of integrating the closed form j% over the s-simplex b.
Of course it is perfectly possible that δ(A) = 0 for all A; this would be the case in
particular if f generates a gauge symmetry.

Now that we have described the construction of δ in cohomological terms, it
is clear how one should proceed by analogy when the local cohomology takes
its values in In2ϊ. If z is a local s-cocycle and A and b are as in (3.3), we should be
sometimes able to define a non-trivial internal symmetry ζ by setting

= z(b)(A)9 AeKψR). (3.4)

One may hope in this way to obtain discrete internal symmetries, whereas (3.1)
will give only continuous internal symmetries.

In a 2-dimensional space-time if we could apply Lemma 2.1, we would be
able to deduce that the internal symmetry ζ is trivial. However this lemma cannot
be applied because if Θe jf, & is no longer path-connected but decomposes into
two components denoted by Θr and G\ the right and left spacelike complements
of G respectively. Θr is defined by the convention that (0, x)eθr if x is sufficiently
positive. All we can say using the argument of Lemma 2.1 is:

3.1. Lemma.// zeZ1(Θ\ beΣl9 and i = r,l, then

z(b)(A) = A, AeMiOJ

whenever G1C{G + dobfr\(G + d1 bf .

In place of Theorem 2.2 we have

3.2. Proposition.// zeZ1(Θ) and i = r or I then there is a unique /rZΌ
such that

i(d1b) = yi(dob), beΣ, (3.5)

and if (9^(0 +a)1

yί(a)(A)=A, ^ e δ ί ^ ) . (3.6)

If z' and z are cohomologous, so that there is a local function w:Z0->In2I with

zf(b)w(dίb) = w(dob)z(b), beΣ1

then the associated functions yfi and yι are related by

i yί(a), aeΣ0. (3.7)
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Thus one may associate with a local 1-cocycle morphisms which are either left
localized or right localized. Unfortunately there seems, in general, to be no
information either on the relationship between yι and / or on the way yι acts on
the spacelike right and / on the spacelike left. The best we can do is to impose
an additonal locality requirement on local 1-cocycles which allows more precise
results in the direction anticipated by the discussion at the beginning of the section.

We write zeZ1(G)'ύzeZ1{Θ) and if for any ceΣ2, and β1 e Jf, Θx C(Θ+d1 d^'n

z(d2cΓ1z(d0c)z(d2c)(A) = Ά, AeWiΘJ. (3.8)

In some ways this additional requirement may be looked on as a penalty for
indulging in non-Abelian cohomology. Certainly if z takes its values in some
Abelian subgroup of In9ί then (3.8) is a consequence of the locality of z. In more
than two space-time dimensions, Lemma 2.1 implies that any local cocycle
satisfies (3.8).

3.3. Theorem. Lei zeZ1(G) and let ij,k denote I or r then there are unique auto-
morphisms ζυ such that if Θιe^ί and beΣv with dob + ΘcΘ[, d^ + ΘC&l then

ζij(A) = z(b)(A), AeSH(<!)i). (3-9)

Furthermore ζu is the identity and

y\a)ζjk=yj(a), aeΣ0. (3.11)

// q is a real number > 2 then

ζijWεSUiΘ^qO), AE^Θ,) . (3.12)

If z' is cohomologous to z, then z'eZ1^ (J 7}{Θ) and z' gives rise to the same

automorphisms ζtj.

Proof The uniqueness of the automorphisms follows from (3.9); what really has
to be checked is that the right hand side of (3.9) is independent of b under the
stated conditions. If i=j this follows from Lemma 3.1 which states that ζu is the
identity. If i#=; then O1C(d1b + Θ)i and (3.5) and (3.6) show that zQ})(A) = /(dqb)(A)
so that z(b)(A) can depend only on dob. Given ceΣ2 with Θ + docC&[ and
Θ + <?! dι c C Θ(, the cocycle identity implies

Applying (3.8) we deduce that z(dίc)(A) = z(δ2c)(A) and this is enough to show
that z(b)(A) in (3.9) is independent of dob. As usual, this independence implies
that £ y is a morphism. Now by duality we know that z(b) is induced by a unitary
from St(02) where &2 is the smallest double cone containing Θ + dγb and (9+ dob.
However we may pick beΣί such that Θ2 = qΘ + Θί and ζij(A) = z{b)(A\
This proves (3.12).
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Now pick CEΣ2 such that G + d1d2cC(G1 + qΘ)\ Θ +dod2cC(Θ1+qΘ)j and
G + dQd1cC{G1+qG)\ evaluate the 2-cocycle identity on Λe^Θ^ using (3.12) and
we deduce (3.10). This also shows that ζtj is an automorphism. If we leave dγd2c
and d0d2c as above and pick dodίc = a then the cocycle identity implies (3.11).

If z' is cohomologous to z, there is a local function w:2o->In$t so that (2.6)
holds. We may suppose without loss of generality that 0 e Jf0 has been chosen
so that zΈZ1(G) and we C°(G). Now pick beΣ1 such that 0+ dίbC(Gί + qG)j and

1, apply (2.6) to AeS&ψά and we get using (3.12),

If we now return to (3.8), we see that this suffices to show that zfeZ1(qG). D

Actually duality and covariance of the vacuum are enough to show that we
may take q = 2 in (3.12). It should, however, be noted that (3.12) does not imply
that ζlr is an internal symmetry; ζlr might implement the space-time translation
through some xeG for example. Indeed this situation is not so unlikely if we
realize that j μ in (3,1) need not transform like a vector under the Poincare group
but might be θμl, say, where θμv is the energy-momentum density. On the other
hand, if the cohomology class of z contains elements of Zι(G) for arbitrarily small
GeJf0, then ζlr will be an internal symmetry.

Now that we know that yr(a) behaves like ζrl on the spacelike left, we have
enough information to give an analogue of Theorem 2.3.

3.4. Theorem. Let GeJf0 and let ζ be an automorphism of 21 such that

Γ'WiKSl^+fl), 0iejf. (3.13)

Let / : Σ 0 - » M o r 2 I be such that yr(a) is equivalent to yr{a') for α, aΈΣ0 and

}

Then there is a local ί-cocycle zeZ1{qG\ q>2 with

z(b)y(dίb) = /(dob), beΣx. (3.15)

ζ is the automorphism ζrl associated with z in Theorem 3.3.

Proof (3.15) for zeZ1(qG) implies that ( is the automorphism ζrl associated with z
in Theorem 3.3. The remainder of the theorem will follow as in the proof of
Theorem 2.3 provided we can show that any inner automorphism satisfying (3.15)
automatically has the correct localization properties. However if G1C{qG + b)'
then either Θ1 C(qG + dob)ιn(qG + dφ)1 or Θί C(qG + d^Ynfau + dob)r. We deduce
that z(b)(A) = A, AeWβJ by applying (3.15) to ζ~1{A)eSΆ{G1+G) in the former
case and directly to A in the latter case. •

This concludes our discussion of the local 1-cohomology in a 2-dimensional
space-time. We have, at least for local cocycles in Z 1 , reduced the study of this
cohomology to the study of transportable morphisms which are, say, right
localized and behave on the left like some almost local automorphism. How
much can be said about such morphisms is not yet clear and it is worth noting
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that there has been, as yet, no systematic study even of transportable localized
morphisms in a 2-dimensional space-time. One knows that the basic Lemmas 2.4
and 4.1 of [5] fail in this case. The proof breaks down because Θ' is no longer
path-connected. The physical reason why the results must fail is that even if (5 = 0
in (3.2) we might be generating a non-trivial gauge symmetry and this influences
the commutation relations of the associated unobservable fields.

Of course any theoretical analysis of what might happen must be backed up
by models showing what does happen so as to minimize and localize the specu-
lative content. Such models do exist in the literature and deserve a more detailed
comment than that given here. The earliest such model is the treatment given by
Streater and Wilde [8] of the free Skyrme model. From the point of view of the
local cohomology it is a very natural model to think of: there is no free scalar
field of mass zero in two dimensions so the conserved current which ought to be
its derivative should, and does, generate non-trivial local 1-cocycles. This work
was extended by Bonnard and Streater [9] to the massive free field with U(ί) or
0(2) symmetry. However, undoubtedly the most interesting results to date have
been those obtained by Frohlich [10]. They show how the local 1-cohomology
in two space-time dimensions can generate the soliton sectors for interacting
models with spontaneously broken internal symmetry such as the quantum
"sine-Gordon" model. This is best seen by comparing Equation (77) of [10] with
Equation (3.14) above.

Appendix

We gather together here for the reader's convenience a few basic definitions and
elementary facts relating to cohomology. The reader wishing more detailed in-
formation might consult, for example [11]. The standard n-simplex, denoted by

Δn is {{to,tί,...,f)eW + 1:tί^O and £ ^ = 1}. There are affine mappings,

dί:A
n->An+\ i = 0,l,2,...,π + l and sj\An-^An~\ j=091,2,...,n-l defined by

(A.I)

Any orientation preserving affine mapping from Δm to Δn is a composition of
mappings of this sort. The following rules may be used to manipulate composite
mappings

^ i d e n t i t y , ί=j,j+l (A.2)

If X is a topological space, an ^-simplex of X is a continuous mapping a: Δn^X.
The set of rc-simplexes of X is denoted by Σn(X). The mappings d{ and Sj induce
operations on the simplexes of X: iΐaeΣn(X),

dia=adif i = 0 , 1 , 2 , . . . , n

σjd = aSj, j = 0 , 1 , 2, . . . , n .
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These operations are called the boundary and degeneracy operations on the
simplexes of X respectively, and (A.2) gives

. . . . .. . i j J 1 i 9

dioj=δjdi + 1, i^j
dt σj = identity, i = j , j + l (A.4)

σiσj = σJ+1σi9 i£j
d dA 0-simplex of X may be considered as a point of X and a 1-simplex is a path

in X. IϊaeΣn(X\ n>0, then we define άeΣn(X), the oppositely oriented simplex by

5(ίo,ί1,...,ίB) = α(ί n , ί π - 1 , . . . , ί 0 ) . (A.5)

Suppose X in a convex set and let xoeX then we can define a mapping
h:Σn(X)->Σn + ι(X) as follows

h(a)(t°j\...,tn + 1) = toxo + (l-t°)a(τt\τt\...,τtn), ί °Φl

= x 0, ί° = l . (A.6)

Here we have written τ = (l — ί 0 ) " 1 . The geometric interpretation of h(a) is that
it is the n+1-simplex constructed by joining each vertex of the ̂ -simplex a by
a straight line to the point x0. We have

doh{a) = a, dih{a) = h{di_1a)9 ί > 0 (A.7)

except that if aeΣ0(X) then δ1/i(α) = x0 A mapping satisfying (A.7) is called a
contracting homotopy.

Cohomology usually means Abelian cohomology; however we only need the
formal definition of the 1-cohomology and there is no difficulty in defining the
1-cohomology with values in some non-Abelian group G.

A 1-cocycle with values in a group G is a function z:I\(X)->G such that

z(d0c)z(d2c) = z(dίc), CEΣ2(X) . (A.8)

A function z:Σί(X)^G is a 1-coboundary if there is a function w:£0(X)->G
such that

zφ) = w{dob)w(d1b)-1

9 beΣ^X). (A.9)

Every 1-coboundary is a 1-cocycle. Two 1-cocycles are said to be cohomologous
if there is a function w:Σ0(X)-+G such that

This defines an equivalence relation on the set of 1-cocycles and the corresponding
equivalence classes are called cohomology classes.

A.I. Lemma. Let z be a 1-cocycϊe then

z(σoa) = l, aeΣ0(X),
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Proof. Given aeΣ0(X), apply (A.8) to σoσoaeΣ2(X) and we get using (A.4),
z(σoa)z(σoa) = z(σoa% which implies z(σoα)= 1. Given beΣγ(X\ define ceΣ2(X) by
c(t°, ί1, ί2) = fo(ί° + ί2, ί1) and we get applying (A.8) z(b)z(b) = z(σodίb) = l.

A.2. Lemma. // X is a convex set, or, more generally, if we have a contracting
homotopy h:Σn(X)-+Σn+1(X) then every 1-cocycle is a 1-coboundary.

Proof. Let z be a 1-cocycle. Given aeΣ0(X) define w(a) = z(h(a)). Given beΣx(X),
apply (A.8) to h(b)eΣ2(X) and we get using (A.7), z(b)w(d1b) = w(dob) showing that
z is a 1-coboundary.

Acknowledgements. R.Haag has stressed to me on several occasions over the past years the importance
of locality as the novel ingredient of a cohomology of differential forms in quantum field theory,
citing quantum electrodynamics as an example. His remarks eventually fell on fruitful ground. D. Buch-
holz has suggested to me that looking at path-dependent unitary operators might be a good way of
trying to exploit these ideas in an algebraic setting. From here it is but a short step to realize that the
resulting 1-cohomology is just the existing theory of supersection sectors.
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