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Abstract. It is shown that if an n dimensional Riemannian or pseudo-Riemannian manifold
admits a proper conformal scalar, every (local) conformal group is conformally isometric, and that
if it admits a proper conformal gradient every (local) conformal group is conformally homothetic.
In the Riemannian case there is always a conformal scalar unless the metric is conformally Euclidean.
In the case of a Lorentzian 4-manifold it is proved that the only metrics with no conformal scalars
(and hence the only ones admitting a (local) conformal group not conformally isometric) are either
conformal to the plane wave metric with parallel rays or conformally Minkowskian.

§ 1. Introduction

Yano (1955) has shown that in an n dimensional Riemannian or pseudo-
Riemannian manifold (Mn, g) every r dimensional Lie group Cr of local conformal
transformations that is simply transitive is conformally isometric (§ 3). More
recently it has been proved for n^4 (Defrise, 1969; Suguri and Ueno, 1972)
that for any manifold Mn with a positive definite metric tensor gμv, every (local)
conformal group Cr is conformally isometric (except in the case when the metric
is conformally flat).

In this paper we present a more general result. We show that if a space (Mw, g)
admits a proper conformal scalar (in the sense of du Plessis (1969) as described
in § 4) every (local) conformal group Cr is conformally isometric; if a space (Mn, g)
admits a proper conformal gradient then every Cr is conformally homothetic (§ 4).

This suggests the conjecture that the converses of these two theorems are true,
i.e. that: a space (Mn,g) with no proper conformal scalar admits a conformal
group Cr that is not conformally isometric; and that a space with no proper con-
formal gradient admits a proper conformal group (i.e. one that is not conformally
homothetic).

These conjectures are easily verified for a positive definite metric by using the
theorem (proved by Taub 1951) on the order of the conformal group Cr admitted
by conformally flat spaces (§ 4).

These conjectures are also true in the physically interesting case of a Lorentzian
manifold. We prove in particular (§ 6) that a Lorentzian 4-manifold with no proper
conformal scalar is conformally equivalent to the plane-wave metric with parallel
rays or else conformally minkowskian.

The plane-wave metric admits a proper conformal gradient and the conformal
group is reduced to a proper homothety group H6 or HΊ.
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In the case of a conformally flat space there is a proper conformal group C 1 5 .
The preceding results imply that in any other Lorentzian manifold the con-

formal group Cr is conformally isometric [as was shown independently by Bilialov
(1963)].

Some cosmological applications of these results have been discussed recently
by Eardley (1974).

It is to be understood throughout this paper that the transformations under
discussion are only required to be well behaved locally and that the words "'group"
or "transformation" will stand for "local group" or 'local transformation".

§ 2. Conformal, Homothetic and Isometric Groups

We recall (see Schouten, 1954; Yano, 1955; Eisenhart, 1961) that a trans-
formation T : Mn-+Mn acting on (Mn, g) is conformal if the corresponding pull-back
maps g into eστ{x)g. If στ(x) is constant T is called homothetic and if στ is zero T
is called isometric. In the sequel we shall consider Lie groups Cr of such trans-
formations and their associated Lie algebras of infinitesimal transformations.

If the vector fields ξ (a = 1,... r) form a basis of the Lie algebra of Cr they
a

satisfy the Lie structure equations:

se ?=(*£», cfab)=o (2.i)
ξ b d
a

where the structure constants Cd

ah satisfy the Jacobi identities.
The group Cr is conformal if and only there exist r functions φ on Mn such that:

a

£>gμv = 2φgμv (2.2)
ζ a

a

φ = const characterizes homothetic groups (denoted by Hr) and φ — 0 characterizes
a a

isometry groups (denoted by Ir). In the latter case (2.2) reduces to Killing's
equations.

Equations (2.1) and (2.2) imply

&φ-£eφ = C*ahφ. (2.3)
ξ b ξ a d
a b

§ 3. Conformally Equivalent Metrics

Let us consider the effect of replacing the metric g on Mn by a conformally
equivalent metric g given by:

If ξ are the generators of a conformal group Cr acting on (Mn, g) then they
a

will also generate a conformal group Cr acting on (Mn, g) since in consequence
of (2.2) we shall have

(3.2)
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with

φ = φ + ̂ σ. (3.3)
a a ξ

a

Thus in certain cases, it will be possible, with an appropriate choice of σ(x),
to find a space (Mn, g = e2σg) for which the conformal group is reduced to a group
of isometries. If this is the case, the conformal group Cr is said to be conformally
isometric. It will be said conformally homothetic if it is possible to find a space
(Mn, g) for which the conformal group Cr is an homothety group (i.e. φ constants).

a

Finally Cr is said to be a proper conformal group if it is neither conformally
homothetic or isotropic.

In order for the group Cr to be conformally isometric it is sufficient that there
exists a solution σ of the system of equations:

&σ + φ = Q. (3.4)
ξ a
a

It can be shown that the Conditions (2.1) and (2.3) ensure the integrability of
this system except when there exists a linear relation of the form:

λa{x)ξa = 0 with λa(x)φ(x) + 0. (3.5)
a a

Hence in particular, if the rank of the matrix cα| is equal to the dimension r of the

group Cr ( r^π) , (3.4) is integrable and Cr is conformally isometric (Yano, 1955).
However this restriction on the rank implies that Cr is simply transitive and this
excludes all the cases of conformal groups with sub-groups of isotropy. In the next
section, we show that a conformal group Cr is conformally isometric under much
more general conditions.

§ 4. Conformal Scalars and Conformal Gradients

Let two metrics g, g be related by (3.1). If a scalar concomitant of the metric
tensor g (in the sense of Schouten, 1954) is such that

ψ = e2pσF ^ constant) (4.1)

it is said to be a conformal scalar of weight p (du Plessis, 1969).
A vector concomitant Yμ is said to be a conformal vector of weight p is

Ϋμ=Yμ + 2pσ,μ. (4.2)

It is a conformal gradient if Y[μ>V] = 0. If F is a conformal scalar of weight p, (\nF),μ

is a conformal gradient (of same weight). A concomitant scalar or vector that
satisfies (4.1) or (4.2) with p equal to zero is said to be conformally invariant. We
shall use the term proper conformal scalar of vector to denote a conformal scalar
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or vector that is not conformally invariant. It is easy to verify that a conformal
scalar or vector must satisfy:

(4.3)

(4.4)

where ξμ are the transformations of a conformal group Cr.
a

Let us suppose that (Mn9 g) admits a conformal group Cr and a proper conformal
scalar F. Then we may choose g such that F=ί. It follows that one has

0 (4.5)

and hence each of the scalar φ is zero. Thus the conformal group is reduced to
a

a group of isometries and we have:

Theorem 1. A conformal group acting on a space (Mn, g) admitting a proper con-
formal scalar is conformally isometric.

This theorem is particularly powerfull in the case of positive definite metrics.
We have:

Corollary 1. Any conformal group Cr acting on a non conformally flat space
(Mn, g) with a positive definite metric is conformally isometric.

In order to prove this we recall that the necessary and sufficient condition for
an rc-dimensional Riemannian or pseudo-Riemannίan space (Mn, g) to the con-
formally flat is that the Weyl tensor Cμvσρ be zero when π ^ 4 and that Cotton's
tensor Cμvσ be zero when n = 3. (Any two dimensional space is conformally flat.)
These tensors transform under (3.1) according to

C — C — C ρσ (4 7Ϊ

Equation (4.6) implies that CμvσρC
μvσρ is a conformal scalar of weight — 2 and

thus that it is a proper conformal scalar in any space (Mn, g) with positive definite
metric for which Cμvσρ is non zero. We thus obtain the corollary in the case n ̂  4.
[This result was obtained independently by Suguri and Ueno (1972).] In the
special case n = 3, the condition that the Weyl tensor is identically zero implies by
(4.7) that CμvσC

μvσ is a conformal scalar of weight —3, and hence that it is a
proper conformal scalar if the metric is positive definite and Cμvσ is not zero.
Since the case n = 2 is trivial, this completes the proof of the corollary.

We have a proposition similar to the Theorem 1 in terms of proper conformal
gradients.

If (Mn, g) admits a proper conformal gradient Yμ Eq. (4.2) show that one can
always choose a space (M,g = e2σg) such that Yμ is zero. If (Mn, g) admits a con-
formal group Cr, one derives from (4.4) that the group Cr acting on (Mn,g) is an
homothety group. So we have:
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Theorem 2. A conformal group acting on a space (Mn, g) admitting a proper con-
formal gradient is conformally homothetic.

These results suggest the possibility of propositions converse to the Theorems 1
and 2 which we reformulate as:

Theorem 1. A space (Mn,g) admitting a non conformally isometric conformal
group Cr, has no proper conformal scalar.

Theorem 2. A space (Mn, g) admitting a proper conformal group Cn has no
proper conformal gradient.

The converses read as follow:

Conjecture 1. A space (Mn,g) with no proper conformal scalar admits a non
conformally isometric conformal group Cr.

Conjecture 2. A space (Mn9 g) with no proper conformal gradient, admits a
proper conformal group Cr.

These two conjectures are evidently true in the case of spaces with positive
definite metrics, since we have seen in the proof of Corollary 1 that such spaces
always admit proper conformal scalars (and hence also gradients) unless they are
conformally flat. By the theorem of Taub (1951) a conformally flat Riemannian
space (Mn,g) always admits a conformal group Cr of order r = %(n+ 1) (n + 2).
(For n ^ 3, this is the maximum order. When n = 2 there is an infinite dimensional
conformal group.) However for all n the dimension of the maximum isometry
group is r = \ n(n + 1) and of the maximum homothety group is r = \ n(n -f 1) + 1.

In the next two sections we show that Conjectures 1 and 2 are also true in the
case of a Lorentzian 4-manifold.

§ 5. Complex Bivectorial Formalism and Canonical Tetrads

In this section, we briefly summarize the complex bivector formalism (based
on the isomorphism between the Lorentz group and the complex rotation group
SΌ(3, C)) that is described in detail by Debever (1964) and Cahen, Debever,
Defrise (1967).

We consider a Lorentzian manifold (M4, g) of class C2, piecewise C5. At each
point of M4 a normalized null tetrad is introduced such that the metric has the
following form :

ds2 = 2(θ°θ3-θ1θ2) = ηabθ
aθb{a,b = 0,t,2,3) (5.1)

The forms θ°, θ3 are real and the two others are complex conjugate θ1 = (#2)*.
We denote by hμ the components of the co-base vectors canonically associated

to the θa.
From the base {θa}, we obtain the associated base Zι (ί = 1, 2, 3) of the complex

euclidean space E3(C) of self-dual 2-forms:

Z1 = Θ2AΘ?> Z2 = Θ°AΘ1 Z3 = ^(Θ°AΘ3-Θ1AΘ2). (5.2)

There is a canonical metric on the space E3(C) given by

yijZ
ίZj = 2(Zι Z2 - (Z 3 ) 2 ). (5.3)
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The Riemannian connexion determined on M4 by the metric tensor gμv may
be expressed in terms of the one-forms σlj defined by:

j Q O',;=l,2,3). (5.4)

To the forms σ^ one associates the three forms σι given by

where εijk is the antisymmetric Kronecker symbol.
The curvature 2-forms Σk are given by:

(5.6)

The complex auto-dual form

r _ [ c vt Γτρ

Wμvσ~ 2 l^λμvσ ~ Ίλμτρ^ v<

of the Weyl tensor can be obtained from the expression

C — CZi Z3 (5.8)

where Ctj is a tensor on E3(C), which is symmetric and trace free (i.e. 4CX 2 = C 3 3 )
and which can be read out from the curvature 2-forms by expressing them in the
form:

/ 7? \

(5.9)

The scalar R is the scalar curvature and the hermitian tensor Etj^ determines
the trace free part

SΛβ = RΛβ--^gafi (5-10)

of the Ricci tensor by

T7 — FT 7ι(7^\^ ί^i 1 i \

where Eaβγό is the auto-dual tensor formed from the tensor

Eaβγδ^ -2(9a[ySό]β

JrSa[ygδ]β). (5.12)

From (5.8), it can be seen that the classification of the Weyl tensor is reduced
to the classification of the matrix CVy For each Petrov type it is possible to find a
canonical tetrad such that the only non zero components of Ci} are the following:
^i2? ^i3> ^23 f° r Type I (with the condition that C 1 3 = C 2 3 ) ; C 1 2 and C 2 3 for
Type II (with the condition that C 1 2 = C 2 3 ) ; C 2 3 for Type III (with C 2 3 = l);
C 1 2 for type D and C 2 2 (with C 2 2 = 1) for type N.

0

In each case the vector hμ is a characteristic vector of the Weyl curvature
tensor. For the Petrov types I, II, III, the canonical tetrad is univoquely determined

a

and hence the basis vectors hμ are concomitants (in the sense of Schouten, 1954)
of the metric tensor gμv. For the type D and N the canonical tetrad is determined
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up to a transformation which (in both cases) is a subgroup of order two
Lorentz group L | .

In the case of type N, we shall need to use the explicit representation

279

of the

(5.13)

of the subgroup, where 7 — y1 + iy2 is a complex parameter.
We shall also need the corresponding formulae for the transformation under

the group (5.13) of the rotation coefficients σ\ and σ\\

, 2

, 3

, 3

, 3
σ2

, 3

2

2

= σι
2

3

3

— σ2
3

- 7

— 7

-y

1

2
*σx
2

^ 3

* 3

3

σ3

2

2

-yσ2 + yγ

3

— yσ2 + yy

2

+ y(cr2 — y*

^ 2

.)

^ 3

3

3H

)

,2 2

,2 2
σ 3 — σ 3

* 2

*σι-yσ2

(5.14)

§ 6. Conformal Group in a Lorentzian 4-Manifold

In this section, we show that the only Lorentzian 4-manifolds which have no
proper conformal scalar are conformally equivalent to the plane wave metric
with parallel rays or conformally flat.

If (Mn,g\ (Mn,g) are conformally equivalent, one derives from (4.6) and
(5.7) that

+ „

Hence, if they are not zero the scalars

λμ

(6.1)

(6.2)

are proper conformal scalars (of respective weight — 2 and — 3), for the Petrov
types I, II and D one at least of these scalars is non zero.

For the Type III, the canonical tetrad described in the last section is con-
comitant and hence the rotation coefficients σι

a are concomitant scalars.
For the Type III, the correspondance between the canonical tetrad of (M4, g)

and (M4, g = e2σg) is the following:

δ o

(6.3)

V
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The correspondence between the rotation coefficients σι

a of (M, g) and σι

a

is given by:

σί=eσσί

a2 = eσ(σ2 + 2σ j0)

-°{σ

σo = e σ ( σ 0 - 2 σ 2 ) σ0 = eσ(σ0 + 2σ 0 )

σ ( σ 1 - 2 σ 3 ) σ ^

= e~3σ
σ2

σ (
(6.4)

If one equates to zero all the coefficients σι

a which are proper conformal
scalars, one finds that the space is reduced to be conformally flat.

Finally, for the Type N, the correspondence between the canonical tetrad of

(M4, g\ (M4, g) and between the rotation coefficients σfl, σa and σa9 σa is

o o

μ μ ?

hμ = eσhμ, (6.5)

σo = e-°φo-2σa)
2

σί=e

> 3 - (

2̂ σ

(6.6)

• = e uσΊ

= e
-2σl

This leads us to restrict the class of Type N spaces by requiring that the follow-
ing sequence of conformal scalars be zero.:

3

3 2 ,2 λs!c 3 /2 ^ , 3 3 . 3

σ3 σx - ( σ j * σ2 (σ0)* + σi;σ0Λ-(σ0>2

(6.7)

The order is significant since certain coefficients are invariant for the group (5.12)
(and hence are concomitant) only when preceding coefficients have been equated
to zero [as can be shown from (5.13)].

At this stage we remark that

3 0

h
3 1 2 2 2 3

σ1hμ-σohu-σίhμ
(6.8)

is a proper conformal gradient.
The Conditions (6.7) ensure that the space be equivalent to the plane (wave

metric) with parallel rays (denoted ppw metric). To show this, let us take advantage
of the Correspondence (6.6) by choosing in the family of conformally equivalent
spaces the class for which one has:

(6.9)
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This is possible since the Conditions (6.7) ensure that the system of equations
in the function σ:

Γ2σ2 = * 0

__2 (6.10)

is completely integrable.
The Conditions (6.7) and (6.9) put together caracterize the ppw metric (see

Debever, 1965). It can be written in the form:

ds2 = 2dudv + [(α + iβ)z2 + (α - iβ)z* 2 + 2y zz*~] du2 - 2dz dz* (6.11)

where α, β and γ are three functions of u. The ppw metric admits a homothetic
group H6 formed by an isometry group /5 and the homothetic transformation:

μ μ . (6.12)
ξ o

If xμ are defined by

x1 + ix2 = z9 x3 = u, x4 = v, (6.13)

the components of the operator ξ are:

ξΐ=ξ =φx1, ξ2 = φx2, ξ3 = 0, ξ* = 2φx*. (6.14)
0

If α, β and γ satisfy the following conditions

a + iβ = aeib\ y = c (6.15)

where a, b, c are three constants, the metric admits an isometry group I6 and an
homothety group HΊ.

It is easy to verify that H6 (or HΊ) is a proper homothetic group.
The only Lorentzian 4-manifold with no proper conformal gradient is con-

formally minkowskian.
Thus we have:

Theorem 3. The Lorentzian 4-manίfolds with no proper conformal scalar are
conformally equivalent to the plane wave metric with parallel rays or conformally
minkowskian. In the first case there exists a proper conformal gradient and the
family of spaces admits a conformal group conformally equivalent to an homothety
group H6 or HΊ. In the second case there is no proper conformal gradient and there
is a proper conformal group.
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