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Parity Operator and Quantization of J-Functions

A. Grossmann
Centre de Physique Théorique, C.N.R.S., F-13274 Marseille Cedex 2, France

Abstract. In the Weyl quantization scheme, the d-function at the origin of
phase space corresponds to the parity operator. The quantization of a function
f(v) on phase space is the operator | f(v/2)W(v)dvM, where M is the parity
and W(v) the Weyl operator.

Introduction

We are concerned here with the elementary problem of writing down an operator
Q(f) which quantizes a function f on (flat) phase space. The existing solutions [1]
(see also [2]) all involve, to the best of our knowledge, the performing of Fourier
transforms. By contrast, our equation (10 bis) picks up local contribution from
the classical function and also exhibits a rather unexpected role played by the
parity operator.

1. Displaced Parity Operators

Let E be the phase space for v<oo degrees of freedom, i.e. a 2v-dimensional
vector space over R, with a symplectic form a(v, a)-(a, ve E). Let v>W(v) (veE)
be a Weyl system over E, i.e. a strongly continuous family of unitary operators
acting irreducibly on a separable Hilbert space # and satisfying

W(a)W(v)=e*(v)W(a+v). 1)
We have introduced the abbreviation
e“(v) — eZiﬂ:a(a, v) . (2)

The family W'(v)= W(—v) also satisfies (1). By the uniqueness theorem of
von Neumann, there exists in 2 a unitary operator M, determined up to a phase,
and such that W(u)M =MW (—v) for every veE. Since M? commutes with the
irreducible family of operators W(v), it is a number of modulus 1, which can be
adjusted to 1 by a multiplication of a suitable number ¢ to M. Then M= M*
and M is determined up to a sign.
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For every veE, define M(v)=W@w)M=MW(—v)=W(v/2)MW(—v/2). Every
M(v) is both unitary and self-adjoint.

The spectrum of every M(v) consists of the numbers +1. The corresponding
eigenspaces are ranges of the projection operators + W(a/2) (1+ M) W(—a/2).

The operators M, W satisfy the relations

W(a) W(b)=eb) W(a+b)

M(a) M(b)=e®a) W(a—b)

W(a) M(b)=e“(b) M(a+Db)

M(a) W(b)=e"a) M(a—Db)
(a,beE).

Notice that M(a) M(—a)= W(2a).

2. Fourier Transform of the Family W (a)

The (symplectic) Fourier transform of a function f on E is defined by

f)=[e'v) fv)dv, . (4)

The invariant measure dv; on E shall be normalized by the requirement that
F?=1. This, together with (2) allows us to write formulae where v, the number
of degrees of freedom, does not appear explicitly.

Theorem. The sign of M can be chosen so that, for every acE and all @, ¥ in a dense
linear subset 9 C H#, one has

[ ) (@, W(0)P)dv=(, M(a)P); ©)
the integral on the Lh.s. of (5) is absolutely convergent. In shorthand,
[eWw)dv=W(@M. O (6)

Proof of (5). We shall work in a special representation space s which will
simplify calculations, and will be used in forthcoming papers. Consider in L*(E; dv)
the unitary operators T%:(T°®) (v)=®(v—a) and E°:(E‘D) (v)=e* ™ d(p). We
have TYE°=e%b)E’T¢, FT*=E “°F, FE*=T °F, MT*=T M, ME*=E™"M.
Here F is defined by (4) and (M ®) (v)=®(—v).

The operators
W¥a)=T"°E"* 7

satisfy (1) but act reducibly on L*(E; dv).

A closed invariant irreducible subspace of L*(E;dv) may be constructed with
the help of a g-allowed complex structure on E, i.e. an R-linear map J satisfying
J*=—1, o(Ja, Jv)=0(a,v) (a,veE) and o(a, Ja)>0 (acE, a=+0). Define s(a,v)=
o(a, Jv) and h(a, v)=s(a, v) +i o(a, v). Now introduce H# as the set of continuously
differentiable functions in L*(E;dv) that satisfy the modified Cauchy-Riemann
equations:

(V@) (v) + 2ns(a, v)D(v) =i [(V*®) (v) + 2ns(Ja, vV)P(v)]
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for all aeE. Here

(V“®) (v)= (;7 d(v+ la))

The scalar product in # is | &(v)P(v)dv.

Let Q(v)=e ™", Then # consists exactly of the functions @(v)=Q(v)e(v)
where ¢ belongs to the holomorphic representation space of Bargmann.

The operators W(a)=T ~“E~“ act irreducibly on /.

Consider in s the family of coherent states

C=W(@Q=T “E™Q.

A=0

One has
W(@)Q2b=e'(h)Q2° ", MQ*=Q7°.
Furthermore, the complex conjugate of Q%v) is 2%(a), since
Q(v) = Q(a)Q(v)e 2™
We have
FQ'=FT “E"“Q=T°E*FQ=Q"° (8)

since FQ=Q.
The linear span of the Q° is dense in #; so we have proved that F¢=M®
for every pe#. One obtains next from (8)

| e*(v)Qvdv = Q* &)
(in the sense, say, of pointwise convergence). Finally, (9) gives, for all a,ceE
[ e L)W (b)db = [ e“(b)e’(c)2"*“db = e(a)Q2* = W(a)MQ*

which proves (5) on the dense set of finite linear combinations of coherent states.

3. Weyl Quantization of §-Functions

Given a function or distribution f on E, the Weyl quantization procedure
consists in associating to it the operator Q(f) in s, formally defined by

of)= [ )W (—v/2)dv. (10)
One has Q(1)=1, and
ATf )= W(@)Q(/ )W ~}(a)

in agreement with the interpretation of W(a) as displacement operator.
We are interested in the quantization of J,, the é-function located at the point
a of phase space. The operator Q(5,) is formally given by

00,)= [ e~ ()W (~v/2)dv . (11)
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It is claimed that
0(6,)=2""W(a)MW(—a)=2""WQ2a)M . (12)

The assertion (12) follows immediately from (5).
The expression (10) can now be supplemented by

Q(f)=2%"[ f)MQu)dv= [ f(v/2)W(v)dvM (10. bis)

involving the classical function f(v) itself rather than its symplectic Fourier
transform. This is often rather useful: consider e.g. the equation Q(h)=Q(f)Q(g).
Simultaneous use of (10) and of (10. bis) allows us to relate in a simple way the
supports of f, g, h, f, §, h which all have physical significance.

It is instructive to compute

Q(év)gb=22ve~2v(b)92v—b .

Notice that 2v—b is obtained from b through reflection at the point v. Con-
sequently the expectation value (Q°, Q(6,)2%) is peaked at b=v, as it should
physically.

As a final exercise, we look at (10. bis) in the x-representation, with v=1 and
fA=1. One has then

(W(x, pyp) (x') = e~ *™PeP¥ip(x’ — x)
(My) (x)=y(—x)

dv=(4n)" 'dxdp

(v, v')=(4m)~ '(px' —xp’).

If f(v)= f(x, p) depends only on x, a trivial explicitation of (10.bis) gives
Q) (x) = f(x"Jp(x).
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