

© by Springer-Verlag 1976

Parity Operator and Quantization of δ -Functions

A. Grossmann

Centre de Physique Théorique, C.N.R.S., F-13274 Marseille Cedex 2, France

Abstract. In the Weyl quantization scheme, the δ -function at the origin of phase space corresponds to the parity operator. The quantization of a function f(v) on phase space is the operator $\int f(v/2)W(v)dvM$, where M is the parity and W(v) the Weyl operator.

Introduction

We are concerned here with the elementary problem of writing down an operator Q(f) which quantizes a function f on (flat) phase space. The existing solutions [1] (see also [2]) all involve, to the best of our knowledge, the performing of Fourier transforms. By contrast, our equation (10 bis) picks up local contribution from the classical function and also exhibits a rather unexpected role played by the parity operator.

1. Displaced Parity Operators

Let E be the phase space for $v < \infty$ degrees of freedom, i.e. a 2v-dimensional vector space over \mathbb{R} , with a symplectic form $\sigma(v, a) \cdot (a, v \in E)$. Let $v \to W(v)$ ($v \in E$) be a Weyl system over E, i.e. a strongly continuous family of unitary operators acting irreducibly on a separable Hilbert space \mathscr{H} and satisfying

$$W(a)W(v) = e^{a}(v)W(a+v). \tag{1}$$

We have introduced the abbreviation

$$e^{a}(v) = e^{2i\pi\sigma(a,v)}. \tag{2}$$

The family W'(v) = W(-v) also satisfies (1). By the uniqueness theorem of von Neumann, there exists in \mathcal{H} a unitary operator M, determined up to a phase, and such that W(v)M = MW(-v) for every $v \in E$. Since M^2 commutes with the irreducible family of operators W(v), it is a number of modulus 1, which can be adjusted to 1 by a multiplication of a suitable number $e^{i\theta}$ to M. Then $M = M^*$ and M is determined up to a sign.

192 A. Grossmann

For every $v \in E$, define M(v) = W(v)M = MW(-v) = W(v/2)MW(-v/2). Every M(v) is both unitary and self-adjoint.

The spectrum of every M(v) consists of the numbers ± 1 . The corresponding eigenspaces are ranges of the projection operators $\frac{1}{2}W(a/2)(1\pm M)W(-a/2)$.

The operators M, W satisfy the relations

$$W(a) W(b) = e^{a}(b) W(a+b)$$

$$M(a) M(b) = e^{b}(a) W(a-b)$$

$$W(a) M(b) = e^{a}(b) M(a+b)$$

$$M(a) W(b) = e^{b}(a) M(a-b)$$
(3)

 $(a, b \in E)$.

Notice that M(a) M(-a) = W(2a).

2. Fourier Transform of the Family W(a)

The (symplectic) Fourier transform of a function f on E is defined by

$$\tilde{f}(v) = \int e^v(v_1) f(v_1) dv_1 . \tag{4}$$

The invariant measure dv_1 on E shall be normalized by the requirement that $F^2=1$. This, together with (2) allows us to write formulae where ν , the number of degrees of freedom, does not appear explicitly.

Theorem. The sign of M can be chosen so that, for every $a \in E$ and all Φ , Ψ in a dense linear subset $\mathcal{D} \subset \mathcal{H}$, one has

$$\int e^{a}(v) \left(\Phi, W(v) \Psi \right) dv = \left(\Phi, M(a) \Psi \right); \tag{5}$$

the integral on the l.h.s. of (5) is absolutely convergent. In shorthand,

$$\int e^{a}(v)W(v)dv = W(a)M. \quad \Box$$
(6)

Proof of (5). We shall work in a special representation space \mathcal{H} which will simplify calculations, and will be used in forthcoming papers. Consider in $L^2(E; dv)$ the unitary operators $T^a:(T^a\Phi)(v)=\Phi(v-a)$ and $E^a:(E^a\Phi)(v)=e^{2i\pi\sigma(a,v)}\Phi(v)$. We have $T^aE^b=e^a(b)E^bT^a$, $FT^a=E^{-a}F$, $FE^a=T^{-a}F$, $MT^a=T^{-a}M$, $ME^a=E^{-a}M$. Here F is defined by (4) and $(M\Phi)(v)=\Phi(-v)$.

The operators

$$W^{\text{reg}}(a) = T^{-a}E^{-a} \tag{7}$$

satisfy (1) but act reducibly on $L^2(E; dv)$.

A closed invariant irreducible subspace of $L^2(E; dv)$ may be constructed with the help of a σ -allowed complex structure on E, i.e. an \mathbb{R} -linear map J satisfying $J^2 = -1$, $\sigma(Ja, Jv) = \sigma(a, v)$ ($a, v \in E$) and $\sigma(a, Ja) > 0$ ($a \in E$, $a \neq 0$). Define $s(a, v) = \sigma(a, Jv)$ and $h(a, v) = s(a, v) + i \sigma(a, v)$. Now introduce \mathscr{H} as the set of continuously differentiable functions in $L^2(E; dv)$ that satisfy the modified Cauchy-Riemann equations:

$$(\nabla^a \Phi)(v) + 2\pi s(a, v)\Phi(v) = i \left[(\nabla^{Ja} \Phi)(v) + 2\pi s(Ja, v)\Phi(v) \right]$$

for all $a \in E$. Here

$$(\nabla^a \Phi)(v) = \left(\frac{d}{d\lambda} \Phi(v + \lambda a)\right)_{\lambda = 0}.$$

The scalar product in \mathscr{H} is $\int \bar{\Phi}(v) \Psi(v) dv$.

Let $\Omega(v) = e^{-\pi s(v, v)}$. Then \mathscr{H} consists exactly of the functions $\Phi(v) = \Omega(v)\varphi(v)$ where φ belongs to the holomorphic representation space of Bargmann.

The operators $W(a) = T^{-a}E^{-a}$ act irreducibly on \mathcal{H} .

Consider in \mathcal{H} the family of coherent states

$$\Omega^a = W(a)\Omega = T^{-a}E^{-a}\Omega.$$

One has

$$W(a)\Omega^b = e^a(b)\Omega^{a+b}$$
, $M\Omega^b = \Omega^{-b}$.

Furthermore, the complex conjugate of $\Omega^a(v)$ is $\Omega^v(a)$, since

$$\Omega^{a}(v) = \Omega(a)\Omega(v)e^{-2\pi h(a,v)}.$$

We have

$$F\Omega^{a} = FT^{-a}E^{-a}\Omega = T^{a}E^{a}F\Omega = \Omega^{-a}$$
(8)

since $F\Omega = \Omega$.

The linear span of the Ω^a is dense in \mathcal{H} ; so we have proved that $F\Phi = M\Phi$ for every $\varphi \in \mathcal{H}$. One obtains next from (8)

$$\int e^{a}(v)\Omega^{v}dv = \Omega^{a} \tag{9}$$

(in the sense, say, of pointwise convergence). Finally, (9) gives, for all $a, c \in E$ $\int e^{a}(b)W(b)db\Omega^{c} = \int e^{a}(b)e^{b}(c)\Omega^{b+c}db = e^{c}(a)\Omega^{a-c} = W(a)M\Omega^{c}$

which proves (5) on the dense set of finite linear combinations of coherent states.

3. Weyl Quantization of δ -Functions

Given a function or distribution f on E, the Weyl quantization procedure consists in associating to it the operator Q(f) in \mathcal{H} , formally defined by

$$Q(f) = \int \tilde{f}(v)W(-v/2)dv.$$
(10)

One has Q(1) = 1, and

$$Q(T^a f) = W(a)Q(f)W^{-1}(a)$$

in agreement with the interpretation of W(a) as displacement operator.

We are interested in the quantization of δ_a , the δ -function located at the point a of phase space. The operator $Q(\delta_a)$ is formally given by

$$Q(\delta_a) = \int e^{-a}(v)W(-v/2)dv. \tag{11}$$

A. Grossmann

It is claimed that

$$Q(\delta_a) = 2^{2\nu} W(a) M W(-a) = 2^{2\nu} W(2a) M.$$
(12)

The assertion (12) follows immediately from (5).

The expression (10) can now be supplemented by

$$Q(f) = 2^{2v} \int f(v)M(2v)dv = \int f(v/2)W(v)dvM$$
(10. bis)

involving the classical function f(v) itself rather than its symplectic Fourier transform. This is often rather useful: consider e.g. the equation Q(h) = Q(f)Q(g). Simultaneous use of (10) and of (10. bis) allows us to relate in a simple way the supports of $f, g, h, \tilde{f}, \tilde{g}, \tilde{h}$ which all have physical significance.

It is instructive to compute

$$Q(\delta_v)\Omega^b = 2^{2v}e^{-2v}(b)\Omega^{2v-b}$$
.

Notice that 2v-b is obtained from b through reflection at the point v. Consequently the expectation value $(\Omega^b, Q(\delta_v)\Omega^b)$ is peaked at b=v, as it should physically.

As a final exercise, we look at (10. bis) in the x-representation, with v=1 and $\hbar=1$. One has then

$$(W(x, p)\psi)(x') = e^{-\frac{1}{2}ixp}e^{ipx'}\psi(x'-x)$$

$$(M\psi)(x) = \psi(-x)$$

$$dv = (4\pi)^{-1}dxdp$$

$$\sigma(v, v') = (4\pi)^{-1}(px'-xp').$$

If f(v) = f(x, p) depends only on x, a trivial explicitation of (10. bis) gives $(Q(f)\psi)(x') = f(x')\psi(x')$.

References

- 1. Pool, J. C. T.: J. Math. Phys. 7, 66 (1966)
- 2. Grossmann, A., Loupias, G., Stein, E. M.: Ann. Inst. Fourier 18, 343 (1968)

Communicated by H. Araki

Received October 29, 1975