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Parity Operator and Quantization of ^-Functions
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Abstract. In the Weyl quantization scheme, the δ-function at the origin of
phase space corresponds to the parity operator. The quantization of a function
f(v) on phase space is the operator J f(v/2)W(ύ)dvM, where M is the parity
and W(v) the Weyl operator.

Introduction

We are concerned here with the elementary problem of writing down an operator
Q(f) which quantizes a function / on (flat) phase space. The existing solutions [1]
(see also [2]) all involve, to the best of our knowledge, the performing of Fourier
transforms. By contrast, our equation (10 bis) picks up local contribution from
the classical function and also exhibits a rather unexpected role played by the
parity operator.

1. Displaced Parity Operators

Let E be the phase space for v < oo degrees of freedom, i.e. a 2v-dimensional
vector space over IR, with a symplectic form σ(v,a) (a,veE). Let v-+W(v)(veE)
be a Weyl system over E, i.e. a strongly continuous family of unitary operators
acting irreducibly on a separable Hubert space Jtf* and satisfying

W(a)W(v) = ea(v)W(a + v ) . (1)

We have introduced the abbreviation

ea(υ) = e2inσ(a v). (2)

The family W(υ)=W( — υ) also satisfies (1). By the uniqueness theorem of
von Neumann, there exists in 2tf a unitary operator M, determined up to a phase,
and such that W(v)M=MW( — υ) for every i eE. Since M2 commutes with the
irreducible family of operators W(v), it is a number of modulus 1, which can be
adjusted to 1 by a multiplication of a suitable number eiθ to M. Then M = M*
and M is determined up to a sign.
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For every veE, define M(v) = W(v)M = MW(-v)==W(v/2)MW(-v/2). Every
M(v) is both unitary and self-adjoint.

The spectrum of every M(v) consists of the numbers ± 1. The corresponding
eigenspaces are ranges of the projection operators \ W(a/2)(l±M) W(-a/2).

The operators M, W satisfy the relations

M(a)M(b) = eb(a)W(a~b)
(

= eb(a}M(a-b)

(α,ϊ>e£).
Notice that M(α) M( - α) = W(2a).

2. Fourier Transform of the Family W(a)

The (symplectic) Fourier transform of a function / on E is defined by

f(v)=^ev(v1)f(v1)dv1. (4)

The invariant measure dvl on E shall be normalized by the requirement that
F2 = l. This, together with (2) allows us to write formulae where v, the number
of degrees of freedom, does not appear explicitly.

Theorem. The sign of M can be chosen so that, for every aeE and all Φ, Ψ in a dense
linear subset <2)ζ_ffl, one has

f ea(v) (Φ, W(v) Ψ)dv = (Φ, M(a) Ψ) (5)

the integral on the l.h.s. of (5) is absolutely convergent. In shorthand,

J ea(v) W(v)dv = W(a)M . Π (6)

Proof of (5). We shall work in a special representation space ffl which will
simplify calculations, and will be used in forthcoming papers. Consider in L2(E;dv)
the unitary operators Ta:(TaΦ)(υ) = Φ(υ-a) and Ea:(EaΦ)(υ) = e2iπσ(a>v)Φ(υ). We
have TaEb = ea(b)EbTa, FTa = E~aF, FEa=T~aF, MTa=T~aM, MEa = E~aM.
Here F is defined by (4) and (MΦ) (v) = Φ( — v).

The operators

W^(a) = T-aE~a (7)

satisfy (1) but act reducibly on L2(E\ dv).
A closed invariant irreducible subspace of L2(E; dv) may be constructed with

the help of a σ-allowed complex structure on E, i.e. an IR-linear map J satisfying
J2 — — 1, σ(Jα, Jv) = σ(a, v) (α, veE) and σ(α, Jα)>0 (aeE, αφO). Define s(α, υ) =
σ(α, Jv) and /ι(α, v) = s(a, v) + i σ(α, v). Now introduce ffl as the set of continuously
differentiable functions in L2(E\dv) that satisfy the modified Cauchy-Riemann
equations:

, υ)Φ(v) = i [_(VJaΦ} (v) + 2πs(Ja, v)Φ(v}~]
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for all aeE. Here

The scalar product in ^f is ^ Φ(v)Ψ(v)dv.
Let Ω(v) = e-*s(Ό'v\ Then ^f consists exactly of the functions Φ(υ) = Ω(υ)φ(υ)

where φ belongs to the holomorphic representation space of Bargmann.
The operators W(a)=T'aE~a act irreducibly on jf .
Consider in jf the family of coherent states

Ωa=W(a)Ω=T-aE~aΩ.

One has

W(a)Ωb = ea(b)Ωa + b , MΩb = Ω~b .

Furthermore, the complex conjugate of Ωa(υ) is Ωv(a\ since

We have

FΩa = FT-aE'aΩ=TaEaFΩ = Ω~a (8)

since FΩ = Ω.
The linear span of the Ωa is dense in 34?; so we have proved that FΦ = MΦ

for every φeJ4f. One obtains next from (8)

vdv = Ωa (9)

(in the sense, say, of point wise convergence). Finally, (9) gives, for all α, ceE

j ea(b)W(b)dbΩc= f ea(b)eb(c)Ωb+cdb = ec(a)Ωa-~c=W(a)MΩc

which proves (5) on the dense set of finite linear combinations of coherent states.

3. Weyl Quantization of J-Functions

Given a function or distribution / on £, the Weyl quantization procedure
consists in associating to it the operator Q(f) in Jf , formally defined by

Q(f)=$f(v)W(-v/2)dv. (10)

Onehasβ(l)=l,and

Q(Taf)=W(a)Q(f)W-\a)

in agreement with the interpretation of W(ά) as displacement operator.
We are interested in the quantization of <5α, the ^-function located at the point

a of phase space. The operator Q(δa) is formally given by

Q(δa)=$e-a(v)W(-v/2)dv. (11)
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It is claimed that

Q(δa) = 22vW(a)MW(-a) = 22vW(2a)M . (12)

The assertion (12) follows immediately from (5).
The expression (10) can now be supplemented by

Q(f) = 22v j f(υ)M(2v)dv= J f(v/2)W(υ)dvM (10. bis)

involving the classical function f(υ) itself rather than its symplectic Fourier
transform. This is often rather useful: consider e.g. the equation Q(h) = Q(f)Q(g}.
Simultaneous use of (10) and of (10. bis) allows us to relate in a simple way the
supports of/, g, /z, /, g, h which all have physical significance.

It is instructive to compute

Q(δΌ)Ωb = 22ve~2v(b)Ω2v-b.

Notice that 2v — b is obtained from b through reflection at the point v. Con-
sequently the expectation value (Ωb, Q(δv)Ωb) is peaked at b = v9 as it should
physically.

As a final exercise, we look at (10. bis) in the x-representation, with v= 1 and
h = l. One has then

(W(x, p)ιp) (xf) = e~^ίxpeipx'ψ(xf - x)

If f(v) = /(x, p) depends only on x, a trivial explicitation of (10. bis) gives

(Q(f)ψ)(χ')=f(χ')ψ(χ')
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