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Abstract. Let j£? be an orthomodular lattice and y a strongly ordering set of probability
measures on «£? such that supports of measures exist in Jzf. Then we show the existence of
a set of mappings of ̂  into £f that are physically interpretable as ideal, first-kind meas-
urements.

1.

In the conventional formulation [1-3] of the so called logic of
quantum mechanics the basic mathematical structure associated to
a physical system is the pair (JSf, £f} where JSf is the set of propositions
(yes-no experiments), ^ the set of states; each αe^ defines on J^ a
probability measure α : 5f —> [0,1], and α(α), a e JS?, is interpreted as the
probability of the yes answer of α, when the initial state of the system
is α. «£? is given the appropriate structure of orthomodular lattice by
means of suitable axioms which elude any requirement on the transfor-
mations of the state of the system caused by the measurement of α: the
usual postulates of quantum theory of measurement are considered as
independent from the structure of Jδf (for details and further bibliography
we refer to [4]).

Pool [5, 6] has suggested an alternative approach which uses as
basic mathematical structure the proposition-state-operation triple
(«£?, ̂ , Ω)1, where the operation Ωα e Ω associated to a e JS? is understood
as the transformation of the state of the system induced by an ideal,
first-kind measurement (with yes answer) of the proposition α. By use
of the postulates of quantum theory of measurement and of the remarkable
connections between orthomodular lattices and Baer*-semigrouρs,
he deduces for Jίf the structure of orthomodular lattice (see also [7]).

In this paper, we shall examine the possibility of reversing the Pool
approach: we are going to study whether the assumption of a (jSf, ί?)
structure, with 3? orthomodular lattice, is sufficient to deduce the

1 (J2?, Sf] is denoted by Pool as (£, &>, P) and called an event-state structure; (&, y, Ω)
is denoted as (β, ,̂ P, Ω} and called an event-state-operation structure.
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existence of a set of transformations of ̂  into £f which admit the phys-
ical interpretation of ideal, first-kind measurements, hence the existence
of operations in the sense of Pool.

2.

We sum up several usual assumptions about 3? and y by the following

Axiom 1. JS? is a complete orthomodular lattice, £f is a strongly ordering,
σ-convex set of probability measures on 52.

Here, and in the sequel, the definitions and the notations about
lattices are from [8], the definitions about probability measures on
orthomodular posets are from [5, 6].

We say that α e «£? is support of α e & when

α(b) = 0, be^o a-Lb.

For every α e 5̂  there exists at most one a e £? such that a is support
of α: we shall denote such element, when it exists, by σ(α). We refer to [6]
for properties of supports: the following will be used

{a G J? : αlσ(α)} = {a e & : α(α) = 0} ,

{a e eS? :σ(α) ̂  α} - {α e J^ : α(α) = 1} .

Then we adopt, as in [6], the following

Axiom 2. If α e ̂  ίΛen ίfte support of α ex/sis m jSf . // α 6 jSf \{0, 1}
then there exists α e £f such that a = σ(α).

Hence it is defined a surjective mapping

which is always canonically decomposable in the composition of a
surjective mapping ω of £f onto ^/σ (the set of the equivalence classes
of the states with the same support) with a bijection/of £f/σ onto S£ \{0, 1}.
Thus/defines an one-to-one correspondence between £f/σ and «Sf \{0, 1}
such that every element of ϊf/σ corresponds to the common support of
the states belonging to that element.

Let S(cSf) be the Baer*- semigroup of residuated mappings (or
emimorphisms) of ̂ 2, let P'(S(JSf)) be the lattice of the closed projections
of S(JSf). For every α 6 JSf, let

2 We refer to [5, 6, 8] for definitions, properties and bibliography on Baer *-semi-
groups, residuated mappings of orthomodular lattices, and their connections.
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φa is an element of P'(8(^))\ conversely every element of P'(
is of the form φa for some a e 5f.

The pair (££, £f} will be definitely assumed to satisfy Axioms 1 and 2:
we shall call it the (JS?, £f) structure.

Lemma 1. For any given a e ££ there exists a unique mapping
ωfl:^-»^/σ such that

(i) the following diagram is commutative

(ii) ί/ie domain ^[ωα] o/ωα is groerc

/ Given α E =£?, α E ̂ , a known property of closed projections
of S(J5?) ensures that φα(σ(α))φO if and only if σ(α) ^ α. Thus, if
ocE{βe^:σ(β) ^ α}, φfl(σ(α)) e^?\{0, 1}. Since / is a bijection it is
well defined f~1(φa(σ(a)))ε£y/σ. Then we put

ωfl (α) =/- 1 (φβ(σ(α))) if σ(α) Jz α .

In this way we have defined a mapping of y7 into £f/σ whose domain
is Q) [ωα] = {α e ̂  : σ(α) J/ α}. Clearly ωα makes the diagram commutative
and is uniquely determined by the Properties (i) and (ii). Q.E.D.

Lemma 2. Given a e £ , α e ̂  [ωfl],
(i) ifa(a)= 1 f/zerc ωα(α)— {α}, where {α} is ίte equivalence class of a

in^/σ;
(ii) ifβeωa(a}thenβ(a)=i.
Proof. (i)α(α)=l implies σ(α)^α, hence σ(α)Cα, hence σ(α)Cα1

[in an orthomodular lattice we say that α commutes with b, and we write
a C b when a = (a Λ i?) v (α Λ b1)]. Therefore α, α1, σ(α) form a distributive
triple so that

φβ(σ(α)) = (σ(α) v α1) Λ a = (σ(α) Λ α) v (α1 Λ α) = σ(α) ,

whence /- 1 (φa(σ(ot))) = ωβ(α) = {α}.

(ii) Owing to the commutativity of the diagram of Lemma 1 we have
/(ωfl(α)) = φα(σ(α))? Vα E ̂  [ωα], hence /(ωα(α)) ̂  α for φfl projects «£? onto
the sublattice [0, a], lϊ β e ωα(α), by the definition of/ we get

σ(j8) =/(ωα(α)) g α , whence j8(α) - 1 . Q. E. D.
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Lemma 3. If a, b e 5£, aCb, &e$) [ωj, β e ωα(α) then
(i) α(b) - 1 implies β(b) = 1

Proof, (i) α(fe) = l implies σ(α)^b, hence φα(σ(α)) ̂  φα(b) for φa is
monotone (as every residuated mapping). From aCb it follows that
α, α1, fo form a distributive triple, hence

φa(b) = (b v α1) Λ α — (b Λ a) v (α1 Λ α) = b Λ α .

The commutativity of the diagram of Lemma 1 ensures that if
β e ωfl(α) then σ(β) = φa(σ(a)). Therefore σ(β) ^ φa(b) = b Λ a ̂  b, whence

(ii) We write α C b in the form b = (b Λ α) v (b Λ α1) and remark that
(feΛα1)1^1 v α ^ b Λ α ; thus ί ? Λ α and ^Λα 1 are orthogonal so that

β(b) = β(b Λ a) + jS(fe Λ α1) = j3(& Λ α) + 1 - βφ1 v α) .

On account of Lemma 2 (ii) we have β(b±va)=i for bLva^a\
therefore β(b) = β(b Λ a). Q. E. D.

Theorem 1. For every ae <&, there exists at least one mapping Ωa:^-^^
such that

(A) Ωa has domain @ [β J = 3) [ω J,
(B) ί/α e ̂  [βj, αnrf α(α) - 1 then ββ(α) - α,
(C) ι/α e ̂  [βj, and β = βα(α) ίΛβn j8(α) - 1,
(D) if a e ® [βj, j5 = βfl(α), be^.aCb, and α(b) = 1 ίΛen j8(b) - 1,
(E) if α e ® [βj, β = βα(α), bε£>,andaCb then β(b) = β(a Λ ft),
(F) ifae@lΩJ9andβ = Ωa(a)thenσ(β) = φa(σ(a)).
Proof. We notice that ^/σ is a partition of £f (in disjoint classes) and

we make use of the so called choice axiom (see, e.g., [9]): composing ωa

with any choice function which maps ωα(α) e 5^/σ into some single state
belonging to ωα(α) we get, for every a e Jδf, a mapping Ώα of ̂  into 5 .̂
By construction Ωfl fits (A). On account of Lemma 2(i), and remarking
that α e {α}, we are allowed to adopt a choice function which, whenever
α(α) = l, maps ωfl(α) into α itself: thus Ωfl satisfies (B). The Properties
(C), (D), (£), (F) are then direct consequences of Lemmas 2 (ii), 3 (i),
3 (ii), 1 (i), respectively. Q. E. D.

3.

The previous theorem answers affirmatively the problem rised at
the end of Section 1 the («£?, ^) structure (equipped with the Axioms
1 and 2) is sufficient to deduce, for every ae^f, the existence of a mapping
Ωa of ̂  into ̂  which admits the following interpretation: if the initial
state of the system is α then Ωa(a) is the final state of the system after an
ideal, first-kind measurement of a which has given the yes answer. Let us
examine briefly the Properties (A)-(F) of that theorem.
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Since the condition σ(α) ^ a (occuring in ^[ΩJ) is equivalent to
α (α) Φ 0, we rephrase (^4) by saying that Ωa is defined for every state α
which has a non vanishing probability α(α) of giving the yes answer of
the yes-no experiment α. Then (B) and (C) correspond to the definition
of first kind measurement [10]. The commutativity relation C previously
used is fully equivalent to the physical notion of compatible experiments
[3, 7, 8]. Thus the Property (D) corresponds to the commonly accepted
definition of ideal measurement. When β = Ωα(α) and a C b the Property
(E) suggests for β(b) the interpretation of conditional probability of
compatible events; however, to guarantee that interpretation one should
require, according to conventional probability theory, one further
property, viz:

(G) if a, be^e, a^b, αe^[ΩJ, and β = Ωa(a) then )8(fe) = .
α(α)

The Property (F), which determines uniquely the support of β = Ωα(α)
from the support of α, is the essential step to equip J2? with the covering
property [6].

We come now to a comparison with the assumptions occuring in the
Pool approach. The Properties (.4), (B\ and (C) coincide, respectively,
with his Axioms II. 1, II. 2, and II. 3. The Property (D) goes beyond the
Pool axioms : actually he uses an alternative definition of ideal measure-
ment resting on the Properties (E) and (G), which coincide, respectively,
with his Axioms II.7 and Π.6. However, these two axioms enter into the
Pool approach only as instruments to prove a property weaker than (F),
viz:

if αe®[ΩJ, and j8 = Ωα(α) then σ(jβ)^φα(σ(α)).

This inequality can also be proved by use of the characterization (D)
of ideal measurement [4, 7] without any reference to (E) and (G); any-
how it is used by Pool only as a hint for adopting the stronger Property (F)
which coincides with his Axiom II. 8.

Thus we have to conclude that the (=Sf, £f) structure contains into
itself the relevant properties of Pool's operations3 with just one significant
exception: the unicity of the ideal, first-kind measurement associated
to a e <=£?, (which is necessary to deduce the orthomodular lattice properties
of J&? from the proposition-state-operation structure).

However, in our approach, the problem of the unicity of Ωa has
connections with the further hypotheses, about the atomicity of X and
the pure states of 5̂ , which are needed to introduce the covering property
(called semimodularity in [6]). For the last we shall refer to the definition:
J&? has the covering property if φa(p) is an atom for every a e 5£ and

1 The Axioms II.4 and 11.5 of Pool evade the framework of the present analysis.
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every atom pe^f such that p ^ aL. This definition is equivalent [11]
to the one found in [8]. Then we have:

Theorem 2. If, in the structure (££> £?\ 3? is atomic and σ determines
a bijective mapping between the atoms of ̂  and the pure states of£f, then

(i) the covering property of ̂  implies that the restriction of Ωa to the
pure states of^[Ω^\ is uniquely determined by a and transforms pure states
into pure states

(ii) 3? has the covering property and the restriction of Ωa to the pure
states of @[Ωa~] is uniquely determined by a if Ωa transforms pure states
into pure states.

Proof, (i) Due to the covering property φα(σ(α)) is an atom; by (F) of
Theorem 1 this atom is the support of β = Ωa(a). Hence this state is pure
and uniquely determined by a and α.

(ii) By hypothesis, if αe^[ΩJ is pure, also Ωα(α) is pure, hence
φa(σ(<x)) is an atom, by (F) of Theorem 1. This is equivalent to say that
φa(p) is an atom whenever p E ££ is an atom such that p ̂  a±. The uni-
queness of β = Ωa((ή follows from σ(β) = φα(σ(α)). Q.E.D.

The hypotheses of Theorem 2 about atomicity and pure states are
equivalent to the ones adopted in [6] (see Axiom 1.9 and Theorem II. 1).
We conclude that also the connections between covering property and
pure operations are contained, in a natural way, into the (££, <?) struc-
ture.

The role of the unicity of the ideal, first-kind measurement associated
to αe=£f has been particularly studied by Ochs [12]. He restricts ^ to
the set &" of pure states, assumes & to be an atomic orthomodular
lattice with a bijective mapping of ίf' onto the set of the atoms of JSf,
postulates the existence and the unicity of an ideal, first-kind measure-
ment [i.e. the Properties (A), (B\ (C\ (D) of Theorem 1 with Ωa replaced
by τα], and proves the covering property [i.e. the Property (F) of Theorem 1
with Ωa replaced by τj. On account of Theorem 2, the restriction of
Ωa to the pure states coincides with τa. Thus, when dealing with pure
states, the requirement of unicity of the ideal, first-kind measurement is
equivalent to adopt our construction of Ωα, made explicit by (F) of
Theorem 1.
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