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Abstract. A general framework is derived for studying differential operations in
renormalized perturbation theory. The method makes possible a simple, unified derivation
of the renormalization group and Callan-Symanzik equations, as well as a direct test for
broken symmetries (including broken scale invariance), without the necessity of defining
currents and deriving their generalized Ward identites. A second-order differential
equation of the Callan-Symanzik type is derived using similar methods.

1. Introduction

Various differential operations on the Green’s funé¢tions of Lagrangian
field theory have proven to be useful tools in investigating the renor-
malization properties [1, 2] and short-distance behavior [3, 4] of these
functions. The aim of the present article is to formulate a simple general
framework for studying differential operations (e.g. derivatives with
respect to masses and coupling constants) within the context of BPHZ
[1, 5] renormalized perturbation theory (see [5] for further references).
The method of differential vertex operations to be developed in Sections II
through IV will make possible (a) a simple and unified derivation of
the renormalization group [6, 1] and generalized Callan-Symanzik [3, 4]
equations (Sections III B, C) (b) a method for verifying directly whether
a given theory possesses broken symmetry (i.e. its truncated Green’s
functions are symmetric asymptotically for small distances), without
introducing currents and generalized Ward identities (Section III D)
and (c) the generalization of the Callan-Symanzik equations to second
order, thus providing the basis a more detailed description of the
asymptotic short-distance behavior of vertex functions (Section IV).

11. Basic Concepts
A. Definition of Differential Vertex Operations
Given a theory with basic fields A” (x) and effective Lagrangian
& EFF — & o+ & I
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as a functional of the A®, the Gell-Mann-Low formula [7]

va} .iN(xla x2> vy xN)
= (0| T] [ A% (x,)|0> = Finite part of @C0| T] [ A§¥ (x,) (2.1)
k K

s eij:,Z’I[Ag‘)]:d4x|0>(0)

where AY is the free field (specified by #,) corresponding to A? and
the finite-part prescription is given by the BPHZ [1, 5] subtraction
procedure, gives an unambiguous prescription for calculating the Green’s
functions (covariant time-ordered functions) of the theory to arbitrary
order. We now wish to define, using Zimmermann’s normal products [5],
certain differential operations on the Green’s functions. This will be
accomplished by means of simple modifications of the Feynman rules
specified by (2.1).

Suppose Pi(x),i=1,2,..., is a covariant polynomial in the basic
fields and their derivatives (usually contracted over all tensor and
spinor indices) of dimension

D;=b;+3 fi+d;

where b; and f; are the numbers of boson and fermion fields, respectively,
and d; is the number of derivatives in P,(x). In the language of momentum-
space Feynman diagrams, P;(x) corresponds to a vertex V; with f; fermion
and b, boson legs, and includes a polynomial of degree d; in the momenta
of those legs. The momentum p; entering at V; is the variable conjugate
to x under Fourier transformation, and clearly vanishes if V; is an internal
vertex. Following Zimmermann [5], we define time-ordered functions
involving normal products by means of the modified Gell-Mann-Low
formula,

M
OT T N, [Py)] A®(x,) ... A™(xy)|0)

Jj=1

M
= Finite part of O<O|T []:Py;(y): AGV(xy) ... 4GV (xy) (2.2
ji=1
exp{i | : L [AY]:d*x}|0Y@

where AY is the free field (specified by ;) corresponding to 4A® and
:P,;: is the Wick polynomial in the Ay corresponding to P;. The finite-
part prescription is again that of BPHZ [5], with the number of sub-
tractions required for each proper subdiagram y governed by the degree
function

3()=4-B-3F~ T (4= 2.3)
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where B and F are the numbers of external boson and fermion lines of 7,
respectively, J, is the degree of vertex V} (an integer = the dimension D))
and the summation is over all vertices, internal as well as external, of y.
For a renormalizable theory one can always choose §, =4 for all vertices
arising from the interaction Lagrangian in (2.2), in which case the
summation in (2.3) would only involve the normal-product vertices.

In the present article we shall be principally concerned with differential
vertex operations (DV O’s) defined by

nﬁ‘a‘.»Gf-?'?..jN(xl, e Xy)
i

_ , 2.4)

=<OIT]] [ dy:Ns,[P(y)] A (xy) ... A (xy)[0) .
By keeping only the contributions of connected (resp. proper) diagrams to
the righthand side of (2.4), one may equally well define DV O’s on the
truncated Green’s (resp. vertex) functions, G , (x;,...,xy)" (resp.
™ (xg,....xy)). In the following we shall often use the symbol

F™ as a generic label for G, G™MT and I'™.

B. Differential Properties of DV O’s

The differential character of the DV O’s becomes evident of one
examines the effect on the Green’s functions of an infinitesimal change
of the Lagrangian density

Zi(X)> LH(x) = Z(x) + g & Pi(x) (2.3)

where the vertices V, corresponding to the scalar polynomials P, are
assigned degrees 0, in the BPHZ subtraction procedure of the theory
with modified Lagrangian. In zeroth order (in the ¢), the Green’s
functions of the modified and unmodified Lagrangians coincide. The
first-order contribution to G¥V* ; (x,,... xy) is given by the sum of
Feynman diagrams containing one and only one of the special vertices
V;. In terms of definition (2.4) this may be expressed as,

aG™e

— i A9 (N)
W -——IAV’;‘G .

£=0,all j

Extending the above reasoning to higher orders and to the other types of
N-point functions yields

amF(N)e

- =A% ... Afm FN) 2.6
Oty ... Ogy,, P v F 26

£;=0,all
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Of special importance is the case in which (2.5) arises from an
infinitesimal increment in one of the parameters g; of the theory: g;—g; +e.
Without loss of generality we may choose #§= %,. Then, assuming
analyticity of & in g,

& & 0¥
A
ITEITIIT Sl g

2.7)

If £(x)= Y, a,0;(x), where the Q; are field products (corresponding to
i=1

vertices V;) and the g; are functions of the parameters g;, then the same

sort of reasoning which led to (2.6) gives us

oF™

A5 (N)
09, £

2.8)

~——(A J e (= ADY (MG (A FW

Note that the vertices of 5,”0 must be assigned degree 4 in order not to
affect the number of BPHZ subtractions. Formulas (2.8) may be used
to calculate derivatives of arbitrary order with respect to the parameters g;.

C. Operational Properties of DV O’s
In what sense, if any, does H A% operate on F™M? From the definition

(2.4) alone the answer to this question is not obvious. Certainly a DV O
does not define a mapping on the space of tempered distributions
S'(R*M), or even on a special subspace. Actually, if one studies the
method by which we defined DV O’s, he will find that the latter act on
the FV only via the Feynman rules used to construct these functions.
Let us now make this notion more precise.
The set of free fields A{?, with propagators specified by %, determines

a set X of possible Lorentz-invariant vertices V, each assigned an ap-
propriate BPHZ degree 6. Let V be the vector space of all formal linear
combinations of

Vi,..,V,}, VieX, n=12,..
and

{ } (notational convention: n=0).

The Abelian algebra of DV O’s is represented as an algebra of linear
operators in V, with

!
145V Vi = Vi Ve Way . Wi}, 1=1,2,..., n=0,1, (29)
i=1

and the action on other elements given by linearity.
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We now consider the linear mapping

¢r" V- (R
defined by

i) ¢ ({ })is the free F™-function.

i) If veV,={V,..,V,},n=12,.., then ¢3 (¥) is the F™-
function calculated using the available free propagators and the vertices
Vi ..., V,, with the requirement that each diagram contain each V, once
and only once. ¢ is defined on an arbitrary element of V by linearity.
In this notation the Gell-Mann-Low formula (2.1) takes the form

F® =™ (exp [Z Ag,;] { }) , (2.10)

1

where the U, are the interaction vertices, and (2.4) becomes
T4y F‘N)=<1>F‘N’(HA‘I’,; exp[z A;’;‘l]{ }). (2.11)
j j i

Eq.(2.10) and (2.11) give the precise formulation of the statement that
143 F®™ is constructed by successive application of the operators 43
to the Feynman rules used to construct F®™,

D. Counting Identities

In Section IT b we saw that derivatives of Green’s and vertex functions
may conveniently be expressed in terms of differential vertex operations.
In this section we shall see that the DV O’s are equally useful in expressing
the “counting identities” which are direct consequences of the
“topological” structure of Feynman diagrams.

Let us suppose that the free propagators specified by %, are classified
into “types” labeled by an index k=1,2,.... As far as the counting
identities are concerned this classification may be any grouping of the
free propagators into convenient subsets. If U, ..., U,, are the interaction
vertices corresponding to i.%;, and v,; is the number of lines of type k
attached to a vertex of type U,, then counting the number of line-ends
of type k in any diagram y gives

Ne+2m=Y v (2.12)

where
¢; =number of vertices of type U, in y.
N, =number of external lines of y of type k.
n, =number of internal lines of y of type k.
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We now observe that 4 ‘Z’jj serves as a counting operator for interaction
vertices of type U;:

Styexp| 3 4] ()= 3 o @ @ e )
=t @mo M (2.13)
= Z A‘Lﬂ) AL}
=0 C1!
Thus if
F™=3%FM (sum over Feynman diagrams)
v
then

4§ FD =Y IF®.
Y

Similarly, if W,, ..., W, are the 2-vertices corresponding to i.%, (assigned
BPHZ degree four), then

Af, TV = —Znyl“(”)
A GV = —Z(n +N) G™ (2.14)

A, GDT = —Z (n)+ N) G™T.

Y

Eqgs. (2.12), (2.13) and (2.14) may be combined to give us the identities

(Nie— 2A‘v‘vk) ™= Z v Ay I

i=1

(=N, =245 )G =Y v, 4% GV (2.15)

i=1

(=N 244,) G = § v, 4 GV

i=1

For [ ] 4% F™ the topological relation becomes
Nk+2nk= Zcivki-i- Z,Ltkj (216)
i j

where 1, ; is the number of lines of type k attached to a vertex of type
V;, and the counting identities (2.15) are modified by the addition of the
terms )" ;49 F™ to the righthand members.

j
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III. First Order Differential Operations
A. First Order Vertex Operations in the A* Model

An excellent testing ground for the methods of differential vertex
operations is provided by the A* model, whose effective Lagrangian is
given [5] by

Lepp= ~ 0,40 A— Sprar— S gey Lop
FEET o Tw 2 4! 2 61

1 1
+ 5 b0, AP A+ cA*

where a, b and c are power series in the coupling constant g and are
defined implicitly by the normalization conditions

F(Z)(ps _p)lpz=m2 =0

I (p, =p)lya_ o = i(u* —m?) (3.2

4 .
F( )(pl’ D25 D3> p4)|symmetry point — —1g
where

r)*s (Zp,.) I'™(py,....py)=[dx, ... [dxy exp[i;pk . xk}l"‘”)(xl, ey XN)
and the symmetry point is defined by

p?=pu? i=1,23,4,
(Pi+Pj)2=%.“2 i$j.

In the BPHZ subtraction procedure each of the interaction vertices is
assigned degree four, so that the only renormalization parts are the
self-energy diagrams with degree two and the four-vertex diagrams with
degree zero. I'® and I'® have been normalized at p? = u? rather than
on the mass shell in order that we might be able to make finite renormal-
izations by changing the values of u? and g with m? fixed (see Section I1I C).

The form of the effective Lagrangian (3.1) leads us to consider the
following differential vertex operations of degree four:

Ay = N, [A2 ()]
4,= % [ d*xN,[0,A(x) #AX)] (3.3)

Ay= % [ d*xN,[A*()] .
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From (2.8), (2.15) and Zimmermann’s formula [5] relating normal
products of different degrees (see Appendix), one readily obtains the
following identities:

(N)
or =((——6£——1)A1+—§b—412+ oc As)l““‘”, (3.4a)

om? om? om? om*
orm _ da 0b dc (N)
ot (6/12 At ou’ Az ou A3)F ’ (349
orm da ob dc
= (94, . 0b 0 4 (N) 3.4
NI™=(2(a—m?) 4, +2(1+b) 4, + 4c~g) 45) IV, (34d)
AT™ =(Ay + 7145 +s45) TV (3.4¢)

where
do=—5 [ No[A*(9] d*x,
d
dp?
s= —idy,[(0,0,0,0).

AOF(Z)(IL _p) s

p=0

r=—i

orm™ orw  arwm
om*’ ou*’ dg
Ao I'™ are all linear combinations of the 4,I'™ i =1, 2, 3. Since the latter
are linearly independent, it is clear that there will be two independent
linear relations among the five operations. These may be conveniently
chosen to be the generalized Callan-Symanzik equations and the
renormalization group equations, to which we shall turn our attention in
Sections III B and III C.

,NI'™ and

We see that the five quantities

B. Generalized Callan-Symanzik Equations

From (3.4a—e) it follows that the four operations (m2 %— + u? aiuz)’
—b%, N1 and 4, are linearly dependent. That is,
am?A,I'™ = mz-i—+;tz————a +B~§——Ny ™ (3.5)
© om? op* dg

where «, f and y are, on dimensional grounds, functions of g and the
ratio m?/u®. To solve for these quantities, we equate coefficients of the
basic DVO’s 4,,i=1, 2, 3, making use of the scaling equations (ordinary
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dimensional analysis):

da da
o TH G =4
ob b 0 d (36)
2 2 —0=m2 Y€ 2_0¢€
" omE TH ou? O=m omz TH o’
Then
am2=a—m2+ﬁﬂ—2(a—m2)y
dg
2 ob
=——p-2(1— .
oaum’r agﬁ (I-=>b)y (3.7

da
amzs=(a—g —1)[3——4(0—g)y.

Since the determinant of the coefficients of «, f and y is nonzero in
zeroth order, a solution always exists in perturbation theory. Eq.(3.5)
is a generalization of the Callan-Symanzik equations, which correspond
to the case u* =m?.

More concise expressions for the coefficients may be obtained by
employing the normalization conditions (3.2) at m? and at u?. For the
latter it is convenient to introduce (notation of [2])

2 2
d (Z—z % g) =i(p*—m?) [I'?@p, —p)]~* (3.8)
and

2 2 2 2 2
p> m . (p* m
q (_2, 'u—za g) =id (—77 #—za g) F(4)(p1’ D2 D3, P4)

u u sym.pt.(p?)
which satisfy
m2
d (1, —3 g) =1
. (3.9)
q(l e g) =g
s IJZ H
and, from (3.5)
0 0 0
(m o +u e + B 29 + y)d &d
(3.10)

0 0 0
(mZ om? +H2 6”2 +ﬁ'—6'3)q=nq
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where
5(1’_2 m? q)= [“AOF(Z)(P, -» 1 J
w @, —p) pP—m?|’

2 2 2 (4) 2 2
"(Z m >= am® AgT'P(py, P2, P35 Palsymopr. (02 +2§(p_2’m_2’g).

2 I'®(py, P2y P35 Pa)lsympt. (%) TSR

From (3.10) evaluated at p? = u?, we get

2

2y( z,g) dl( " ,g)+e( ﬂz,g) (3.11a)
2 2 2

Bl g) =a (LD g) +an (1.2 g),  (311b)
u 2 7

where the index “1” indicates differentiation with respect to the first
argument. Eq. (3.5) for N =2, evaluated at p?> =m?, then yields

m2 2 m2 -1
a1 —im?4,I® peed [T N (Bide
(Mz g) [ im? 4,1, — ), (” o g)] (3.110)

The reader is referred to Refs. [3, 4] for discussions of how Eq. (3.5)
may be used to describe the short-distance behavior of vertex functions.
The crucial point is that for p,=Ar;, A—>co (a certain set of measure
zero excluded) the ratio

AOF(N)(Pn .es DN)
F(N)(Pp .+-s DN)

can be shown by power-counting arguments to vanish like 1~2 (up to
logarithms), and thus the asymptotic vertex functions satisfy (3.5) with
the lefthand side set equal to zero. More delicate restrictions on the
asymptotic behavior will be discussed in Section IV with the aid of
second-order DV O’s.

C. Renormalization Group Equations

The identities (3.4a—¢) will now be used to derive the following
differential equations for the vertex functions of the A* theory,

2 0 m* d (N) 2,2
M 3 +0o —359 —Nr+t zag r (pl’apNam U ag)=0
ou I e I (3.12)

where the dependence of I'™ on all parameters has been displayed
explicitly. The one-dimensional Lie group of transformations on the
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half-plane {(u?, g): u*> >0} generated by
2 0 m N\ 0
u a'uz +0o 'uz s g 69

is the renormalization group [1, 6], and (3.12) expresses the invariance

property of the vertex functions with respect to this group. We see that if

the normalization mass u? undergoes an infinitesimal dilation,

u?— u?(1+¢), and the coupling constant g is changed at the same time to
2

g+eo m—z, g, then the effect on the vertex (and Green’s) functions is

the same as if we had simply multiplied each field by the infinitesimal
2

“Z factor”, 1 — et (%2—, g) .

Referring to (3.4b, c, d), we see that in order to satisfy (3.12) it must
be possible to select ¢ and 7 in such a way that

, Oa da

2a—m?) 1= 3.13
Py + = 79 g—2a—m*)t= (3.13a)
ob ob
2 —2(1+b)z=0, 3.13b
a2 T3 ° (1+d) ( )
dc dc
u? Y% +(a—g—1>a—4(c—g)r=0, (3.13¢)
are fulfilled. The crucial point in verifying (3.13) is that none of the
operations 667’ Fag_’ 1 changes the position of the propagator pole at
p? =m?. Hence
(u o +ai—21)r(2>(p —p)J —0. (3.14)
6u 6g p2=m?2

Once we have chosen ¢ and 7 to satisfy (3.13b) and (3.13c) - which is
always possible, thanks to the nonvanishing of the determinent of
coefficients — we may use (3.4b—d) to rewrite (3.14) as

( 2_0a da =0. (3.15)

p2=m?

S+ Gy~ 2rlam ) 40 p, —p

The trivial nonvanishing of 4,I'® in zeroth order then gives (3.13a).
Before proceeding to the more familiar integrated form of the
renormalization group equations, let us use the normalization conditions

at u? to derive convenient expressions for ¢ and 7. Applying (3.12) to the
2 2

2
. . p° m p° m , .
auxiliary functions d(—,——, ) and q(——,——, ) defined in (3.8),
y w2 ? w2 ? (
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one readily verifies

2 0 0
9 4127)ld=
(,u e +o 39 + r)d 0

2 0 0
(,u ou? to dg 4
pZ mZ

Note that g (—2, —, g) is invariant under the renormalization group
uoou

(3.16)
0.

It

transformations (it is sometimes referred to as the invariant charge [1, 2]).
Evaluating (3.16) at u? = p? and applying (3.8) then yield

m? m?
2 <73 g) =q1 <15 #—29 g) (3 17)

m? m?
2¢( o) = 175

where the index “1” indicates differentiation with respect to the first
argument.

Referring back to (3.11a,b), we see that the Callan-Symanzik and
renormalization group coefficients are related by

m? m? m?
—5 59| =0{—7%>¢ +g 15_3 )
ﬁ(,uz ) (Nz ) ’7( 12 g

m? ) m? 1 m?
) =T|l—3> + —f 15_5 )
7(u2 g (HZ g) ) ( 12 g

For m—0the coefficients are expected, by the arguments of Gell-Mann
and Low [6], to approach finite limits. In this case both ¢ and # vanish
and we obtain, as expected,

B0, 9)=0(0, g)
7(0,9)=1(0,9).

(3.18)

(3.19)

2 2
The differential Eq. (3.16) for g (%, —’52—, g) may be readily integrated

using standard mathematical methods [8]. One considers the one-
parametric family of curves € (characteristic curves) in the halfplane
{(u? g): p* >0 with the property that a characteristic curve passing
through the point (u2,g) has an unnormalized tangent vector (u?, p).

Clearly one and only one curve in € passes through each point of the
2 2

half-plane. From (3.16) and (3.18) it is clear that g <—Z—2—, IZ—’ g) is constant

along each characteristic curve C, with its value determined by the
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intercept of C with u?=p? if p>>0. Thus, for p>>0, u*>>0,u*>0

and all g,
2 2 2 2 12 2
p° m p* m uws m
q(—,—,g)=q<—, v ,q< ,—,g)). (3:20)

w ot W\ p? ot

2 2
Only continuous differentiability of g (%,7, g) was assumed in the

derivation of (3.20), but we must resort to its full analytic properties
in order to extend this equation to include negative values of p?. Eq. (3.20),
thus extended, is the traditional form of the renormalization group

equation for the invariant charge gq.
2 2

To obtain the global equations for d(—zz—,%, g) and

I'™(p,, ... py; m?, 42, g) it is convenient to make a change of variables,

(12, 9)— (1, q)
with u? > 0 and m? and all momentum variables fixed. This is permissible,
since the Jacobian
0
J=21
dg
can vanish only at a point which is traversed by more than one charac-

teristic curve, i.e. only where u? =0=o0. In terms of the new variables,
Eq. (3.12) and (3.16) take the form

od 2\ -
W~ (m—z’g)d

(3.21)

where

2 2
A p* m
d(p*;m?, 1?, q)=d (— — g) ;
u o

Iy ... pysm? 12, q)=T™(p, ... py;m?, u%, g).,

2 2
. u m
g(pza mza #2’ 9=9g=4q (_23 2 q) .
p- D
These may be integrated directly and exponentiated, giving
. p? du/Z m2 #12 m2
g, =exp 2 [ (a2 ]| 622
uj; IJ' 2 U 2 p2 p2
Iy, ..., pysm?, 12, ) =T (py, ..., py; m?, p?, @) d(p?, m?, 2, q) N
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from which follow, using (3.20), the global renormalization group
equations,
2 2 12 2 2 2 r2 2
p* m u* m p* m we m
{2 ) a5 a2, )
W wop o\ et

12 2

o (WP m
I'™(py, ..., py, m?, u2,g) =TI (Pl, o Dysmi g (“T ke g)> 629

u
d(u/z m? )—N/Z'

—> 329
T

As pointed out by Gell-Mann and Low [6], the renormalization group
equations for the theory with m = 0 give some information concerning the
asymptotic behavior of vertex functions of the theory with m+0 and
u?=m?. It should be noted, however, that the asymptotic region is not
(unless one is lucky) the same as that where the homogeneous Callan-
Symanzik equations are applicable, namely where all momenta become
uniformly large with the coupling constant fixed; rather it is where the
momenta become large with the invariant charge fixed. Specifically, if
p=Ar, p;= Ar; with A— oo and ¢ fixed, then (3.22) gives

. F) i (12 m2 m2 )~
(0 g +BO0 5+ At a0 oy

T™py, ..., py; m2,m2, q) d(p*; m>, m2, N> ~ [(py, ..., p3 0, % q) -

From the work of Gell-Mann and Low [6] one expects that the indicated
passage to the zero-mass limit may be performed without encountering
divergences.

D. Testing for Broken Symmetry

A theory is said to possess a broken symmetry if its Green’s (or vertex)
functions become asymptotically invariant under a certain group of
transformations in the short-distance limit (in momentum space,
p;=Ar;, A—»>0)[9, 10]. The use of first-order DV O’s provides the most
direct means of testing a given Lagrangian model for the presence of
broken symmetries. The principal advantage of the method is that
it avoids the necessity of explicitly specifying a current and of deriving a
generalized Ward identity for that current (compare with [9]).

The first application of our method will be to the investigation of
broken scale invariance in the A* model. The starting point is the scaling
equation

iNil P S L —1(4—N) ™ )=0
2 i=1pi op¥ " omr TH o 2 p”""pN(_?’Z’S)
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which, using (3.4) and (3.6), may be written as

N—-1

0
S ot 4+ N Ty, )
i=1 i

(3.26)
=[2(m*—a) 4, +(d—1)(2(a—m*) 4, +2(1+b) 4, +4(c—g) 45)]
"T™(py, ..., py) -

The parameter d has been inserted to allow for anomalous Wilson
dimension [11]. For broken scale invariance the three DV O’s of degree
four would have to conspire to give a righthand side which becomes
neglible in the asymptotic region. The only known way of doing this
is via (3.4e). However, a simple second-order calculation [9] shows
this to be impossible: the two parameters available (Wilson dimension
and normalization) are simply not sufficient to fix the three coefficients
of (3.4e).

As a second example we consider the model of a two-component
scalar field with effective Lagrangian

Lope = 0,0 A= 5 miAf = 5 mi A3 — o (AA)? (3.27)
1 2 1 2 1 ] 1
t o it 5 AT 5 20, A0 A = 1 G i Ay

where g, m; and m, are given and the other coefficients (power series in g)
are to be adjusted to fix various normalization conditions and the
requirement of asymptotic orthogonal symmetry (compare Section V
of [9]).

In order to study the effect of “i-spin” rotations on the truncated
Green’s functions, we start with a symmetric free Lagrangian, writing

_i I _i 2
go— 2 auAia Ai 2 m AiAi
1
L= -5 mdid;— 9 (4,4) + = ZuauA #4; (329
1
41 gljklAlA AkAl

where m? is an average of m? and m3 whose precise choice is not critical.
Then, by the Gell-Mann-Low formula (2.1) and the i-spin invariance of the
free vacuum, the effects of an i-spin rotation

cosf sinf
—sinf cosf

R0
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can be thrown over onto .%;:

N
kl;Il Rikjijl...jN(xl e Xy) (3.29)
= Finite part of V0| T4;,(x,) ... A, (xy)exp[i | : £9:d*x]|0)>
where

1
gl":—%(AiAi)z Lo 0) A+ + 5 Zif(0) 6,4,0"4;

1
4 gijkl(e) AiAjAkAl
mij(o) =R (0) le(e) My 5
Zij(O) = Rik(g) le(e) Zkl >
gijkl(e) =R;,(0) Rjn(e) Rkp(e) qu(e) Imnpq -

The structure of each Feynman diagram contributing to the Gell-
Mann-Low formula is unchanged by the rotation, so that the BPHZ
subtraction procedure defining the finite part in (3.29) is unaltered.

Differentiating (3.29) with respect to 6 at §=0 and applying (2.8),
we obtain

kg ‘Ciijgv?. iy e X s xy)" (3.30)
=(=mj; A+ ZiiA 31— Gijadsiji) GV o xy)T
where

T = 762— R(O)lg=o, mi= 71% m(0)g—o, etc.
A= %jN4[Ai(x) Ax)] d*x,
Ari= 5[ Na[B,A(0) 0" A (9] dx,
Dyij= 74”1'!“ § NL[A(x) A,() Ay(x) A(x)] d*x.

This is precisely the “integrated Ward identity” derived in with the aid of
a “broken-symmetry current” in Ref.[9]. The condition of broken
invariance under i-spin rotations is that the righthand side of (3.30)
be “soft” in the short-distance region. In Ref. [9] it is shown that this
may be accomplished by so choosing the m;;,z;; and g,;, that the
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righthand side of (3.30) becomes proportional to 4,,;;G™7, where
Aos;= 4 [ Ny[A,(0) A,(x)] d*
0ij— 7§ 2 [4;(x) j(x)] X.

The method employed in this example can obviously be applied to any
perturbative model which one wishes to test for broken internal symmetry.

IV. Higher Order Differential Operations in the 4* Model
Egs. (3.4) are easily generalized to apply to arbitrary

L = AP AR AR TN
2 a 2 a (N) 2 41
m om? +U 6—,112 Fm,nz,ns:(a_m )Fn1+1,n2,n3> ( . a)
0 da b dc
w2 A+ A+ (S 1) AT, L, (41D
ag ni,nz,n3 <ag 1 + ag 2 + (ag ) 3) ni,n2,n3 ( )
(N—2n; —2n,—4ny) 'Y,
e N CRTS
=Q2a—m?) 4, +2(1+b) A, +4(c—g) 43) T3y s s
0 da b dc
rw = A4 A4 Ay | ITW . (41d
auZ ni,n2,n3 (auz 1 + aluz 2+ a'uz 3) ny,na2,n3 ( )
One readily verifies that the determinant of the coefficients of I'(Y} ; ., ..
e im and I'Y, ., in the righthand members of (4.1a—c) is

nonzero in zeroth order, so that these equations may be used recursively
to write

ni,na,n3 "

00 ) ™ 42

0
(N) — 2__ 7 2_ 7 7
I t@m,nz,ns (m amz + u 6#2 4 ag

where 2, . . is a polynomial of degree n; +n, + n,.
From Egs. (4.1), (3.7) and (3.13) follow immediately the renormal-

ization group and generalized Callan-Symanzik equations for the

0 0
(,uz —6#—2 + aa—g — (N —2n; —2n, —4n;) r) Y, =0

4.3)

0 0 0
(m" om? +u? a—'uz + Bﬁ—g — (N —2n; —2n, —4ny) ?) e, u

=am*(4; +rA,+54;) TN

ni,nz,n3 *

2 Commun. math. Phys., Vol. 24
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Asa final application of DV O’s, let us derive a second-order refinement
of the generalized Callan-Symanzik equations. From (4.3) we have

0 0 0
m? 2 — —(N=2)y|4,0™
or or or
— 2 2 r(N) 2 2 (N)
oam?(Ay +rd,+sA43)° T +<m I +u P + —ag)A2F
0s 0s 0s
2 2 _ (N)
+ (m e +u Py +p 39 2ys> A TN 4.4

On the other hand, a two-fold application of Zimmermann’s formula
relating normal products of different degrees (see Appendix) gives

AATM =[(A; + 14, +s43)* +tdA; +ud, +v4;] TV (4.5)

where
t= —iA2I(0,0),
[ d
U= —i AT (p, —P)} ,
[dpz 0 p =0
v= —id2I'®(0,0,0,0).
Thus
w0 gL (v —2)y]4,r
om? ou? og
=oam?[AZT™ —tA; —ud, —vd;1 TV (4.6)

r , Os , 0s

or 0 or 0s
+[(m2 p +”25H_2+B_@)A2+ (m am? TH a—ﬂ;-l—ﬁa—g—hs)zg A™

If we now go to the region of large momenta, p;,= Ar;, A— 00, power
counting [12, 13] gives

A,T™
™

This implies that the linear terms in (4.6) must be proportional to A4,I'™,
so that we obtain, finally,

2 0 2 0

431

~A"%logA, T

~ A %logbl.

0
= 9 (N=2)v—oam? 27-1
m— +u P +ﬂag (N—=2)y—am’t| [am?]
4.7
: mz—a—‘f'ﬂz 0 +ﬂi—Ny I'™M=om?AZr™
om* ou? g ot
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For N =2 this result has been derived by Symanzik [13] by other
methods. In order to apply Eq.(4.7) in short-distance analysis, further
knowledge of the inhomogeneous term is required!. The reader is referred
to Ref. [13] for an appropriate treatment of this problem.

Appendix
Derivation of the Expansion Formulas for A,T'™ and AZT™

We wish to express 4,I'™ and A3I'™ (defined in Sections IIT A
and IV)in terms of the differential vertex operations 4;and 4,4 ,i,j=1,2,3.
The expansions are based on a useful formula of Zimmermann [5].

Suppose I; is the unrenormalized integrand corresponding to a
Feynman diagram G containing a special vertex V. Suppose further that
R, and R;, ¢ <4, are two alternative renormalized integrands derived
from I; by the prescription [5]

R,= ) [l (=t)Is. =09, (A1)

Ue# yeU

where & is the set of “forests” (families of nonoverlapping renormalization
parts of G) and t}, is the Taylor operator on the external momenta of y
with degree determined by y. The only difference between R, and R;
is that in calculating the former the special vertex V is assigned degree ¢,
whereas for the latter V has degree J. For all other vertices the degrees
are identical in the two cases. Then

Ry=R;+ ) > [l (=H@-6) ¥ [l (-thl (A2

t UeM() yeU Uem(zr) yeU’
where the first sum is over all renormalization parts containing V, M(z)
is the set of all forests whose elements either contain t properly or are
disjoint from t, and m(z) is the set of all forests whose elements are
properly contained in 7.
In the case of 4,1, Eq.(A.2) with ¢ =2, 5 =4, summed over all
relevant Feynman diagrams, gives

AoT™ = (4, + 14, +545) T (A3)

where use has been made of Lorentz invariance to eliminate DV O’s

with only one derivative and to contract those with two derivatives.

The coefficients may be deduced from (A.2) or, more quickly, from the
! The author is indebted to Symanzik for calling this to his attention.

2%
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normalization conditions

A,TO0,0)=—3 4,100, —p)|  =4,1(0,0,0,0)=i

dp p=0
AZF(Z)(O, 0)= A3I’(2’(0, 0)= AIF“”(O, 0,0,0)=A4,I'“(0,0,0,0) (A.4)

d

- A, T (p, — = AT (p, — =0.
dpz 1 (p P)p=0 dp2 3 12 P)p=0
From (A.3) and (A.4) one obtains
r=—i-9_4,r®p, —p)
dp p=0 (A.5)

s=—ido,'¥(0,0,0,0).
By similar reasoning we have in the case of two special vertices,

Vi and V,, with ¢, =2,¢,=06,=0,=4 (since only V; changes its
degree, Zimmermann’s formula (A.2) is still applicable),

A AT =[(A; +rdy +s43) Ai+wdy +0,451TV,i=1,2,3  (A6)
with

d
U= —ld—ponAiF(z)(Pa —p)p=0 >

vi = — lA OAiF(4)(0’ 07 0’ 0) *

Here the second and third quadratic terms on the righthand side arise
from the cases V,et,V,¢1(tr as in (A.2)), whereas the linear terms
correspond to V, e, V, e.
Proceeding one step further, we may now treat the case ¢p; =, =3,=2,
0, =4:
A%F(N) = [(Al + rAz + SA3) AO + IAIJF(N)

A7
=[(A1+rA2+SA3)2+tA1+qu+UA3]F(N) ( )

where the term t4, '™ comes from renormalization parts T in (A.2)
which contain both special vertices. Again the normalization conditions
may be applied to give
t= —iA2®(0,0)
u=—i—L A3 (p, —p) (AS)
dp p=0

v= —i42'¥(0,0,0,0).
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