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Abstract. It is shown that Peierls’ argument can be extended to prove the coexistence
of states which can be transformed into each other only by reflection, inversion or
rotation. This makes Peierls’ argument applicable to the repulsive lattice gas on a large
class of lattices, as well as many models for liquid crystals, ferroelectrics etc. It is specifi-
quely shown how the argument can be applied to a lattice gas with nearest neighbour
repulsion on the hexagonal lattice and the diamond lattice.

I. Introduction

The Peierls’ argument is one of the few methods for proving the
existence of phase transition without explicit calculation. The idea goes
back to Peierls [1] and the method was given a rigorous formulation
for the ordinary, ferro magnetic Ising model by Griffiths [2] and
Dobrushin [3]. The argument has later been extended to other lattice
models with similar properties [4] and more recently Ruelle [5] has
succeeded in applying the method in the first rigorous proof of the
existence of a phase transition in a continuous model.

The first application of Peierls’ argument to lattice gases with re-
pulsive potential is due to Dobrushin [6] who proved the existence of a
phase transition for a lattice gas with nearest neighbour exclusion or
nearest neighbour repulsion on a simple cubuc lattice in v dimensions
(v=2). The nature of the argument in the case of repulsion is some-
what different from the proof for systems with attractive forces. First,
for the ferro magnetic Ising model one utilizes the symmetry between
spin-up states and spin-down states in zero magnetic field at the
crucial point of the proof; this makes the generalization from simple
cubic lattices to any other lattice trivial. For the antiferromagnet one
uses a spatial symmetry operation (see below) which is dependent on
the structure of the lattice; therefore, this method is not generally
applicabel and it should not be so since it is known that if the lattice is
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the.line graph of another lattice then the antiferromagnet does not have
any phase transition [7]. Second, in the case of the repulsive lattice gas
one locates an area (in the space of the thermodynamic variables)
where the ordered, “crystaline” phase exists with certainty, while one
for the attractive gas locates the boundary between two different phases.
This has to do with the fact that the “crystalline” phase can exist in
several different states which are identical except for a translation or a
rotation of the space (real space), and that one proves coexistence of
these different states, rather than proving coexistence of really different
phase as for the attractive gas.

Dobrushin’s proof for the simple cubic lattice uses two properties
of the lattice: that it has an 4-B-sublattice structure (i.e. the vertices can
be divided in two groups (sublattices) such that the neighbours of the
vertices in one sublattice always belong to the other sublattice) and that
by a translation of one lattice unit the sublattices are interchanged while
the lattice is mapped on itself. This makes the proof immediately appli-
cable to the body-centered cubic lattice, but not the triangular lattice
which divides into three sublattice or to the hexagonal lattice where
one will have to apply rotation, reflexion or inversion to map the lattice
on itself in such a manner that the sublattices are interchanged.

Recently, Heilmann [8] and Heilmann and Prastgaard [9] have
shown how to overcome the difficulties occuring in the case of three or
more sublattices if each of the sublattices can be mapped into any of
the other sublattices by a translation which maps the lattice into it-
self. (In [8] it was incorrectly claimed that this method also applied to
the face centred cubic lattice.)

It is the purpose of the present article to complete the investigation
of the applicability ‘of spatial symmetry transformation in connection
with Peierls’ argument by showing how to use reflection, inversion and
rotation. The constructions in this cases become vastly more complicated
and the reader not interested in technical details is advised to skip the
second half of Section 2 (from Condition 2.2) and all of Section 3. The
first half of Section 2 contains an outline of the method in very general
terms. Section 4 describes the application to the repulsive lattice gas on
the hexagonal lattice and the diamond lattice. Section 5 gives a generaliza-
tion of the results in Section 2 and 3. Finally, Section 6 tries to
summarize the models which by the presently known technique can be
proved to have a phase transition.

It shall be assumed that the reader is familiar with the Peierls’
argument (descriptions can be found to example in Section 2 of [9] and
in the review article by Griffiths [10]).
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2. The Construction

Let us assume a given lattice model with the following properties
given:

1) Two possible local structures (called A-structure and B-structure)
and a definition of how to draw contours between the two structures.
When, in the following, we talk about lattice translation we always
mean translations which map A-structure onto A-structure and B-
structure onto B-structure.

2) A configuration should be specified uniquely by specifying all the
contours. It should be possible to associate with each contour an energy,
such that the energy of a configuration is given as the sum of the energies
of the contours. The energy associated with a given contour should be
independent of the presence of other contours, but the energy is allowed
to depend on which structure is on the inside and which is on the outside.
It is assumed that there exists a lower bound on the energy of a contour,
which is proportional to the length of the contour.

3) There should exist a reflection which maps the lattice (and the
model) onto itself while interchanging the two local structures. The
translational invariance will then necessarily imply the existence of a
whole system of parallel lines of reflection with a spacing correspond-
ing to the minimum translation which maps the lattice onto itself with-
out interchanging the two local structures. When, in the following, we
talk about reflection lines we shall always mean lines taken from this
system of parallel lines (i.e. we are not interested in other possible
directions).

In the following we will consider a definite contour C which we
shall assume to have A-structure on the outside and B-structure on the
inside, and we will be interested in making a correspondence between
configurations containing C and configurations without C. In this con-
nection the following contours will play a special role:

Definition 2.1. If C is a contour, then a contour is said to be
C-1-inner if it is inside C, but not inside any contour which is itself
inside C. The set of all C-1-inner contours is denoted .#(C).

One could think of several ways in which to transform a configuration
with C into a configuration without C:

a) One could reflect the configuration inside C in a reflection line.
This would cause a conflict when points inside C were mapped on
points outside C. Even with optimal choice of the reflection line the
number of such points will in general grow as the area inside C and not
as the length of C; therefore, this is too primitive.

b) One could remove C and all members of #(C). This would not
cause conflict of structure, but the bound on the loss of entropy will
grow too fast, so this does not work either.
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¢) One could divide the interior of C into regions, each of which
could be mapped onto itself by a reflection. This would work if no
C-1-inner contour belonged to more than one region. However, even if
one let the divisions into regions depend on .#(C), it will in general not
be possible to find a proper division.

d) One could try to combine b and c; ie. remove some members
of #(C) and divide the remaining part of the interior into regions which
are invariant under a reflection. This is the method we shall pursue in
the following. First we describe a method for finding the members
of #(C) which should be removed and the regions which can be reflected.
Afterwards we demonstrate how this construction can be used to furnish
a useful upper bound on the probability of the contour C.

As a first step, we associate with each member of #(C) a line of
reflection. It is important that the definition fulfills the following prop-
erties:

Condition 2.2. The reflection line of a contour shall be a proper
reflection line (in terms of Condition 3 on the model). The reflection
line shall cross (or touch) the contour. The position of the line relative
to the contour shall be invariant under lattice translation and reflection
in the reflection lines.

The existence of definitions which fulfill Condition 2.2 is not difficult
to demonstrate. One could, for example, choose the reflection line as
close as possible to the “center of gravity” of the contour, and build in a
solution of ambuiguities which agrees with the last sentence of the condi-
tion. In general the spacing of the reflection lines will be small enough
to ensure crossing; but it might be necessary either to define “touch”
in a slight broader sense than normally or to draw the contours
appropriately in order to assure at least touching in all cases.

For a given configuration with the contour C we want to find a
division of the members of .#(C) into two sets:

Those which are removed with C and those which are reflected
in some reflection line. We shall denote the last set by K and use
T* for {C}UF(C)\K. If the division is correct then we can find a
set .4 of non-overlapping regions; with each region in .# should be
associated a reflection line such that reflection in this line maps the
region onto itself. Each member of K should be totally inside a member
of /. Preferably, the regions in .# should not overlap with any part of
T: however, this turns out to be too restrictive, and we shall therefore
in the end of this section modify the argument to allow a C-1-inner
contour in T to be totally inside a region in .#. During this modification
we shall include contours inside C-1-inner contours in the T-contour;
thus the final set T of contours to be removed will include C and con-
tours inside C.
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We shall obtain .# by starting with an imperfect set .#,, which we
then improve step by step until we finally end up with .# ; simultaneously
we find which members of #(C) should be included in T. At the end of
the i’th step T; will contain the contours which at that stage we have
decided to remove, while K; will contain the remaining members of
F(C). M; will be a set of regions which fulfill the following conditions:
to each region is associated a reflection line, such that reflection in this
line maps the region onto itself; each region is connected and each
member of K, is associated with a member of .#; which it is totally
inside. L.e. the set .#, has the right properties except that it does not
fulfill the overlap condition. One naturally starts with:

Definition 2.3. T,={C}, K, =#(C). To each member in #(C) cor-
responds a member of .#,. The reflection line is the same for cor-
responding members of #(C) and .#,; a region in .#, is obtained from
a contour in J(C) by reflecting the contour in its reflection line and
taking the union of the interior of the contour and the interior of the
mirror image.

It is easily checked that the .#, defined above fulfills the conditions
we wanted .#; to fulfill.

In order to describe the process and also afterwards be able to
uncover the history of how T was created we need to introduce certain
auxiliary concepts describing the structure of the regions in .#;. When
we start on the purification process these concepts will only be defined
with respect to the initial set .#,. At the i’th step of the purification we
shall use the concepts in relation to .#;_, and define them for .#;.

The primary key to the history of the members of .#;, will be a
hierarchy of trees'. With each member of .#; we shall associate a tree.
The vertices, except the roots of the trees, will themselves represent
linear trees, which will be part of trees created earlier; such a linear tree
will in the simplest cases contain only one vertex, the root.

The root of a tree will represent a member of K; (i.e. a C-i-inner
contour). The reflection line of a region will be the reflection line of the
root (i.e. the reflection line of the C-1-inner contour represented by the
root). This is consistent with the following definition for the trees
associated with members of .#,,.

Definition 2.4. To each member of .#, is associated a tree with one
vertex, the root, which represents the corresponding C-1-inner contour.
When we at the i’th stage look at the trees corresponding to the
members of .#; much of the hisotry of the creation will be burried in
the structure inside the vertices (i.e. in the trees represented by the

! A tree is a directed graph with one special vertex, the root, which has the property
that there is a unique path from the root to any other vertex.
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vertices). Most of this structure we will not need for the continuation
of the process of purification of .#; towards the ultimate stage, ..
However, one part is needed, and for this we introduce the concept of
“a C-1-inner contour being associated with a vertex in tree”. We shall
use a recursive definition, i.e. the full meaning will first appear during
the purification process.

Definition 2.5. With a root in a tree is associated the corresponding
C-1-inner contour. If  is a vertex representing a tree, 7, then a C-1-inner
contour is associated with # if it is associated with a vertex in .

During the purification process each member of K; will be associated
with a vertex in a tree in /.

The next concept we shall need will be two kinds of auxiliary
contours, R-contours and S-contours. With each vertex in a tree shall
be associated an R-contour and an S-contour. They will be built up
during the purification process. We start by:

Definition 2.6. For a root both the R-contour and the S-contour are
given as the union of the corresponding C-1i-inner contour and its
mirror image.

When we talk about the S-contour of a tree we shall mean the union
of the S-contours of the vertices in the tree. The outer part of the
S-contour of tree associated with a member of .#; will be the boundary
of the region. The R-contour of vertex which is not a root will turn out
to be the S-contour of the tree represented by the vertex.

We shall further associate two numbers with a vertex, the reflection
number and the total s-length. It will turn out that the S-contour of a
vertex is created by reflection from its R-contour. If p is the reflection
number of a vertex, then the S-contour will consist of 27 images of the
R-contour. For a root we consequently take the reflection number to
be zero. For all other vertices we will find p > 1. The other number we
define by:

Definition 2.7. With each vertex in a tree is associated a number, ¢,
called the total s-length. It is equal to the sum of the length of the
S-contours of vertices on the path from the root to the vertex in
question including both the root and the vertex in question.

Remark, that if out of a tree one takes the linear tree from the root
to some vertex in the tree then the length of the S-contour of that linear
tree is equal to the total s-length, ¢, for the vertex.

Finally, in order to make the construction unique we need an
ordering:

Definition 2.8. The members of #(C) are ordered by the length of
the contours, with the longest first. C-1-inner contours of the same
length are ordered primarely by shape and orientation, secondarily by
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x-coordinate (with x-axis parallel to the reflection lines) and as last
resort by y-coordinate (y-axis orthogonal to x-axis).

Definition 2.9. ./ is the set of vertices in the trees associated with
the members of .#;. The members of .#; are ordered by their total
s-length, ¢, with the longest first; vertices which have the same total
s-length and belong to different trees are ordered by ordering the trees.
The trees are ordered by applying the ordering introduced in
Definition 2.8 to the roots of the trees. We do not need an ordering for
vertices with the same total s-length if they occur in the same tree.
[The ordering of 47, is seen to be the same as the ordering of #(C)].

We can now define the purification process by defining the i’th step.

Definition 2.10. The i’th step in the purification process consist of
three substeps (compare Figs. 1—4):

a) The S-contour of each of the members of .#;_, is checked for
crossing with T;_,. The members of .#;_ | are checked in the order given
in Definition 2.9. Suppose the first crossing occurs with the S-contour of
the vertex # in the tree 7; the part of t from the root out to and including
n constitutes a linear tree, w. K; will then consist of K;_; minus the
C-1-inner contours associated with w, and T; is obtained by adding
these C-1-inner contours to T,_, ; 4, is generated from K, the same way
as M, was from K, (ie. the members of .#, are trees with only one
vertex, the root; to each C-1-inner contour in K; corresponds a member
of .#;). As soon as one crossing has been detected and handled the i'th

> B

Fig. 1. The figure shows a C-1-inner contour with its reflectionline (left) and the
corresponding R-contour (S-contour) after Definition 2.6 (right)

LG

Fig. 2. The figure shows two C-1-inner contours who'’s S-contours cross (left). To right
the S-contour and reflectionline of the resulting tree is shown
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Fig. 3. The figure shows two regions in .#,_; (each containing two C-i-inner contours)
who’s S-contours cross (top). Below the S-contour and reflectionline of the resulting
region in . is shown; the new tree has four vertices
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Fig. 4. The figure shows two trees (left) with vertices marked by squares and the edges
directed away from the root. The S-contours corresponding to two vertices cross (marked
with dotted line), and as a result a new tree is created (right)
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step is terminated. If no crossing with the contours in T;_, is found
then K;=K,;_,, T;=T,_,.

b) The S-contour of each of the members of A4;_, is checked for
crossing with the S-contour of any other member of .4} _,. The members
of A;_ are checked in the order given in Definition 2.9, and one only
checks for crossing between vertices occuring in different trees. Suppose
the first crossing is found between S-contours of the vertex #, in the
tree 7, and the vertex 75, in the tree 7,; suppose also that #, comes
before #, in the ordering of A;_,. .#; will then consist of the same
regions (and trees) as .#;_, except that the two regions associated with
7, and 7, are combined into one region. The corresponding tree for that
region, 7, is obtained by adding 1, to 7, in the following manner: The
part of 7, from the root out to and including #, makes a linear tree, w.
In 7, w is represented by one vertex, #; # is connected by an edge from
1, to n. The R-contour of # is the S-contour of w; the S-contour of # is
the union of the R-contour and its mirror-image obtained by reflecting
it in the reflection line of t,. The reflection number of # is {. The
remaining vertices in 7, also occur as vertices in T but their reflection
number is increased by 1 and the S-contour is enlarged by taking both
the S-contour which the vertex had as a vertex in 7, and the mirror
image of this contour with respect to reflection in the reflection line
of 1, (it is possible that during these reflections one creates new
S-contour of a vertex on top of its original S-contour; this will amount
to some double counting of S-contour, a fact which will not cause any
trouble). The edges in this part of 7, are kept as edges in 7, except that
edges which in 1, came from vertices in w in T occur as edges from #.
As soon as one crossing has been detected and handled the i’th step is
terminated.

c) If no crossing has been found under a) and b) then the process is
finished. K is equal to K;. .# is created from .#;_, by deleting the
regions which are totally inside another region. The set T* is equal to T;.

We can now see the meaning of the edges in the trees. If an edge goes
from the vertex #, to vertex #,, and if , represent the linear tree w, then
there is a crossing between the S-contour of #, and the S-contour of the
last vertex in w. One also notes that we have defined the S-contour and
the reflection number of general vertices. It is worthwhile observing
that the process terminates after a finite number of steps.

The S-contour of a tree is, by construction, connected and invariant
under reflection in the reflection line of the tree. It is therefore clear
that the regions in .#; have the same properties. Since C is part of T*
and the S-contour is connected, then step a in Definition 2.10 ensures
that all the regions in .# are totally inside C; the connecteness also
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ensures that the steps b and ¢ together are sufficient to make the regions
in ./ non-overlaping. The only thing that can go wrong is that one of
the C-1-inner contours in T* ends up totally inside one of the regions
in /. Suppose D is such a contour. We then reflect it because it is in a
region in .# and when we then have to remove it because it is part of T*
we treat it as we have treated C. Le. we divide the D-1-inner contours
in two groups, one to be removed and one to be reflected; those (if any)
which have to be removed are included in the T-contour for C. This
implies that it might be possible to see from the T-contour that some of
the C-1-inner contours end up inside a region in .#. This process might
of course have to repeated for some of the D-1-inner contours. When
also this process is finished we have arrived at the final set T of contours
to be removed.

3. The Estimate

In this section we intend to demonstrate that the construction
defined in the preceeding section can lead to a useful bound on the
probability of finding the contour C. The probability of finding C is,
with w(conf.) for the canonical weight of a configuration, given by

p(C)= ) w(conf)/ ) w(conf), (3.1)

conf.sC conf.

i.e. the canonical weight summed over configurations containing the
contour C divided by the total partition function.

As a first step we split the summation over configurations containing
C in three parts: The summations over the possible configurations
outside C, ext(C), the summation over T-contours containing C as the
outer contour, T>s C, and the summation over configurations inside C,
which are consistent with T, int(T). This can be done by taking the
possible configurations of the interior of C one by one and treating
them as described in Section 2; this will then furnish the necessary
information for the rearrangement of the summation. One should
especially note the refinement introduced in the end of Section 2, which
imposes restrictions on the configurations inside C-1-inner contours
which are both part of T and inside a region in ..

For fixed T we then keep the following terms in the denominator?.
The sum over ext(C) is kept unchanged, while in the sum over int(T) for
each term in the numerator the corresponding term in the denominator
is obtained by first reflecting the configuration inside each region in .#

2 Here we assume that T*=T. The modifications of the argument which would
otherwise be necessary should be obvious; Eq. (3.2) will be correct in any case.
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in the corresponding reflection line and then deleting T. If this
transformation does not cause a term in the denominator to correspond
to two or more terms in the numerator, we will be allowed to write

p(C) = ) exp(—peL(T)), (3.2
T>C
where ¢ is the lower bound on the energy per unit length of a contour
and L(T) is the total length of contours in T.

In order to show the one to one correspondance between terms in
the numerator and terms in the denominator, we will show that the
process can be reversed. We first note that because in step a in
Definition 2.10 we started all over every time T became larger, then the
final .# is independent of T in the sense that if T"had not been there we
would have obtained the same .# from the final set K of C-1-inner
contours. We also note that during step b the union of S-contours of
all the trees can only grow. If, in Definition 2.8, we now change the
order of shapes which are the mirror images of each other and also
change the direction of the y-axis then we will obtain the same ordering
of the reflected contours as the one we originally had before reflection;
except possibly for contours which are ordered by the y-coordinate and
not reflected in the same reflection line. However, each of the regions in
M is created independently of the contours in the other regions, so only
the ordering inside a region actually matters (here we use that the
S-contours grow). Consequently, if we repeat the process of Definition
2.10 with only step b and ¢, we will obtain the same regions .# from the
reflected contours as we did originally.

We can now try to use (3.2) as a basis for estimating a bound on p(C).
With an obvious notation we can write (3.2) as:

p(C)<exp(—PeL(C)) ) exp[—BeL(T\C)]. (3.3)
TsC

According to Definition 2.10 step a, the C-1-inner contours are included
into T in units of linear trees. We therefore start by evaluating the
contribution from adding one tree. To be precise, we will evaluate a
bound on the sum in (3.3) assuming it only involved one linear tree
whose S-contour crosses C at a fixed point. As a first step towards
simplification, we disregard our knowledge about C (for example we
are not using the fact that the C-1-inner contours have to be inside C);
we shall also allow crossing to take place between C and any part of
the S-contour of the last vertex, although the procedure in step a certainly
would allow us to disregard certain parts. This gives a sum over all
possible linear trees:

Q(Be) = 3 exp[ —BeL(w)], (3-4)
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where we should remember that the summation includes a summation
over possible crossing points.

For practical reasons we shall arrange the sum over @ primarily as
a sum over the length of the S-contour of w. We write, with s(w) for the
length of the S-contour of w (the S-contour is necessarily of even length):

Y(h)= Y exp[—peL(w)] 3.5
s(w)w=2k
Q(Be) = kZ Y(k), (3.6)

where in (3.6) we have introduced o for the minimal length of a single
contour.

We shall write Y|(k) for the contribution to Y(k) from trees which
only have one vertex, the root. From a standard argument on the
contribution from contours of fixed length one finds

Yy (k) =nexp[—k(Be —{)] . (3.7

If the contours are self-avoiding polygons on a lattice with coordination
number ¢ + 1, then one has:

{=logq, (3.8)
n=[(g+1)q *2k]-2k=(q+1)q" >, (39

where the last factor, 2k, in the expression for # represents the choice
of the point of crossing with C.

If k<30 then Y(k)= Y;(k), but in general a linear tree will of course
consist of many vertices. In order to obtain a useful bound on Y(k) we
shall start breaking the tree down in the opposite order to the order in
which it was built, i.e. we cut off the last tree added. To describe this we
introduce the concept of a generalized linear tree.

Definition 3.1. Let t be a tree with one branch. The corresponding
generalized linear tree, y, is then formed from 7 by taking the stem in t
and wrapping it up as a single vertex, which is made the root of y; the
vertices of the branch in t end up as vertices in p with the same
connections as in t; the first vertex in the branch is connected with an
edge from the root of . For the root in p the S-contour and the R-
contour are identical with the S-contour of the corresponding linear
tree (the stem of 7) and the reflection number is 0; for the other vertices
in y the R-contour, the S-contour and the reflection number is as in 7.

If from a normal linear tree @ we cut off the last tree added, what
we cut off is a generalized linear tree, y, while what remains is a normal
linear tree, w,. The procedure in Definition 2.10 (more precisely the
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choice in step ¢ of which of the two trees is conserved, together with the
ordering of the vertices by total s-length in Definition 2.9) ensures that
the length of the S-contour of the root in y cannot be longer than the
S-contour of w, .

We now introduce:

0(1,m, 1))=Y exp[— PeL(w)], (3.10)

where the sum runs over all generalized linear trees with total length of
the S-contour equal to 2/ and with the length of the S-contour of the
root at most equal to 2m. If the sum is empty we put 6(1, m, ]) equal to
zero. The reason for introducing the first variable will appear later. We
shall include in the summation the choice of two points of connection,
one point on the S-contour of the last vertex of y and one on the
S-contour of the last vertex in the linear tree represented by the root of y.
We can now deduce the following inequality:

k-0

Y(K)< Y, (k) +2 (Z )Y(k—2l)6(1,k—2l,l). (3.11)

The first term comes from the possibility of a linear tree with only one
vertex. The bounds on the summation come from the fact that outside
the bounds one of the factors is zero. The choice of connection between
w, and v is correctly represented by the choice of one point on the
S-contour of the last vertex in the linear tree which is included in
Y'(k — 21), and the choice of one point on the S-contour of the last vertex
of the linear tree represented by the root of y which is included in
0(1, k—21,1). The choice of a connection point on the S-contour of the
last vertex in  is counted as a choice of a point on the S-contour of last
vertex in p which is included in 6(1, k —2l, 1), and a choice of whether
it should be a point on the S-contour of y or on the mirror image
created by reflection in the reflection line of @, which is included by the
Factor 2 in front of the summation. The inequality comes from the
disregard of mutual consistency of w, and v (i.e. non-overlap of the
C-1-inner contours).

If one wants to repeat this process for generalized linear trees one
runs into difficulties because the last tree added in a generalized linear
tree might have some of its vertices inside the root of the generalized tree.
One possibility would then be to break up the root; this would force us
to consider trees with more than one branch. Here we shall follow
another course which avoids the introduction of new concepts; the idea
will be to cut off the last tree added in any tree which now has its root
inside the root of the generalized tree. That way we eventually get all
the vertices cut off the generalized linear tree, so that we are left with
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the root which we already know how to handle since the root represents
a linear tree.

To reveal the order of attachment we are going to use the reflection
number. When a vertex is created it gets reflection number one; each
time it becomes a vertex in a new tree (with a new root) the reflection
number is increased by one. When a tree is added to another tree all the
vertices which are added are connected in the sense that there is path
from the newly created vertex out to all the others. Therefore, if we look
at a tree, a vertex with reflection number one represents the addition
of a tree, while vertices with higher reflection numbers have been
included together with the nearest preceeding vertex with reflection
number one. As consequence, in a generalized linear tree we will find
the tree we want by looking for the vertex with the lowest reflection
number; if this is not unique we take among the possibilities the one
furthest out.

To describe what is left of the generalized linear tree after we have
cut off a tree which started in a vertex with reflection number p, we
introduce 6(p, m,l). 8(p, m,]) is defined as 0(1,m,]) [Eq. (3.10)] except
for the following additional restrictions on the terms allowed in the sum
over P: no vertex (except the root) is allowed to have reflection number
lower than p the structure of the root should be consistent with the
possibility of attachment of a vertex with reflection number p and the
choice of connection point from the last vertex in the generalized linear
tree should be consistent with the fact that the vertex which was cut off
had reflection number p. For p=1 these restrictions are empty, which is
consistent with our earlier use of 6(1, m, l). If the generalized linear tree
consists only of the root, then we find

0,(p,mk)=0, m<k,
0.(p,mk)=0, k<Q2p-1)o, (3.12)
0,(p,m, k) <227 PkY(k), otherwise.

The first equation comes from the requirement that the S-contour of
the root should be less than m. The second equation comes from the
requirement that one should be able to attach a vertex with reflection
number p; the minimal possibility is that the root represents a linear
tree with p vertices having reflection numbers 0, 1,2, ..., p— 1, which
gives a minimal total S-contour length of (27 — 1) 6. The occurence of
an inequality sign in the last line is caused by the fact that the right hand
side is an overestimate if p> 1; the first factor represents the forward
connection, while the backward connection is included in Y'(k).
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By an argument similar to the argument used for the inequality
(3.11) we now obtain

0(p9 m, k) .S_ 01([’, m, k)

T Q
+ Y 2077y G(g,m, k—29) 0(1, 219K — 2j, )
q=p j=e

0=2"%k+0)—0c
n=min{log,(k + 0)/26, log,(m+o)/c}.

(3.13)

The upper bounds are induced by the first two equations in (3.12); the
use of 2!79k —2j as the second parameter in the last -function is
justified as an upper bound on how large the total s-length could have
been for the vertex to which the tree represented by this 6-function was
attached, [read it 2! ~9(k — 2%))].

We next intend to use Egs. (3.7), (3.11), (3.12), and (3.13) to prove
the existence of upper bounds:

Y(k)<A-(k+0)™" (3.14)

O(p, m, k) < T(p, m, k) (3.15)

T(p,m, k)=B-2"?P(k4+0)* "(m+0)? (m+2k+0)"% (3.16)

where A4, B, and n are constants depending on ¢ and the constants

occuring in Eq. (3.7). We would carry the proof through recursively if
the following inequalities were fulfilled:

nexp[—k(Be =)< Ak+o0)™", o=Zk<30, 3.17)
3(k=0)

nexp[—k(Be—01+2 Y A(k—2+0)"T(1,k—2L1)

=0

<A-(k+o)™", 30=Zk,

(3.18)

T,(p, m, k)

T [4
+ Y 207Ny (g, m, k—2%) T(1,2' =% —2j,j)

a=r i=e (3.19)
<Tp,mk, m=zokzo, p2l

0, m<k
n@dmm={o, k<2’ —1)o (3.20)
227P. k.- A-(k+0)"", otherwise.

In the appendix we show that there exist a constant f, depending on ¢
such that if

pe—L2fo (3.21)
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then we can find 4 >0, B> 0, and choose
n=fe—_ (3.22)

and have the inequalities (3.17)—(3.19) fulfilled.

Substituting (3.14) into Eq. (3.6) we obtain the following upperbound
on the contribution from adding one linear tree, which crosses C at a
fixed point.

0B<A Y (k+o)

= (3.23)
< A'(20)7"
A'=A(1 +20/(n—1)). (3.24)

Actually we could have any number of linear trees included in T by
crossing at given point of C. The total contribution from including
linear trees which crosses at a fixed point of C is then bounded by

Y L' Q(Bey <exp(4'(26)7"), (3.25)
j=o0 J-
i.e. the “free energy” per unit of contour is bounded by

f=¢— %(c +A4'Q20)7" (3.26)

instead of ¢ — (/. Since linear trees can be included in 7 not only by
crossing with C but with any part of the already existing 7, this means
that we have to modify the inequalities (3.17) and (3.18) to

nexp[—k(fe—{—A4"(20)7")]
SAk+o0)™", o0=Zk<30,
nexp[ —k(Be —{—A4'(20)™")]
+k—oa)

+24° Y (k—=2l+0) " T(1,k—21,)) (3.18a)

I=0

(3.17a)

<Ak+o)", 30=k.

In the appendix we show that we can determine the bound f, such
that (3.17a) and (3.18a) together with (3.19) are fulfilled.
As the final result we obtain the following bound on the probability
of a given outer contour, C:
p(C) < exp[—L(C) (B — B(20)™")], (3.27)
B=A(1+20/f,—1)), (3.28)

where n is given by (3.23) and the bound is valid for n= f,. From
(3.27) one easily finishes the Peierls’ argument in the usual manner.
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4. Application to the Hexagonal Lattice and the Diamond Lattice

As a example on the application of the results in the preceeding
sections we consider a lattice gas on the hexagonal lattice. We shall
consider both the case of nearest neighbour exclusion and nearest
neighbour repulsion (equivalent to the antiferromagnetic Ising model).

The hexagonal lattice can be divided into two sublattices, A and B,
just as the square lattice such that neighbours in the lattice belongs to
opposite sublattices. The 4-structure will consist of occupied A-sites and
empty B-sites, while the B-structure consists of occupied B-sites and
empty A-sites. The contours are drawn between sites with opposite
structures. In the case of nearest neighbour repulsion the contours are
walks on a triangular lattice and we have g=35, n=6/25, {=log5,
o =3. For the nearest neighbour exclusion we can use the additional
restriction on the possible structures to reduce g to 3; this gives
n=6/9=2/3,{=log3, and o =3.

If the fugacity per particle is z,

logz=fu 4.1)
then one finds that in the case of nearest neighbour exclusion the loss
in number of particles as compared to the close-packed, pure structures
is 1/3 per unit of contour. This gives

e=p/3. 4.2)
For the nearest neighbour repulsion we find that if the repulsion be-

tween particles occupying neighbouring sites is a then the bound on the
energy per unit length of contour is

e=%a—|u/3—a/2|. 4.3)
In view of the complicated transformation used to get from configura-
tions with the contour C to configurations without C, one might worry
whether one might get some uncontrolled bulk effect. The easiest way
to see that everything works out is to count edges of different types.
Inside contours all edges are of the type occupied-unoccupied, while
edges crossing contours are either of type occupied-occupied or of type
unoccupied-unoccupied. When contours are moved around the crossing
edges keep their types, and when contours are removed the edges have
their type changed to occupied-unoccupied. Since the number of edges
is a constant and the number of particles is uniquely given by the number
of edges of the different types, it is clear that the values for ¢ given in
(4.2) and (4.3) are correct and that the method works. Lines which are
drawn perpendicular to an edge through the midpoint of the edge are
clearly proper reflection lines, i.e. reflection in such a line maps the
hexagonal lattice onto itself while the two sublattices are inter-
changed.
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As an example of how to apply the method to a three dimensional
lattice we consider the lattice gas with nearest neighbours repulsion on
the diamond lattice. Again we can divide the lattice into two sub-
lattices; the A- and B-structures are defined as for the hexagonal lattice.
Instead of contours we now make surfaces between sites with different
structures and the lines of reflection become planes of reflection. But
nothing is changed in principal.

Since the elementary polygons in the diamond lattice are hexagons
we have ¢ =35, { =log5, # =6/25, 0 =4 and we find

e=4a—[u/4—4al. (44)

5. More than Two Structures

Heilmann [8] and Heilmann and Prestgaard [9, 11] have shown how
to apply the Peierls’ argument to cases with more than two local struc-
tures, when each of the structures could be transformed into any of the
other structures by translation. It is natural to ask how the method
given in Section 2 and 3 of this paper can be extended to cases where
one has more than two local structures, each of which can be transformed
into any of the other structures by a reflection.

Examples of such models would be second nearest neighbour ex-
clusion on the hexagonal lattice, and third nearest neighbour exclusion
on the square lattice (see [11]) and on the triangular lattice. But it is
much more important that this class of model includes many models
for phase transitions which are connected with the introduction of a
preferred direction, e.g. models for liquid crystals, the glass transition,
and ferroelectrics.

The problems connected with drawing contours and estimating the
free energy per unit of contour were treated in [8] and in great detail
in [9], so we shall here limit ourselves to the problems connected
with the transformation from a configuration with a contour to a con-
figuration without that contour. In principle one just combines the
method of [8] and [9] with the present method.

Because one has more than two structures the contours are no
longer simple polygons; they include branch points where three or more
lines of contour meat, and the interior of a contour, C, is divide into
several regions each having a given structure next to C. The contour,
C, is transformed away by treating each of the interior regions se-
parately; the present method of reflection can be used just as well as the
original method of translation for this purpose. The only difficulty
occurs in connection with C-1-inner contours which have to be deleted.
Since we have more than two possible structures, the structure inside
a C-1-inner contour do not need to be the same as the structure out-
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side C; the problem is solved by the trick already introduced at the end of
Section 2 for a similar purpose: treat the interior of a C-1-inner con-
tour which is deleted as the interior of C.

A somewhat more complicated problem arises when the symmetry
operation to be used is a rotation of an angle less than 180°; for
definiteness we shall consider rotation of 120°. In this case we need two
images of contour in order to be able to get a region which is in-
variant under the rotation; as a consequence we have to change many
numbers in the equations in Section 3 (normally the change will be from
2 to 3). To be explicit the following changes occur: in the equations:
in (3.5) the condition is changed to S(w)= 3k. Equation (3.9) is changed

to
n=[g+1)q ?2k]-3k=1.5(q+1)q 2. (5.1)
Equation (3.11) is changed to

Y(k) < Y, (k) +3 Uﬁf” Y(k—31)0(1, k— 31 1). (5.2)
l=q

In Eq. (3.12) the last two lines read
0,(p,mk)=0, k<i(3?-1)c

53
0,(p,m k) <3*"PkY(k), otherwise. (5:3)

Equation (3.13) is changed to

0. m k) <0, (o, m K)+ S 37741 S 0(q, m, k—34)) (1, 317k — 3j, )

q=p j=o

0=3k+i0)—do (54
n=min {log;(2k + 0)/30, log;(2m + g)/5} .

In Eq. (3.16) one should change 2727 to 3727 and it might be ad-
vantagous to change o to 3¢ and 2k to 3k (in the last factor). The bounds
on k in (3.17) and (3.18) should read o <k <40 and 40 <k respectively.
The remaining changes in Egs. (3.17)+3.20) are trivial consequence of
the earlier changes.

The estimates in the appendix then also have to be changed, but
nothing extraordinary happens and once again one concludes that one
can choose n as given in (3.22) and find a lower bound on n for the
validity of (3.26) and (3.27).

6. Conclusion

From the results given in [6-9, 11] and the results of the present
paper it seems possible to conclude that Peierls’ argument can be used
to prove the existence of a phase transition for a large class of models
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with repulsive potential. Let us define the low temperature state as the
union of configurations where the energy including one-body contribu-
tions (i.e. chemical potential or interaction with magnetic field) is
minimal. The effect of unfavorable boundary conditions should not be
included or in other words, when an interior configuration has been
specified, then the boundary conditions can always be assumed to
match the interior configurations. Peierls’ argument will then be appli-
cable if the low temperature state possesses the following properties

A. More than one possible configuration, but only a finite number.

B. The possible configurations should be interchangeable by spatial
symmetry (or spin reversal).

Among the still unsettled cases of neighbour exclusion (repulsion)
one primarily notes the second nearest neighbour exclusion on the
square lattice and the nearest neighbour exclusion on the face centered
cubic lattice. In these cases the ground state is infinitely degenerate.

Since the correction to the entropy per unit length of contour intro-
duced by the terms B (20)™" in Eq. (3.27) is bounded and vanishes for
p— o0, then it seems fair to expect that one will find similar be-
havior at low temperature for models fulfilling the above conditions
A and B, irrespective of the type of spatial symmetry operation needed
to accomplish the interchanged of configurations.
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Appendix

Here we prove that if fe —( is large enough it is possible to choose
values for A, B, and n which fulfills the inequalities (3.17)—(3.19).

We start by finding a bound on the sum in (3.18) assuming that
n=4.23. We have

$(k—o)
sk+0)"2 Y [(k+o—=2D(I+0)]* "=c;+c,, (A1)
l=0
3(k—a)
cy=3k+0"* Y [(k+o-2)(I+0)>""
1> 10 30)
e, (A2)

¢, =1k + o) 2 %(kfa) [k+o—2D)(1+0)]>""
(k_f,;Z (A.3)
<tk+oyr=2 Y [k+o=2D(1+0)]*".
l=qg
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For k<50 one has ¢, =0; for k=50
,=%-(3/40)" 2
for
90 one has

k<
¢, < (1 + ——(k 50) (k+a) 2 [(k—0)(20)]* "
-2

= (1 +0)(3/40)
For k> 90 we write

C=c3t+¢y
¢y =(k+ 0"~ Z Lkt o—2D(+0)"
<(k+o)y ?[(k—0)20]*""

+k+oy 2 | "’ dil(k+o-20)(I+0)]*""

a

k+o "2 4o (k+0) "2
=[(k—a)2a} n—-3) | (k—0)-20
<[1+40/(n—23)](5/80)" 2
—ror? Y [kt 20+

1>(h—0a)/8
{ k+o)-32 |2
§§(k_”)[(3k+5a)(k+707

<a(5/80)" 2.
(Here we use n=4.23). Collecting (A.4-8) we find
¢, £(B/40) (1 +0+40/(n—3)).
and the inequality (3.18) will consequently be implied by
(m/A) exp[—k(fe =] (k+0)'+B-a,(0,m) =1
a;(e,n)=1c3""+[1+0+406/(n—3)] (3/4a) 2.

We next turn to (3.19); the sum of interest in this case is:

es=2( oy 3 2700 Y [kt 20+ o)

q=p
179k —2j + o) (m + 2k + 0)
Q" 9k +0) (m + 2k + 0 — 2 24))

where ¢ and 7 are given by (3.13). Since 7 = g implies

290<m+o,

111

(A4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)
(A.11)

(A12)

(A.13)
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one concludes
(217 —2j+0)(m+2k+0)
<t A.14
2%k +o)(m+2k+0—2-21j) T (A.19)
which means that

cs<2(k+oy2 Y 2771 Y [kt 0 —24) i+ o))
a=r i=o (A.15)

Scgtcqtcg

Co=2lk oy ¥ 277 T [(k+o-20) (4" (A16)

p

ey =2(k+ a2 Y 274 3 [h+o—2) G+ (AL

q>s

es=2(k+oy? Y 2700 Y [kto—2) G+ (ALY)

j>r

s=log,[(k +0)/30d], (A.19)
t=log,[(k +0)/20], (A.20)
r=9g—0=2"%k+0)-20. (A.21)

co<kt oy 3 270 S [(kto—24)) (40"
=r % (A22)

=Cg+Cio+Cyy.
co=(k+ar? ¥ 270 S [hro-2) (o (A2
y uloga[k + a)/50] (A24)
%l o= 20 G+

<[h+0—290) Qo>+ | djlk+o—2)(+0P"  (A25)
<[k+0—-2%)(20)]* " (1 +40/(n-3)).
¢oS(k+0P~2 (14+40/(n1—3)) 3 29[k +0—2%0) (20)]* "
~ k+0' n—2
(4(k+ 0)/5) (20)
<2(1 +4o/(n—3)) (58672
co=k+ap? 3 270 8 [hto—20) G+ o)
‘1’;: Jj>el4 . (A27)
=k+0)"2) (i+0)" Z 279k —21j +g)27",

<2(1+40/(n—13)) (A.26)
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¢=2"?(k+o0)-o0, (A.28)
v=max {p,log,[(k+0)/(4j + o)1}, (A.29)
w=log,[(k+0)/(2j+0)]. (A.30)
1o 2-+ n—2
CIO§ jga[(jj-i'a;
o ) 2j+0' n—2 )
< j d,[(j+a)2 (A31)

3_9__<i)"_3
T 4(n-3) \ 4o

c=tetop2 ¥ 270 3 (Ut o —20) G+

<(k+0y~2 o[(20) Gk +a)]> "= a(5/80) 2. (A.32)
¢7 = (k+0)"? o max {[(27*(k +0)) 210)]* ")
=30°7". (A.33)
LA (A.34)
Collecting (A.15), (A.22), (A.26), (A.31), (A.32), (A.33) and (A.34), we
obtain cs<ay(o,n), (A.35)
ay(0,m) = (5/86)""2 (2 + 80 /(n — 3))
+ (/4o 2.25/(n—3) (A.36)

+0(5/60)" "2 +(3/2) o> ".

In order to transform the inequality (3.19) into a suitable form we also
need form=k=>(2? — 1) o:

227P k(k+0)""-222(k + o) 2(m+ o) 2(m+ 2k + 0)*

2
—or+2 ———(m'":s ’(‘k++"a) (A37)
<4k(B+0)* (k+0)"3<8.
The-inequality (3.19) will therefore be implied by:
8A4/B+ Ba,(o,n) < 1. (A.38)
For n=4, 0 =1 one finds that
a(o,n)<7.75 (A.39)

which means that (A.38) is certainly fulfilled for
A=1/256, B=1/16. (A.40)
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Since for n>4, ¢ = 1 we also have

alo,n<4 (A.41)
then (A.10) would be satisfied if
256n exp[—k(fe—{)+nlogk+0)]<3/4. (A.42)
Just (3.18) is implied by (A.42), (3.19) is implied by
256n exp[—k(Be—{)+nlogk+o)]1=1. (A43)

We want (A.42) satisfied for k=30 and (A.43) satisfied for ¢ <k <30;
with the choice for n given in (3.22):

n=Pfe—{ (A.44)
we find that the determining inequality is
256n exp[ —n(o —log20)] £ 1 (A45)

which for ¢ = 1 always can be satisfied for n large enough.
We actually want (3.17a) and (3.18a) satisfied; therefore (A.45)
should be altered to
256m exp[ —n(o —log20 — 335 (1 +20/(n— 1)) 20) ") I<1. (A46)
However, this inequality can also be satisfied if n is large enough which
proves the assertion after (3.18a).
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