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Abstract. A general framework is derived for studying differential operations in
renormalized perturbation theory. The method makes possible a simple, unified derivation
of the renormalization group and Callan-Symanzik equations, as well as a direct test for
broken symmetries (including broken scale invariance), without the necessity of defining
currents and deriving their generalized Ward identites. A second-order differential
equation of the Callan-Symanzik type is derived using similar methods.

I. Introduction

Various differential operations on the Green's functions of Lagrangian
field theory have proven to be useful tools in investigating the renor-
malization properties [1, 2] and short-distance behavior [3,4] of these
functions. The aim of the present article is to formulate a simple general
framework for studying differential operations (e. g. derivatives with
respect to masses and coupling constants) within the context of BPHZ
[1, 5] renormalized perturbation theory (see [5] for further references).
The method of differential vertex operations to be developed in Sections II
through IV will make possible (a) a simple and unified derivation of
the renormalization group [6,1] and generalized Callan-Symanzik [3,4]
equations (Sections III B, C) (b) a method for verifying directly whether
a given theory possesses broken symmetry (i. e. its truncated Green's
functions are symmetric asymptotically for small distances), without
introducing currents and generalized Ward identities (Section III D)
and (c) the generalization of the Callan-Symanzik equations to second
order, thus providing the basis a more detailed description of the
asymptotic short-distance behavior of vertex functions (Section IV).

II. Basic Concepts

A. Definition of Differential Vertex Operations

Given a theory with basic fields A(i) (x) and effective Lagrangian
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as a functional of the A(i\ the Gell-Mann-Low formula [7]

..iN(Xl> X2> •••> XN)

= <0| TYlA(ik}(xk)\uy = Finite part of(0)<0| Γf] ̂ ok)(*/c) (2.1)
fe fc

where ^(

0° is the free field (specified by jSf0) corresponding to ,4(ί) and
the finite-part prescription is given by the BPHZ [1, 5] subtraction
procedure, gives an unambiguous prescription for calculating the Green's
functions (covariant time-ordered functions) of the theory to arbitrary
order. We now wish to define, using Zimmermann's normal products [5],
certain differential operations on the Green's functions. This will be
accomplished by means of simple modifications of the Feynman rules
specified by (2.1).

Suppose Pj(x), i= 1,2, ..., is a covariant polynomial in the basic
fields and their derivatives (usually contracted over all tensor and
spinor indices) of dimension

where bt and /) are the numbers of boson and fermion fields, respectively,
and di is the number of derivatives in PΪ(X). In the language of momentum-
space Feynman diagrams, Pt(x) corresponds to a vertex V{ with/; fermion
and bt boson legs, and includes a polynomial of degree dt in the momenta
of those legs. The momentum pi entering at Vi is the variable conjugate
to x under Fourier transformation, and clearly vanishes if Vi is an internal
vertex. Following Zίmmermann [5], we define time-ordered functions
involving normal products by means of the modified Gell-Mann-Low
formula,

<oi T Π N*jίPj(yjf] ^(ω(*ι) ... ̂ (%)|0>
j=1

- Finite part of (0><0| T Π : PQJ(yj) : 4ω(*ι) - 4ίw)(%) (2-2)
j = ι

(0)• exp {ί J : J^ [^l(

0

k)] : d4x} \ 0>

where A($ is the free field (specified by jSf0) corresponding to A(i] and
:P0j: is the Wick polynomial in the A($ corresponding to Pj. The finite-
part prescription is again that of BPHZ [5], with the number of sub-
tractions required for each proper subdiagram y governed by the degree
function

4-B-^F~^(4-δk) (2.3)
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where B and F are the numbers of external boson and fermion lines of y,
respectively, δk is the degree of vertex Vk (an integer Ξ> the dimension Dk)
and the summation is over all vertices, internal as well as external, of y.
For a renormalizable theory one can always choose δk = 4 for all vertices
arising from the interaction Lagrangian in (2.2), in which case the
summation in (2.3) would only involve the normal-product vertices.

In the present article we shall be principally concerned with differential
vertex operations (DFΌ's) defined by

(24)

By keeping only the contributions of connected (resp. proper) diagrams to
the righthand side of (2.4), one may equally well define DVO's on the
truncated Green's (resp. vertex) functions, G[^mfijf(xl9...9xN)τ (resp.
Γ(^} iN(xί9 ...,:%)). In the following we shall often use the symbol
F(N'} as a generic label for G(N), G(Λ°T and Γ(N}.

B. Differential Properties of DVO's

The differential character of the DFO's becomes evident of one
examines the effect on the Green's functions of an infinitesimal change
of the Lagrangian density

where the vertices Vk corresponding to the scalar polynomials Pk are
assigned degrees δk in the BPHZ subtraction procedure of the theory
with modified Lagrangian. In zeroth order (in the εk), the Green's
functions of the modified and unmodified Lagrangians coincide. The
first-order contribution to G^]* m iN(xl9 . . . XN) is given by the sum of
Feynman diagrams containing one and only one of the special vertices
FJ. In terms of definition (2.4) this may be expressed as,

Extending the above reasoning to higher orders and to the other types of
N-point functions yields

(2.6)
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Of special importance is the case in which (2.5) arises from an
infinitesimal increment in one of the parameters gi of the theory : &- >#r -f ε.
Without loss of generality we may choose e£?o==£?0. Then, assuming
analyticity of J§? in 0ί5

If JSf(x)= £ ^f6i(xX where the β, are field products (corresponding to
ι = l

vertices F,) and the at are functions of the parameters gj9 then the same
sort of reasoning which led to (2.6) gives us

Sgk

 Kί (2.8)

Note that the vertices of Jδf0 must be assigned degree 4 in order not to
affect the number of BPHZ subtractions. Formulas (2.8) may be used
to calculate derivatives of arbitrary order with respect to the parameters gt.

C. Operational Properties of D VO's

In what sense, if any, does Y[ Ay\ operate on F(N)Ί From the definition
ί

(2.4) alone the answer to this question is not obvious. Certainly a DVO
does not define a mapping on the space of tempered distributions
<?f(R4N\ or even on a special subspace. Actually, if one studies the
method by which we defined D FO's, he will find that the latter act on
the F(N} only via the Feynman rules used to construct these functions.
Let us now make this notion more precise.

The set of free fields A\°\ with propagators specified by J5f0, determines
a set Σ of possible Lorentz-invariant vertices F, each assigned an ap-
propriate BPHZ degree δ. Let Fbe the vector space of all formal linear
combinations of

{F1 ?...,FJ, F k e Σ , rc=l ,2 , . . .
and

{ } (notational convention: n = 0).

The Abelian algebra of D FO's is represented as an algebra of linear
operators in F, with

Πzl^ ι{F1,...,FJ-{F1,...Fn,PF1,...^}, ί=l,2,..., n = 0,l, (2.9)
i = l

and the action on other elements given by linearity.
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We now consider the linear mapping

defined by
i) ΦFN) ({ }) is the free F(Λ°-function.

ii) If "TeV9'r'={Vl9...9Vn}9n=l929...9 then φ(

F

N} (T} is the F(N}-
function calculated using the available free propagators and the vertices
F1? ..., Fπ, with the requirement that each diagram contain each Vk once
and only once. φF

(N) is defined on an arbitrary element of V by linearity.
In this notation the Gell-Mann-Low formula (2.1) takes the form

(2.10)

where the Ut are the interaction vertices, and (2.4) becomes

Eq. (2.10) and (2.11) give the precise formulation of the statement that
TIAfy.F(N) is constructed by successive application of the operators Δfy.
to the Feynman rules used to construct F(N\

D. Counting Identities

In Section II b we saw that derivatives of Green's and vertex functions
may conveniently be expressed in terms of differential vertex operations.
In this section we shall see that the D FO's are equally useful in expressing
the "counting identities" which are direct consequences of the
"topological" structure of Feynman diagrams.

Let us suppose that the free propagators specified by j£?0 are classified
into "types" labeled by an index fc=l, 2,.... As far as the counting
identities are concerned this classification may be any grouping of the
free propagators into convenient subsets. If Uί,..., Um are the interaction
vertices corresponding to iSfl9 and vki is the number of lines of type k
attached to a vertex of type C7ί5 then counting the number of line-ends
of type k in any diagram y gives

m

Nk + 2nk=^c(vkl (2.12)
i

where
ct = number of vertices of type Ut in y.

Nk = number of external lines of y of type k.
nk = number of internal lines of y of type k.
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We now observe that Δ^j. serves as a counting operator for interaction
vertices of type I/,-:

1

C l ! ' " C w ! ' (2.13)

Γ m Ί oo

Σ ΔS

VΛ{ }= Σ
l<=ι J c,=o

= Σ
Thus if

j7(jv) _ ^ p(N) ^sum over peynman diagrams)
y

then

Similarly, iϊWί, ...,Wl are the 2- vertices corresponding to iJS?0 (assigned
BPHZ degree four), then

(2.14)

Eqs. (2.12), (2.13) and (2.14) may be combined to give us the identities

(2.15)

For PJ Ay\F(N) the topological relation becomes

where μkj is the number of lines of type k attached to a vertex of type
VJ9 and the counting identities (2.15) are modified by the addition of the
terms ]Γ μkjAfy.F(N} to the righthand members.
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III. First Order Differential Operations

A. First Order Vertex Operations in the A4 Model

An excellent testing ground for the methods of differential vertex
operations is provided by the A4 model, whose effective Lagrangian is
given [5] by

(3.1)

where α, b and c are power series in the coupling constant g and are
defined implicitly by the normalization conditions

-P)\pι = μι = ί(μ2-m2) (3.2)

> P2> P3> Asymmetry point = ~ *0

where

(2π)4 δ ι, ...9pN)=$dXl...ldxN exp i £ pfc - x J Γ^(x1? . . ., xw)
i / fc J

and the symmetry point is defined by

pf = μ2 ί=l,2,3,4,

In the BPHZ subtraction procedure each of the interaction vertices is
assigned degree four, so that the only renormalization parts are the
self-energy diagrams with degree two and the four- vertex diagrams with
degree zero. Γ(2) and Γ(4) have been normalized at p2 = μ2 rather than
on the mass shell in order that we might be able to make finite renormal-
izations by changing the values of μ2 and g with ra2 fixed (see Section III C).

The form of the effective Lagrangian (3.1) leads us to consider the
following differential vertex operations of degree four:

(3.3)
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From (2.8), (2.15) and Zimmermann's formula [5] relating normal
products of different degrees (see Appendix), one readily obtains the
following identities:

dm2

dμ2

dg

where

[dm2

p

V1 ' d m 2 ^

fih r
1 ι ^ /f i C

1 2 1 3m2"3;1 '

}r \
C A \ Γ(N)

V^.-ra;

n AVΛ

:4 + .flί ^ ' 3

]1 + 2(l + fc)zl2 + 4(c- , (3.4d)

(3.4e)

r= —i

s=-/zJ0Γ
(4)(0,0,0,0).

We see that the five quantities
dΓ(N} dΓ(N)

„ 93m2 ,NΓ(N} and

) are all linear combinations of the ̂ Γ^ i = 1, 2, 3. Since the latter
are linearly independent, it is clear that there will be two independent
linear relations among the five operations. These may be conveniently
chosen to be the generalized Callan-Symanzik equations and the
renormalization group equations, to which we shall turn our attention in
Sections III B and III C.

B. Generalized Callan-Symanzik Equations

From (3.4a-e) it follows that the four operations I m2 2

V dm2 + μ

-̂ —, Nl and A0 are linearly dependent. That is,

dμ2

δflf

θμ2

(3.5)

where α, β and y are, on dimensional grounds, functions of g and the
ratio m2/μ2. To solve for these quantities, we equate coefficients of the
basic DVO's A{, i = 1, 2, 3, making use of the scaling equations (ordinary
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dimensional analysis):

2 da j da
m ^~2 + M "FT = a

dm2 dμ2

(3.6)
2 db 2 db 2 dc 2 dc

m ~^~Ύ + A* ~ΓΎ = ® = m ~τ~2δw2 δμ2 dm2

Then

2 = — 2 -̂ r—
dg

b)y (3.7)

am2 = a — m2 + -̂ r— β — 2(a — m2) y

am2s = ( — ̂  - 1 ) J8 - 4(c - gf) y .
\3flf /

Since the determinant of the coefficients of α, j8 and 7 is nonzero in
zeroth order, a solution always exists in perturbation theory. Eq. (3.5)
is a generalization of the Callan-Symanzik equations, which correspond
to the case μ2 = m2.

More concise expressions for the coefficients may be obtained by
employing the normalization conditions (3.2) at m2 and at μ2. For the
latter it is convenient to introduce (notation of [2])

, -p)]- ' (3.8)

and

9 T> r, θ = id -7Γ. - - - a Γ(4\Pί, p2, p3μ sym.pt. (p2)

which satisfy

and, from (3.5)

89 ' (3.10)
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where

μ J L Φl>P2>F3>F4Jlsym.pt . (p 2 ) \ M M

From (3.10) evaluated at p2 = μ2, we get

^ 4 4 \
a)

m2 \ L m2 \ /. m2

where the index "1" indicates differentiation with respect to the first
argument. Eq. (3.5) for N = 29 evaluated at p2 = m2, then yields

m2

The reader is referred to Refs. [3, 4] for discussions of how Eq. (3.5)
may be used to describe the short-distance behavior of vertex functions.
The crucial point is that for pt = λrhλ->co (a certain set of measure
zero excluded) the ratio

can be shown by power-counting arguments to vanish like λ 2 (up to
logarithms), and thus the asymptotic vertex functions satisfy (3.5) with
the lefthand side set equal to zero. More delicate restrictions on the
asymptotic behavior will be discussed in Section IV with the aid of
second-order DFO's.

C. Renormalίzatίon Group Equations

The identities (3.4a-e) will now be used to derive the following
differential equations for the vertex functions of the A4 theory,

(3.12)

where the dependence of Γ(Λ° on all parameters has been displayed
explicitly. The one-dimensional Lie group of transformations on the
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half-plane {(μ2, g): μ2 > 0} generated by

.,2 S

is the renormalization group [1, 6], and (3.12) expresses the invariance
property of the vertex functions with respect to this group. We see that if
the normalization mass μ2 undergoes an infinitesimal dilation,
μ2 ->μ2(l + ε), and the coupling constant g is changed at the same time to

g + εσl—2~>g\, then the effect on the vertex (and Green's) functions is

the same as if we had simply multiplied each field by the infinitesimal

"Z factor", l-eτί-^-

Referring to (3.4b, c, d), we see that in order to satisfy (3.12) it must
be possible to select σ and τ in such a way that

I σ 2(a m2)τ = 0, (3.13a)

db ' 8b 2(l + fc)τ = 0, (3.13b),
dμ dg

-4(c-g)τ = 0, (3.13c)
" <V \d0

are fulfilled. The crucial point in verifying (3.13) is that none of the

operations 2 ?-^r~? 1 changes the position of the propagator pole at
dμ dg

p2 = m2. Hence

'•^T+°4r-lτ}r(2)(P,-p)} = 0. (3.1

Once we have chosen σ and τ to satisfy (3.13b) and (3.13c) - which is
always possible, thanks to the nonvanishing of the determinent of
coefficients - we may use (3.4b-d) to rewrite (3.14) as

da
- m = 0. (3.15)

The trivial nonvanishing of AίΓ
(2) in zeroth order then gives (3.13 a).

Before proceeding to the more familiar integrated form of the
renormalization group equations, let us use the normalization conditions
at μ2 to derive convenient expressions for σ and τ. Applying (3.12) to the

auxiliary functions df—f,—r > 0 1 and q\—τ>-^r>9\ defined in (3.8),
\μ 2 μ2 y/ \μ 2 μ2 /
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one readily verifies

dg
' (3.16)

Note that q—^, — 2~,9 is invariant under the renormalization group

transformations (it is sometimes referred to as the invariant charge [1, 2]).
Evaluating (3.16) at μ2 = p2 and applying (3.8) then yield

m2 \ Λ m2

ra ra

where the index "1" indicates differentiation with respect to the first
argument.

Referring back to (3.11 a, b), we see that the Callan-Symanzik and
renormalization group coefficients are related by

W2 , ,.., , , , , , (3 18)

For m -> 0 the coefficients are expected, by the arguments of Gell-Mann
and Low [6], to approach finite limits. In this case both ξ and η vanish
and we obtain, as expected,

(3.19)
y(0, #) = τ(0, g ) .

The differential Eq. (3.16) for q —y, —y, g may be readily integrated

using standard mathematical methods [8]. One considers the one-
parametric family of curves ί? (characteristic curves) in the halfplane
{(μ2, g ) : μ2 > 0 with the property that a characteristic curve passing
through the point (μ2, g) has an unnormalized tangent vector (μ2, β).
Clearly one and only one curve in # passes through each point of the

half-plane. From (3.16) and (3.18) it is clear that q I —y, —y, g is constant

along each characteristic curve C, with its value determined by the
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intercept of C with μ2 = p2 if p2 > 0. Thus, for p2 > 0, μ2 > 0, μ'2 > 0
and all g,

2 2 2 2 '2 2 (3 20)

Only continuous differentiability of q I — ̂ -, — γ,Q\ was assumed in the

derivation of (3.20), but we must resort to its full analytic properties
in order to extend this equation to include negative values of p2. Eq. (3.20),
thus extended, is the traditional form of the renormalization group
equation for the invariant charge q.

To obtain the global equations for d(—γ,—^-,g\ and

Γ(N)(pl5 ... pN; m2, μ2, g) it is convenient to make a change of variables,

with μ2 > 0 and m2 and all momentum variables fixed. This is permissible,
since the Jacobian

]-rdg

can vanish only at a point which is traversed by more than one charac-
teristic curve, i.e. only where μ2 = 0 — σ. In terms of the new variables,
Eq. (3.12) and (3.16) take the form

2
dd 2~ m

= —2τ\ — τ-,
2- dμ2 ~~\μ2

ii — /Vr I —
μ δμ2 "'(μ

where
/ p 2 m2 \

d(p2 m2, μ2, q) = d -̂ -, —3-, # ,
\μ μ I

f(N\Pί ...pN;m2, μ2, q) = Γ(N\Pί ...pN;m2, μ2, g ) ,
.2 1/M2

^2 ^2g(p2, m2, μ2,q) = g = q - - , - - , q .

These may be integrated directly and exponentiated, giving

(3-22)

pN; m2, μ2, ̂ ) - Γ(N)(Pι>..., pN; m2, p2, ^) <φ2, ̂ 2

? μ
2

? ̂ ) N/2
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from which follow, using (3.20), the global renormalization group
equations,

-dμ'2 m2 p2 m2 μ'2

^...,/^ mV2, 4(^,^,#)) (3.23)

μ^_ m^μ2 ' μ2 '

As pointed out by Gell-Mann and Low [6], the renormalization group
equations for the theory with m = 0 give some information concerning the
asymptotic behavior of vertex functions of the theory with m Φ 0 and
μ2 = m2. It should be noted, however, that the asymptotic region is not
(unless one is lucky) the same as that where the homogeneous Callan-
Symanzik equations are applicable, namely where all momenta become
uniformly large with the coupling constant fixed; rather it is where the
momenta become large with the invariant charge fixed. Specifically, if
p = λr, Pi = λr{ with A->oo and q fixed, then (3.22) gives

2 -A + β(<>> 4) A + λτ^ 4)} d(P2 m2, m2

9q) ~ 0 „ ̂Λ 2 ' fV v ' I/ 3

, . .., pN; m2, m2, q) d(p2 m2, m2, q)N'2 ~ Γ(Pl, . . ., pw; 0, p2, <?) .

From the work of Gell-Mann and Low [6] one expects that the indicated
passage to the zero-mass limit may be performed without encountering
divergences.

D. Testing for Broken Symmetry

A theory is said to possess a broken symmetry if its Green's (or vertex)
functions become asymptotically invariant under a certain group of
transformations in the short-distance limit (in momentum space,
pi = ̂ ri9 λ-»oo) [9, 10]. The use of first-order DVO's provides the most
direct means of testing a given Lagrangian model for the presence of
broken symmetries. The principal advantage of the method is that
it avoids the necessity of explicitly specifying a current and of deriving a
generalized Ward identity for that current (compare with [9]).

The first application of our method will be to the investigation of
broken scale invariance in the A4 model. The starting point is the scaling
equation

(3.25)
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which, using (3.4) and (3.6), may be written as

ΓJV-1 3

= [_2(m2-a)A1 + (d-

The parameter d has been inserted to allow for anomalous Wilson
dimension [11]. For broken scale invariance the three DFO's of degree
four would have to conspire to give a righthand side which becomes
neglible in the asymptotic region. The only known way of doing this
is via (3.4e). However, a simple second-order calculation [9] shows
this to be impossible: the two parameters available (Wilson dimension
and normalization) are simply not sufficient to fix the three coefficients
of (3.4e).

As a second example we consider the model of a two-component
scalar field with effective Lagrangian

! _ , _ „ , 1 ~ ~ 1 ~ ~ q . A A , 9C/^ — s~l A f]f^ Λ wi Λ wi Δ (A A \°^EFF— ^ uμ^ίu Ά\ ^ / / * ι / i ι ^ '^2^2 o y^i^u ^ 97^

1 μ 1
+• yZy3μ4^- 4j-

where g, mv and m2 are given and the other coefficients (power series in g)
are to be adjusted to fix various normalization conditions and the
requirement of asymptotic orthogonal symmetry (compare Section V
of [9]).

In order to study the effect of "/-spin" rotations on the truncated
Green's functions, we start with a symmetric free Lagrangian, writing

(3.28)

where m2 is an average of ml and m\ whose precise choice is not critical.
Then, by the Gell-Mann-Low formula (2.1) and the i-spin invariance of the
free vacuum, the effects of an z'-spin rotation

cosθ sinθ

cosθ
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can be thrown over onto JSfj:

N

Π τ> r (v v \κίkjk^ji...jN(xι - XN) /g 29)

- Finite part of (0)<01 TA^)... AiN(xN) exp p j : ̂ : d4x~] 10>

where

o î ^

1

4! dijkl( ' l j k l

miJ(θ) = Rik(θ)RJl(θ)mkl9

9ίjkι(θ) = Rim(θ) Rjn(θ) Rkp(θ) Rlq(θ) gmnpq .

The structure of each Feynman diagram contributing to the Gell-
Mann-Low formula is unchanged by the rotation, so that the BPHZ
subtraction procedure defining the finite part in (3.29) is unaltered.

Differentiating (3.29) with respect to θ at Θ = Q and applying (2.8),
we obtain

where

yf

d4X .

This is precisely the "integrated Ward identity" derived in with the aid of
a "broken-symmetry current" in Ref. [9]. The condition of broken
invariance under /-spin rotations is that the righthand side of (3.30)
be "soft" in the short-distance region. In Ref. [9] it is shown that this
may be accomplished by so choosing the mij9 ztj and gijkl that the
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righthand side of (3.30) becomes proportional to A0ijG
(N}T, where

The method employed in this example can obviously be applied to any
perturbative model which one wishes to test for broken internal symmetry.

IV. Higher Order Differential Operations in the A4 Model

Eqs. (3.4) are easily generalized to apply to arbitrary

+ μ2 n'?n2'"3 =(a~ m2)Γni+ 1'"2'-3 ' (41a)

,n3

= (2(a -m2)A1 + 2(ί + b)Δ2 + 4(c -g)Δ3) Γ™n2.nί ,

One readily verifies that the determinant of the coefficients of Γ^}

+ 1 > W 2 >II3,

1̂12 + 1,113 and ΓlT!n2,«3 + ι in the righthand members of (4.1 a-c) is
nonzero in zeroth order, so that these equations may be used recursively
to write

(4 2]( }
— __

3m2 dμ2 ' d

where 0*nitn2tn3 is a polynomial of degree n1 + n2 + n3.
From Eqs. (4.1), (3.7) and (3.13) follow immediately the renormal-

ization group and generalized Callan-Symanzik equations for the
Γ OV)

n

(43)

2 Commun. math. Phys., Vol. 24
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As a final application of D VO's, let us derive a second-order refinement
of the generalized Callan-Symanzik equations. From (4.3) we have

\m"
dm2

+ (m

dμ2

ds
Ίhr?

dr dr

ds

W

ds
~dg

(4.4)

On the other hand, a two-fold application of Zimmermann's formula
relating normal products of different degrees (see Appendix) gives

= [(4 + rA2 + sA3)
2 + tAί + uA2 + υΔ3~\ (4.5)

where

v=-ίA2

0Γ
(4)(Q, 0,0,0).

Thus

m
dm2

dr
-Γdm2

- tA1 - uA2 - υA

, dr „ dr\ , / , ds
Vτ + /'-3-M2+ K-fl-2dμ dg] \ dm2

(4.6)

5s . ds

dμ2 dg

If we now go to the region of large momenta, pt — λrhλ-^(χ>, power
counting [12, 13] gives

A Γ(iv)

Δ1 -
j- (ΛΓ) Λ

This implies that the linear terms in (4.6) must be proportional to A0Γ
(N\

so that we obtain, finally,

dm2

[am2]2-1-1

δμ2 ' dg

(4.7)
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For N = 2 this result has been derived by Symanzik [13] by other
methods. In order to apply Eq. (4.7) in short-distance analysis, further
knowledge of the inhomogeneous term is required1. The reader is referred
to Ref. [13] for an appropriate treatment of this problem.

Appendix

Derivation of the Expansion Formulas for J0Γ
(]V) and A^

We wish to express A0Γ
(N} and A%Γ(N) (defined in Sections III A

and IV) in terms of the differential vertex operations Δi and AtAp ij = 1,2,3.
The expansions are based on a useful formula of Zimmermann [5].

Suppose IG is the unrenormalized integrand corresponding to a
Feynman diagram G containing a special vertex V. Suppose further that
Rφ and Rδ, φ<δ, are two alternative renormalized integrands derived
from IG by the prescription [5]

Rκ= Σ IK-Φ'G, X = Φ,δ, (A.1)
C/eJ5" y e t /

where 3F is the set of "forests" (families of nonoverlapping renormalization
parts of G) and tv

χ is the Taylor operator on the external momenta of y
with degree determined by χ. The only difference between Rφ and Rδ

is that in calculating the former the special vertex V is assigned degree φ,
whereas for the latter V has degree δ. For all other vertices the degrees
are identical in the two cases. Then

RΦ=RS+Σ Σ Π(-Φ(^-Φ Σ Π (-tftio (A.2)
τ C 7 e M ( τ ) y e t 7 C7'em(τ) / e ϋ'

where the first sum is over all renormalization parts containing V, M(τ)
is the set of all forests whose elements either contain τ properly or are
disjoint from τ, and m(τ) is the set of all forests whose elements are
properly contained in τ.

In the case of A0Γ
(N\ Eq. (A.2) with φ = 2,δ = 4, summed over all

relevant Feynman diagrams, gives

A0Γ
(N) = (A, + rA2 + sJ3) Γ(]v) (A.3)

where use has been made of Lorentz in variance to eliminate DFO's
with only one derivative and to contract those with two derivatives.
The coefficients may be deduced from (A.2) or, more quickly, from the

1 The author is indebted to Symanzik for calling this to his attention.
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normalization conditions

z!2Γ
(2)(0,0) = zl3Γ

(2)(0,0) = zl1

d

>, 0,0,0) = ί

i, 0,0,0) = A 2Γ
(4)(0,0,0,0) (A.4)

From (A.3) and (A.4) one obtains

s=-zAΓ(4)(0,0,0,0).
(A.5)

By similar reasoning we have in the case of two special vertices,
Vi and V29 with φ1 = 2,φ2 = δί = δ2 = 4 (since only V1 changes its

degree, Zimmermann's formula (A.2) is still applicable),

(A.6)

with

u, = -1 -
p=0

0,0,0).

Here the second and third quadratic terms on the righthand side arise
from the cases VίEτίV2φτ (τ as in (A.2)), whereas the linear terms
correspond to V± e τ, V2 e τ.

Proceeding one step further, we may now treat the case φί=φ2 = δ2 = 2,

= [(zli + rΔ2 tΔl Γ(jv)

where the term ί^j/^^ comes from renormalization parts τ in (A.2)
which contain both special vertices. Again the normalization conditions
may be applied to give

u— —i
. d

dp2 (A.8)
p=0

,0,0,0).
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