
Commun. math. Phys. 37, 257—272 (1974)
© by Springer-Verlag 1974

On the Equivalence of the Euclidean and
Wightman Formulation of Field Theory

V. Glaser

CERN, Geneva, Switzerland

Received December 3, 1973

Abstract. A mistake in the paper [1] on the "Axioms for Euclidean Green's Functions"
is corrected in the following sense: thanks to these axioms the Euclidean Schwinger func-
tions Sn can be analytically continued to the corresponding Wightman functions Wn

possessing all the correct analyticity properties and satisfying a generalized positivity
condition in the complex domain. It is however suggested by the proof that their tempered
behaviour near the Minkowski points cannot be guaranteed without additional assump-
tions1.

1. Introduction

The very interesting paper on the "Axioms for Euclidean Green's
functions" by Osterwalder and Schrader [1] claims to prove the equiv-
alence of the usual Wightman axioms with axioms for the Euclidean
Green's functions as formulated in [1]. Unfortunately the crucial
Lemma 8.8 of that paper turns out to be wrong2.

Some years ago, the present author had studied the inter-relation
between the positivity condition and the analyticity properties of the
Green's functions in momentum space [2]. As pointed out in that paper,
the theorems proved there could be easily translated into analogous
theorems on the Wightman functions in x space. It turns out that these
theorems are essentially sufficient to prove the statements made in [1];
but in a restricted sense. The Euclidean Green's functions satisfying the
Osterwalder-Schrader postulates can be shown to be restrictions of
functions analytic in the whole Wightman causal domain and to satisfy
the positivity condition there in a sense to be presently explained. The
author h&s, however, not been able to show the tempered growth of those
analytic functions near the real Minkowski space boundary and he

1 K. Osterwalder has informed me that he and R. Schrader have arrived independently
at the same conclusions. See [7] for an account of their proof. In addition, [7] contains a
discussion of conditions which guarantee temperedness of the Wightman functions.

2 This fact was established by R. Schrader who constructed a counter example to the
lemma, inspired by a query from B. Simon who, in his Zurich lectures, had questioned the
proof given in [1].
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believes at present that this is impossible to achieve without further
assumptions on the growth properties of the Schwinger functions Sn

with respect to the index n. This is suggested by the fact that in order
to reach the real Minkowski space by analytic completion for a given Sn

an infinite number of steps are required, each of which involves the other
functions Sm via the Schwartz inequality with higher and higher values
of m. The problem of temperedness is intimately related to the old un-
answered question of whether the Wightman axioms with Wne2)'
imply Wne£f' as a consequence of the positivity condition and the
Bochner-Schwartz theorem.

Since the boundary value of a function analytic in a tube, whatever
be its growth, is always well defined in the sense of hyperfunctions, we
may say that a set of Schwinger functions satisfying the O.S. postulates
gives rise to a generalized Wightman field theory, the field being an
operator valued hyperfunction. In view of the fact that hyperfunctions
still admit the notion of support, and hence of causality, it would be of
interest to investigate whether such a field theory still allows the con-
struction of asymptotic states.

2. A Reformulation of the Problem

The Wightman axioms can be formulated in terms of analytic func-
tions in the following way. Consider the Hubert space vectors

Φn(z) = A(zx) A(z2)... A(zn)Ω Ω = vacuum. (1)

From the spectral condition and translational covariance of the field
operator A it follows (cf., Ref. [3]) that they are "tempered" analytic
functions in the tubes

σn = {ze<ί:4n\lmz1eV+,lm(zk-zk_1)eV+k = 2...n}. (2)

Their boundary values on lR4n exist therefore in the sense of vector
valued tempered distributions. Local commutativity and the edge-of-
the-wedge theorem imply that they can be analytically continued into
the domain

(3)

which is the envelope of holomorphy of the union of all the permuted
tubes σn

π with a complex neighbourhood of the real spacelike points.
From this follows the positivity condition

Σ J Anm(z\ z) fn{z>) fm(z) dμn{z>) dμm(z) > 0 (4)
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where

Anm(z\ z) = (Φn(z% ΦJz)) Ξ fflW?, z) (5)

is the n + rnth Wightman function, z' = (z'n, z^_ 1 ?..., z[) analytic in Σm

with respect to z and antianalytic in Σn with respect to z'. To begin with,
(4) is certainly true for, say, all terminating sequences {fn}o of test
functions /πe5^((C4 n), the dμn being any positive measures on C 4 " with
compact support in Σn. In order to display the tempered growth of the
analytic functions 2Bn + m near the boundary values in the sense of distribu-
tions, it is, however, more appropriate to take dμn of the form

dμn(z) = e-φ"{z)dλn(z) (6)

where dλn is the Lebesgue measure in <E4π and the φn are appropriately
chosen C00 positive functions defined in Σn of at most logarithmic growth
near the boundary dΣn chosen in such a way that

00

txA= Σ \Ann(z,z)dμn{z)<π. (7)
n = 0 Σn

Here A = {Anm{z~\ z)} is the operator which acts in an obvious way on the
Hubert space of sequences / = (/ 0,/i,/2 ? •••) of functions fn analytic in
Σn equipped with the norm

(//) = Σ ί \Uz)\2dμn(z)<π. (8)
n = 0 Σn

00

Conversely, given such a measure dμ^idμo^dμ^^,...) on 0 I B , every
o

positive operator A acting on the Bergman Hubert space J^(dμ) of
analytic functions defined by (8) will have as its matrix elements Anm(z\ z)
functions anti-analytic-analytic in Σn x Σm with growth properties com-
pletely controlled by the measures (6). Since the envelopes of holomorphy
Σn are explicitly unknown we may, without any loss, replace them with
the corresponding primitive domains Σ° (3), in which the admissible
forms of the weight functions φn (6) can, in principle, be explicitly deter-
mined with the help of the edge-of the-wedge theorem.

This version of the positivity condition, which is a translation of
(Ref. [1], pp. 83-85) from momentum into x space, trivializes in a certain
sense the causality condition. The hard part remains, of course, the trans-
lational invariance as indicated by the last equality in (5).

Turning back to formulas (4) and (5), one may try to concentrate the
positive measures dμn on Σnr\Έn, where Έn= { z e C 4 " : zt = (ΐxf, xt)
= xi9xf and xt real, i=ί,...,n} is the Euclidean subspace of <E4n. By
doing so, one gets from the Wightman postulates the Euclidean Oster-
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walder-Schrader postulates for the Schwinger functions

^ ( x , . . . , x J = aB l l (z 1 . . .z l l ) | z e E n . (9)

E0: Temperedness: <fQ = 1, 9>n e ^'(IR4").
E 1 : Euclidean Invariance.
E2: Positivity.
E 3: Symmetry: Sfn{xnU...9 xπn) = ̂ n{xγ,..., xn).
E4: Cluster Property.
What we want to show here is that E 0 - E 3 conversely imply the

existence of the Lorentz invariant functions %Bn analytic in the correct
primitive Wightman domain satisfying the positivity condition (4), (5)
as well as the restriction relation (9). For that purpose, it is enough, as it
was shown in (Ref. [1]), to restrict the positivity condition to the subsets
σMnEM of ΣnnΈ,n, where σn is the unpermuted tube (2), and to prove
then that E0, E1, and E2 imply the analytic continuation of the distribu-
tions

5 M ( x 2 - x 1 , x 3 - x 2 ; . . . , x M - x n _ 1 ) = ^(x 1 , . . . ,x w ) (10)

for x\ < x°2 < - - < x°, to the tubes

#„-! = {Ίm(zk-zk-1)eV+, k = 2...n}. (11)

The Schwinger functions Sn and 9*n are related to each other in the same
way as the Wightman functions Wn and 2Bn, viz.,

Wn(z2-zu...,zn-zn_1) = Wn(zu...,zn). (10')

After having obtained analyticity in the tubes ^ _ i , the analytic con-
tinuation to the extended tubes ^-i *s immediate due to El , and the
symmetry E3 then implies analyticity in the union of the permuted
extended tubes, which is equivalent to causality by very well-known
theorems (cf., Ref. [3], p. 85).

The invariance by translations as expressed by (10') leads to the
following form of the positivity condition (4) on the unpermuted tubes σn:

X $Wn+m(ξ',z-z',ζ)fn(z',ζ')fm(z,ζ)
n,m

dμn(z\ζ')dμm(z,ζ)^0

with

In this formula the positive measures dμn must have their support in ̂ ~+",
where ^ + = {z e C 4 : Imz e V+ }. The Euclidean positivity condition (4.3)



Euclidean and Wightman Formulation of Field Theory 261

of Ref. [1] is obtained in our notation by concentrating the measures dμn

on σnnΈn. In order to simplify the notation, we shall suppose space-time
to be one-dimensional for the purpose of the next section, since the space
components of the four vectors would remain passive spectators anyway.
The expression (4.3) of (Ref. [1]) is then obtained by inserting into (12)

1η (13)

where z = x + ίy, ζ = ξ + iη, and taking

where ^(IR+) is the closed subspace of ^(IR") consisting of elements φn

with support in {y^O, yt ^ 0 , ...,yπ_i ^0} =IR+. Under these con-
ditions we may substitute into (12)

Wn+m(iη'n-l9 ...,iη'1,(y + y),iη1 ..iηm-ι)

where according to (Ref. [i]), Sn+m is to be considered as a tempered
distribution in 6^(JRn+m~ί) with support in Wf"1'1.

We are now ready to prove:

Theorem 1. Conditions (12)—(15) imply the analytic continuation of
Sn(xί9 . . . ,x n _ 1 ) into the topological product of the right complex half
planes

or, equivalently, of Wn(iy1,..., iyn-ι) into i ^ " " 1 .

This replaces the too strong Lemma 8.8 of (Ref. [1]).

3. Proof of Theorem 1

From (12)—(15) it follows, as it was shown in Section 4.1 of (Ref. [1]),
that the distribution Wn+1 (15) can be continued analytically in each
variable separately to the whole upper complex half-plane. More
precisely, the n functions

fv = Wn+1(iy1 ...iyv-l9zv9iyv+1,...,ίyj (16)

are tempered analytic in I m z v > 0 and take their values in tempered
distribution with support in yk^0 with respect to the variables yk,
k= 1, ...,v, ...,n. This follows also from Corollary 1 to Theorem 3,
p. 86, of (Ref. [2]). We mention it because Theorem 3, being a purely local
theorem, implies (16) also in the case of Sn+ x e '̂(11^+) (see the appendix),
while the method used in (Ref. [1]) necessitates Sn+ί e Sf'.
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Since the functions fv all analytically continue the same distribution
Wn+1(ιy)9 we are faced with a typical degenerate edge-of-the-wedge
problem (the case of the Malgrange-Zerner theorem, cf., Ref. [4]). In the
variables

wk = uk + ivk = log(-izk) k=ί...n (17)

we readily see that the functions φv(w) = fv(iew\ ...,ieWn) are analytic in
the "flat tubes"

j = 0 Vfcφv |Imw v |<-

and coincide all for {Im wk = 0, k = 1,..., n}. The envelope of holomorphy
n

of this problem is given by the convex envelope of (J ZΓV and we get:
1

Lemma 1. The distributions Wn+1(iy\ n= 1,2,..., are restrictions to

/IR+ = {Imz k >0 Rezk = 0 k=ί ... n}

of functions Wn+1(z) analytic in

π

The distribution part of the Lemma can be easily handled even for the
case WsS}'.

JΓM is not the topological product of the upper half-planes ι^+ as
claimed by Lemma 8.8 of (Ref. [1]) and therefore a counter-example
to it can be readily constructed.

Lemma 1 implies:

Corollary to Lemma 1. The tempered distributions Wn+1(iy) = Sn+1(y)
are real analytic functions on 1R+ and therefore polynomially bounded
together with all their derivatives:

C, N, M being some a dependent positive constants.

In order to prove Theorem 1, we need the following two theorems,
extracted from (Ref. [2]):

Theorem A. Let the set of functions Anm(z\z\ n, m = 0,1,2,..., be
anti-analytic-analytic in Σn x Σm, where Σn are connected open sets in
<C4n containing the open Euclidean sets MnCΈn($nCΣn, n = 0,1,2,...;
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01 n open relatively to the Euclidean sub space ΊEn of<E4n). Let furthermore
the Anm satisfy the positivity condition (4) on the sets 0ln with dμn = the
Lebesgue measure concentrated on Έn for all terminating sequences of^
test functions fn with compact support in 0tn. Then the positivity condition
(4) remains valid in all of Σn, i.e., for dμn = any positive measure with
compact support in Σn and for all terminating sequences of test functions
/n6C°°((C4").

Theorem B. ("Theorem of the diagonal"). Let the set of functions Anm

of Theorem A satisfy the positivity condition (4) on the open sets Σn C C 4 M .
Suppose the diagonal elements Ann(z, z) (both arguments equal!), n
= 0,1,2,..., which are real analytic functions on Σm can be analytically
continued as real analytic functions to some larger open connected sets
Ωn 3 Σn. Then all the functions Anm(zf, z) n, m = 0,1,2,..., can be continued
as antianalytic-analytic functions into the domains ΩnxΩm. By Theorem A
the positivity condition continues to hold in Ωm n = 0,1,2,....

Theorem A is a mixture of Theorems 1 and 4 of (Ref. [2]) and Theo-
rem B is contained in Theorem 4 of (Ref. [2]).

Remark. Both theorems are easily proved with the help of the
Schwartz inequalities

\Λnm\Z>Z)\ = Λnn\Z > Z ) Λmm\Z> Z) ,AOλ

( l o )
AH(z,z)^0

where

a and β being any multi-indices. These are obtained from (4) by, e.g.,
choosing for the test functions f e2) sequences which tend in the topology
of Θ' to appropriate linear combinations of derivatives of the Dirac
measure. The theorems are then first proved for the diagonal elements
Ann by taking m = n in (18) and then extended to off-diagonal elements
Anm by the use of (18). The purpose of this remark is to stress the fact that
the analytic behaviour off the diagonal is completely governed by the
analytic structure on the diagonal.

In order to prove Theorem 1, we want to enlarge the domains Ctifn of
Lemma 1 by the repeated use of Theorems A and B. In our case we have

Anm(z\z)=Wn+m(ζ\z-z\ζ) (19)

Ann% z) = W2n(ί z-z9ζ) = f(z - z). (19')

To start with, (19) is only defined for positive purely imaginary arguments
ξ^ = iy^\ za) = iy{1\ If we assume that the Wn+1 are real analytic on
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/1R+ - and this we already know by the argument leading to Lemma 1 -
(19') is also defined and real analytic for I m z > 0 since z — z = 2ilmz.

For fixed ξ — iy it follows then from Theorems A and B that f(z — z)
is the restriction of a function f(z — z') antianalytic-analytic in {Imz' > 0}
• {Imz > 0}, that is, / is analytic in the whole upper half-plane. Moreover,
from (18) with n = m we have the inequalities

|/<"+»(z - z')|2 g i2 V ( 2 β ) (* - 2)i2βf{2β)(z' - z')

α,jϊ = 0,l ,2. . .

which imply, in particular,

\f(x + iy)\ύf{iy) (21)

for all — oo < x < oo, y > 0 and

t (21')

for all y,y'>0. By the replacement (y,y')-+ ίy+ —, — I , y, α>0, (2Γ)

becomes

0 g / ( Ϊ > + id) Sfll2(2ίy + ia)fll2(ia) ύ f1/2n(2nίy -f iα)

Since by the Corollary to Lemma 1 f(iy) is polynomially bounded for
y-*0, the right-hand side converges for w-»oo and we get finally

|/(z) |^/(*Imz)^/(*y) (22)

for all I m z ^ y > 0 . (Compare formula (4.9) of Ref. [1].) Similar in-
equalities hold also for the derivatives of /. The off-diagonal part of
Theorems A and B, combined with (22), leads then to the inequality

\Wn+J\ z, 0| ̂  Wifit ia\ CO WlSt ia, ζ) (23)

valid for all I m z ^ ( α + α')>0, α > 0 , a'>0. Here Wn+m is analytic in
the upper half-plane I m z > 0 and real analytic in ζ' = iy' e iIR+~ι and

This last inequality tells us that the functions fv (16) leading to
Lemma 1 are bounded in their domain of analyticity by the functions
Wl^Wl^+i-v) of purely imaginary arguments. Therefore the function
Wn+1(z) will be bounded by the same set of functions, v = ί , . . . , n + l ,
in the holomorphy envelope Jfn of Lemma 1. We shall not attempt here
to determine the exact law of the propagation of these bounds into Jfn.
It can, however, be concluded, using the methods of (Ref. [5]) that Wn+1

is again polynomially bounded in Jfn.
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Knowing now that the functions W2n are analytic in J Γ 2 H - I by
extracting information out of the functions W2v, v = 1, ...,2n— 1, as
just described, we conclude that

W2n(lz-z,ζ)

is real analytic in {Ce«3f2(n-i)} x { I H I Z > 0 } .
The argument leading from (19')-(23) tells us that Wn+1 is analytic

in the domain

jr^= 0
with

Now, the domains ^\,(1), which are again tubes in the angular variables
(17), are strictly larger than the corresponding domains ^~v of the first
step and therefore the envelope of holomorphy ^f (jΓn

(1)) = JΓM

(1), which
is simply the convex envelope of j ^ ( 1 ) in the angular variables (17),
is strictly larger than jfn. By repeating the process, we get a strictly
increasing sequence of domains

which are all convex tubes in the angular variables (17), and what remains
to be shown is that

That this is indeed the case may be seen in the following, may be not
the most economic way. Let us first consider the set of functions Wn+ί

with only two complex variables, the rest of the variables being kept
purely imaginary:

Fn+i(zuZ2)=Wn+ί(ίy1,..Ayμ^1,z1Jyμ+1...ίyv_.1,z2Jyv+1...,iyn). (24)

Lemma 1 implies that all Fn + ί are analytic in the domain

a r g z k -
π π̂r k=ί,2

4

The repeated use of positivity yields then the domain

a r g z v -
π π

< — a r g z k - — < — fcφv

for all the functions ¥„
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The convex envelope of Qf^ contains the domain

<f(τ+i
After / + 1 steps, we get the domain

2 \2

which converges to the topological product of the upper half-planes.
We find therefore that all the functions (24) are analytic in I m z k > 0 ,
fe = 1,2, while remaining real analytic in the rest of the variables. By
using positivity just once more with respect to a variable lying between
zγ and z2, we get analyticity of all the Wn+ί functions in the topological
product of the upper half-planes in any three variables, while the others
are kept purely imaginary. Making use of this information, we now
complexify any four of the variables in Wn+ί. Again a denumerable
number of steps is needed in order to reach the topological product of
four complex upper half-planes, while the five-fold topological product
is obtained with just one step more. By continuing this procedure, one
obtains the proof of Theorem 1. The somewhat tedious geometrical
details will be omitted here.

Remark In order to reach the domain JΓπ

(/) for the function Wn+1 the
set of functions W2v(iy) v = 1,2, ...,2ιn gets involved. While the tem-
peredness of the function Wn+1 in the domain Jf~M

(/) can be proved, the
author does not see how this could continue to be true in the limit /-• GO
without some further assumptions on the behaviour of the functions

\W2iv{iy)\* v = l , 2 , 3 . . . (25)

when /->oo. It would therefore be very interesting to find physically
reasonable conditions on the quantities (25) which indeed guarantee
temperedness in 3

4. The Angular Continuation of Sn+i(y) into the Tube 3u

We turn again our attention to the case of four-dimensional space-
time and write

Sn+1(y) = Wn+1(iy<l,y1...iylyn)^Sn+1(y0,y)- (26)

3 See Footnote 1.
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To start with the Sn+1 are tempered distribution with support in

k=ί...n}. (27)

The considerations of the last section are now to be applied to the
distributions

Sn+1(y°)= ίsB+1(y°,y) Π ΨiiSd^y, (28)
i=ί

with fixed (^e^flR 3), respectively, Wn+1(iy°) = sn+1(y°\ which replace
the quantities Sn+ί(y)= Wn+1(iy), y eIR+ of that section.

From the theory of the analytic continuation of analytic functions
with values in nuclear linear topological vector spaces (cf., Refs. [3] or
[6]) we get the generalization of Lemma 1:

Lemma Γ. The distributions Sn+ί(y)9 n= 1,2,..., are restrictions of
functions Sn+ί(z°,y) analytic in

with values in tempered distributions ^'(IR3").

We want to show first that Lemma 1' and the Euclidean in variance

sn+1(y) (29)

for all R e S04 such that both y and Ryeή%n, imply

Lemma 2. Sn+ί(y), « = 1 , 2 , 3,..., is real analytic in

lR%n = {yeΊR4n\y%>0 V/c}

i.e., Sn+1 can be analytically continued into a complex neighbourhood

4 n of I R t n .

Proof. Let C be a proper open convex cone in 1R4 pointed at the
origin of IR4 and

the dual cone of C. C is then also a proper open convex cone pointed at
the origin. Let furthermore C be such that

C c C c l R 4 . (30)
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Note: if C~»IR4 then C~>{yelR4r\y0 >0,j> = 0}, i.e., to the positive time
axis.

Consider then the points e C 4 n of the form

z = u + (eζl9eζ29... eζn) = u-+eζ

where e is any fixed vector e C. Equation (29) and Lemma 1' then imply
that Sn+1 can be analytically continued to complex points of the form

usCxn eeC

Take now a system T of linearly independent vectors ea C C, α = 1,..., 4,
and consider the points of the form

4

oc=ί

For fixed u e CXM and considered as a function of the variables
ξ = (ξ1,..., £4)e(C4 M, SM + 1 can be analytically continued into the union
of the fourΊlat domains <Tα= { | e C 4 n : ξae Jfn, ^elRΛ

+ for jS + α}. In
the logarithmic variables W<xk = \nζakf α = 1, ...,4; fc= 1, . . .,π, we again
hit upon a problem of the analytic completion of four flat tubes, which
can be simply resolved by convex completion. As a result, Sn+ι can be
analytically continued into the domain

4

= jz 6C4"Iz = « + Σ e α ζ α , u e

e C, |arg Cαfe| < y Θαft, V θ β J k , θ β i ^ 0 (31)

4 n ^

Σ Σ *.»=i
J

Since the system T = {eα} is linearly independent, the set (31) is clearly
open in <C4", and so is therefore also the set

j ' τ . (32)
s c,τ

We claim that (32) is a complex neighbourhood of R^". For, if we take
any y elR4^, then there exists a C close enough to 1R+, so that y e CXn.
Since this is an open set, there exist u e C, ξa elR+ α = 1,..., 4, such that
>? = iι + I<βαξα for any fixed allowed system T={eJ. But this is a real
point of the domain (31) with C, T just chosen, Q.E.D.
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From Lemma 2 and the proof of Theorem 1, we now readily get:

Lemma3. The functions Sn+ί, n= 1,2,..., can be analytically con-
tinued into the domain

c,τ

|z = »+£>«£« (32')
1

iιeC*",eβeC(α = 1...4)|argU<yββ,fc=l...n,

4

for all Θa>Q such that £ Θa =
1

s/n is a complex neighbourhood of the flat tube

έ$n= {ze(E4"|Rez£ >0, Imzfc = O, k=ί ... ή}. (33)

The domains sd^τ are the domains (31) with $Cn replaced by &\.
The last assertion of the Lemma is verified as follows. In the limit C->1R4

the vectors ea collapse to collinear vectors pointing along the positive
time-axis and therefore ^ ' T collapses to 36 n. Now, given any z e ^ n ,
it can be immediately seen by continuity arguments that there exist a C
and a T such that z e ^M

C 'Γ, which is open in C 4 ".
We are ready to prove the last:

Theorem 2. The functions Wn+1(z) = Sn+1{iz°, z) can be analytically
continued into the tube

£Γn = { z E ( C 4 n | I m z f c E V+ k=ί...n}.

Proof. By standard arguments (cf., Ref. [3]) it can be shown that
Euclidean invariance (24) implies

Sn+1(Rz) = Sn+1(z) (34)

for all ReS04(<C), whenever z and Rz remain in the domain stfn of
Lemma 3. For the functions Wn+1 this implies

Wn+x(Λ*)=Wn+1(z) (35)

for all A e if+((C), whenever z and Az remain in the domain Jf(βy) = sin,
where s£n is a complex neighbourhood of the flat tube

Mn= {zGC4"|Imz^>0 zfc = 0 k = l . . . n } .

It is the domain (32') expressed in the just adopted variables. By spe-
cializing A to real Lorentz transformations, (35) implies in particular that



270 V. Glaser

Wn+1 is analytic in

where 34?(Ω) is the envelope of holomorphy of Ω. Now
where

$~Λe = {z e(C 4 | Imz = ρAe ρ>0}

is the flat tube along the unit four-vector Ae, e = (l,0). If we take first
the A e S£\ in a close enough neighbourhood Ω of the unit element such
that

i l
we will have

ΛεΩ

where Ch denotes the convex hull. Since ^n(Ω) is an open tube in <C4

we are allowed to conclude

U ( U Λ

the last equality being easily verified.

Note. All the tedious exercises of this section were necessary in order to avoid the
notion of the real boundary values of the objects Wn+1 from the flat tubes ΛBn. It is possible
that the introduction of the notion of hyperfunction, instead of distribution at an early
enough stage might avoid this trouble.
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Appendix

For the reader's convenience, we want to indicate another way to get
from the assumptions (12)—(15) to formula (16). In order to avoid nota-
tional complications, we shall restrict our attention to the diagonal
elements Ann(z, z) = A(z, z) of the positivity condition (4). In (Ref. [2]), the
following theorem and its corollary have been proved:

Theorem C. Let the distribution A{z, z)eQ)\Ω\ Ω an open connected
set in <CN, satisfy - in the sense of distributions - the following positivity
condition

(a) Σάaaβ

oc,β



Euclidean and Wightman Formulation of Field Theory 271

for all terminating sequences of complex numbers {aΆ} everywhere in Ω.
Then A{z, z) is the restriction to the "diagonal plane" z' = z of a function
A(z\z) analytic in the domain Ω*x Ωe<C2N. This function satisfies the
posίtivity condition

for all complex measures with compact support in Ω.

Note, α, β are multi-indices: α = ( α l 5 . . . , % ) ; z = x + iy, x,yeW.N,
and A(z, z) is to be thought of as a distribution of the real variables
(x,y)eJR2N;

i '

Ω* is the complex conjugate domain of Ω.
Suppose now the distribution A of Theorem C is of the form A(z, z)

= w(z — z)= W(2iy\ where z = x + iy. If we set W(iy) = S(y\ the positivity
condition (a) becomes

Corollary C. Let the distribution S(x) e S)'{B\ where B is an open
connected cone in IRN, satisfy the positivity condition (b) for all terminating
sequences of complex numbers {αα}. Then S(x) is the restriction to the real
plane y = 0 of a function A(x + iy) analytic in the tube

A(z) moreover satisfies the positivity condition

(c) \A(z-z')dμ{z)dμ{z')^

for all complex measures with compact support in $~%.

We now prove:

Lemma A. Let the distribution SeQ)'{B\ where B is an open convex
cone in 1RN, satisfy the Osterwalder-Schrader positivity condition

(d) $S(y + y')f(y)f(y')dNydNy'^O

for all test functions feS)(B\ Then (d) implies the condition (b) in B.
Since (b)=>(c)=>(d) the conditions (b) and (d) are equivalent.

Proof. Take for / a sequence fn e 3)(Ω) such that

in the sense of 2)'(B). It is an easy exercise in distribution theory to show
that we get in the limit the condition (b), Q.E.D.
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