Commun. math. Phys. 22, 1—22 (1971)
© by Springer-Verlag 1971

The Energy Momentum Spectrum
and Vacuum Expectation Values
in Quantum Field Theory, II

JaMES GLIMM*
Courant Institute of Mathematical Sciences, New York University, New York, N. Y.

ARTHUR JAFFE**
Lyman Laboratory of Physics, Harvard University, Cambridge, Mass.

Received February 22, 1971

Abstract. We prove that the 2(¢), quantum field theory satisfies the spectral condition.
The space time translation a=(x,t) is implemented by the unitary group U(a)
=exp(itH —ixP), and the joint spectrum of the energy operator H and the momentum
operator P is contained in the forward cone. We also obtain bounds on certain vacuum
expectation values of products of field operators. Our proofs involve an analysis of the limit
V - oo for approximate theories in a periodic box of volume V. Assuming the existence of a
uniform mass gap, we are able to establish all the Wightman axioms with the exception of
the Lorentz invariance of the vacuum.

1. Introduction

We study a boson quantum field ¢ with a polynomial self interaction
P(¢) in two dimensional space time. This theory provides an example
of all the Haag-Kastler axioms and many of the Wightman axioms for
quantum field theory. In this paper we prove that the energy-momentum
spectrum lies in the forward cone. In addition, we prove bounds on the
vacuum expectation values of products of the differentiated field operators
0,0(x,t) = ¢, and 0,¢(x, t) = ¢,. Three of the Wightman axioms remain
open problems for the 2(¢), theory. They are the invariance of the
vacuum under Lorentz rotations, the uniqueness of the vacuum and the
existence of vacuum expectation values of products of the field ¢(x, t)
(without differentiation). Assuming the existence of a mass gap, we verify
the latter two of these three missing axioms in Section 4.

The 2(¢), theory is obtained as a limit of cutoff or approximate field
theories. We have previously considered two different space cutoff
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procedures: a “box” cutoff and a “coupling constant” cutoff. In the
“coupling constant” cutoff, the coupling constant A is replaced by a
space dependent coupling constant Ag(x). For instance, g(x) might
equal the characteristic function of a bounded interval. In the “box”
cutoff, the Hamiltonian is translation invariant, but we replace the con-
figuration space R' by the periodic interval [—3V,3V] of length V.

In [3] we studied the infinite volume limit of the theory with a
coupling constant cutoff. We showed that the limit g— 1 yields a locally
Fock vacuum. We now use the same techniques to show that the limit
V — 00, of box cutoff theories, yields a locally Fock vacuum. The algebra
of observables 2 and the Poincaré¢ automorphisms o, 4, constructed
from the two infinite volume limits, g -1 or V — o0, are identical. Thus we
obtain from the limit V' — co a theory incorporating the results previously
established for the limit g— 1. In addition we have new properties for the
limit V' — oo0. The spectral condition 0 < H, 0 < H? — P? was previously
established in the theory with a box cutoff, V' < oo, as were the bounds
on ¢, and ¢, [4]. In the present paper, we transfer these results to the
limit V- co.

We describe the approximate theories in more detail. We follow the
notation of our Les Houches lectures [5]. The time zero fields in infinite
space R! satisfy the canonical commutation relations

Lo(f), n(f2)] = ilfi, f2> -

These field operators act on the Fock space &, which is the symmetric
tensor algebra over %, (R'). For each bounded open interval # C R!, we
define the algebra (%) of local observables as the von Neumann algebra
generated by the operators

exp(ip(fy) +in(f2), fieCF(A).

We also use the C*-algebra (%) generated by these operators; W, (%)
is weakly dense in A(%). Let

A = norm closure (U QI(@)),
B
A, = norm closure (U Q[o(%‘)).
B
The Hamiltonian H(g) with the coupling constant cutoff g is defined by
H(g)=Hy+ [ :2(p(x)): g(x)dx—E,.

Here £ is a positive polynomial, g is a positive function with compact
support, and E, is chosen so that infspectrum H(g) = 0.
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In the periodic box approximation, the field ¢, satisfies (1.1), namely
Loy (f1)s my(f2)] = i< f1, f2), provided f;€ Z,([— 3V, 3V]). The periodic
Fock space &, is the symmetric tensor algebra over %, ([ —V/2, V/2]).
The Hamiltonian H, for the volume V is

1V
Hy=H,y+ | :2P(oy(x):dx—Ey,
_LV

2

where E, is chosen so that inf spectrum H,, = 0.
There is a natural identification

F=FQF .y

induced in momentum space by identifying /,((2n/V)Z) with the func-
tions in %, (R) that are piecewise constant on intervals of length 27/V
centered about the points in (27/V)Z = Z,,.. Thus we may regard ¢, and
A(A, V) as acting on £.

For any volume V, with # C [ — V/2, V/2], there is an isomorphism g,
of A, (A) onto Wy (A, V) generated by the correspondence

o(f)=ov(f);  n(f)=mp(f).

We have not determined whether g, is ultraweakly continuous, but a
natural proof awaits a boson version of the Powers-Stermer result [6].
See [8-9].

Lemma 1.1. Let AeUy(%H). Then |y (A)| =||All and as V- o0,
st. limoy,(A4) = A.

Proof. Isomorphisms between C*-algebras preserve norm; hence
lloy(A)]l = | A]l. To prove the second statement, we may take A4 a generator
of Ay (%), as in (1.2). By the semigroup convergence theorem, it is suffi-
cient to prove convergence of the fields, ¢ (f)— o(f) and ny(f)—n(f),
strongly on a core for ¢(f) and n(f). However this convergence is well
known, and can be shown by standard calculations, as in [5].

2. The Locally Fock Property

Each state w on the C*-algebra U gives rise to a *-representation g,
of A by bounded operators on a Hilbert space 5, (the GNS construction).
We say w is locally Fock if for each bounded open interval 4, the restric-
tion w M A(H) is normal (ultraweakly continuous). In this case g , M (%)
is unitarily implemented; there is a unitary transformation U, of Fock
space into #,, such that

0o(A) = UgAUg, AcW(%A).

1%
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This follows from the fact that (%) is a type III factor, and alternately it
follows from the more easily verified fact that each (%) contains a
type I, factor. We note that a normal state on (%) has a unique
extension to a normal state on its weak closure, (%), and so a locally
Fock state on 2, yields a locally Fock state on 2.

The Hamiltonian H, has an eigenvector Q, satisfying H,Q, =0,
|2l = 1. Since 2y, is unique up to a phase, Q,, is an eigenvector for the
momentum operator P, for the volume V. Reasoning by continuity in the
coupling constant and using the fact that P, has pure discrete spectrum,
we see that the eigenvalue is zero, so P, Q, = 0. We define the state w, on
the algebra B(F) of all bounded operators on & by

oy (A) =<{Qy, AQy) . (2.1)

This state is invariant under the periodic space translation group with
generator P,. Likewise we define the state @, =wy o0, on Ay (H). As
V — o0, the states & are defined eventually on a dense subalgebra of .
Thus by standard compactness arguments, there is a w*-convergent
subnet {&® }, tending to a state w defined on all of U,.

Theorem 2.1. Any w*-limit point w of the sequence {&®y} is locally
Fock.

Our proof is based on the methods of [3], and we begin by outlining
those ideas. In [3] we established the locally Fock property for a vacuum
state defined through the limit g — 1. The Hamiltonian H(g) of (1.3) has a
ground state eigenvector Q,, H(g)Q, =0, |Q,|| = 1. We let g,(x) = g(x/n),
hold g fixed and let n— co. The approximate vacuum state w, is defined
on U as the average over spatial translations (by a distance up to 0(n))
of the states A—»<Q, ,AQ, >. The spatial average ensures translation
invariance of a limit point  of the sequence {w, [ A}. A norm limit of
normal states is normal, and w, | (%) is normal, so the essential step
in proving the locally Fock property is to show that the sequence
{w, | A(AH)} lies in a norm compact set of states.

Let % be a bounded interval of length |4| = 1. For 0 < 7 < 4, we define
the local number operator

N, ¢ = [ a*(p) W, (p, q) a(q)dpdq 2.2)
We (P, 4) = 2m) 7" [ E¢(p— 1) n() Eq(l - q)d! 23)
and E, is the Fourier transform of the characteristic function of %.
Note that N;, measures the number of particles in ¥ and that
No,¢ = const. N, 4.

The locally Fock and norm compact properties are a consequence of
the estimate

where

@,(N,, ¢) < const.|F] . 2.4)
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We use (2.4) to define a truncated vacuum state w’ on B(F),
w,(4) = w,(RAR),

where R is the projection onto vectors in % with at most M(1 +j?)
particles localized in the space interval &;=1[j,j+1], j=0, +1,....
Hence R projects onto vectors with at most 0(d®) particles at a distance
d from the origin. For M = M (¢) sufficiently large, the estimate

o) —w,l ¢ 2.3)
follows from (2.4), see [3].

There is no uniform bound on the number of particles in the wave
functions defining w, and in order to achieve this result, we introduce
a new approximation, wZ’, all of whose wave functions are supported in a
sufficiently large interval € = €(4, 6, ¢) containing #. We take € to be
a union of the Z7s. In the approximation g’ of w¢, the error wf — o}’
is small only on the local subalgebra A(%):

(e}’ — f) M AR <3,

(@2 — w,) N AB)| <e+6. (2.6)

To define w?’, we note that @, is a normal state, and hence a sum of
vector states. Let <6,-0) be a vector state contributing to w? and let
0;; be the component of § with i particles in %, j particles in ~%. In con-
figuration space variables, 0;; = 0,;(X; ..., X;, ¥y, ..., ¥}), X, €%, yg€ ~%.
We now regard 6;; as an i particle state in &, depending on parameters
Y15 .-, ;. We thereby eliminate particles outside of ¢ from 6 and from
wt. The contribution of {0, 40) to w’(A) is

Z 1<6;,;, A0,> dy, ... dy;. 2.7
Jrtlil2
where A4 acts on 6;,; and 0,,; as i; and i, particle states. We achieve an
equivalent definition of wZ’ by eliminating from A its action on particles

outside ¥. We have ¢ C#, #~¢C% and
F2FQRQF ¢, (2.8)
where # “ is the Fock space over %, (%). We use a superscript € to denote
the natural imbedding
L@ %R, FCF,
obtained by extending f e %, (%) to a function identically zero on ~%.
(This is distinct from the periodic imbedding %, C #.) Let Q¢ be the

projection of & onto #¥. Then Q¥AQ% acts on #%, and Q¥AQ*®1I
acts on F¥® F ~%. If A° is the corresponding operator on &, under the
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isomorphism (2.8), then
w’(4) = wy(4°) = 0y(Q° AQ* ® ).

In other words, »%’ is the state which results from first projecting o’ onto
a state on B(F %) by an integration over variables localized outside &
and then tensoring the result with the no particle (bare vacuum) state
on B(F ~%).

The algebra (%), however, is not contained in B(Z ¥) and the proof
of (2.6) involves an estimate on the difference between the two notions
of localization. The algebra B(Z #) is localized with respect to the support
of the configuration space wave functions in &, while the algebra (%)
is defined by localization of the time zero fields n(x) and ¢(x). Due to the
energy factors u(p)** which occur in the definition of 7(x) and ¢(x), the
configuration space localization of the fields = or ¢ involves convolution
of the wave functions by one of the kernels

k*(x)=2n)~! [ u(p)**e” " dp. 2.9)

The kernels k* (x) are € except at x = 0, and outside of a neighborhood
of x = 0, they satisfy

[k*(x)| <0(1)e ™M, (2.10)

Hence the difference between the localization of ¢(x) and 7(x) and the
localization of B(Z# %) involves an exponentially small tail. A lengthy
analysis of this effect yields (2.6), see [3].

Finally we prove that the sequence g’ lies in a norm compact set of
states. We use (2.4) with € replaced by % and the facts that N 5 com-
mutes with R and that bounded functions of N, , belong to B(F°) to
show that

Y, ;N z,) =< const.|%].
Z;C%

This estimate and the fact that
z N‘C, Zt’j

%2,C%
has a compact resolvent on % ¢ is sufficient to establish norm compactness
of the states w®’, as states on B(F). The norm compactness of the
sequence {w, ! A(%H)} then follows.

We now use this construction for the periodic field ¢, and the
approximate vacuum state w, of (2.1). There are three steps in the
argument: the approximations wy, — % and o, — ¥’ and the existence
of a norm compact set of states on B(Z) containing the family of states
{w¥: V = const.}. The vacuum Q,, belongs to %, [2] and the first two
steps, with V held fixed, take place entirely within 4. In the third step,
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V— o0, and we must work on the full Fock space #. For an interval
% C[—V/2,V/2] we have the Fock space %¢ of elements of %, which
are localized in €. This notion of localization is defined by restricting the
momentum space wave functions to the lattice Z, and then inverting the
Fourier series to obtain periodic configuration space wave functions
with support in €. In terms of the identification %, C %, this notion of
localization is V dependent. Elements of %f and %, yields functions in
& with piecewise constant Fourier transforms. Such functions never
have compact support in the sense of & localization and cannot belong
to #%. We replace (2.8) with the representation %, =~ %¢ ® % %, when
working with a fixed V.
For 0<t<%and ¥ C[—V/2, V/2], we define

N.ye=C2r/V) Y. ay(p)* W,y ¢(p:q) av(q)
p.acZv (2.11)
= [a(p)* w, y,«(p,q) a(g) dp dq
where
We, V,@(P, q)= (271')—1 j dl E4(py — Iy) p(ly) E¢(ly — qy) (212)
where py is the lattice point nearest p and where

n/V
ay(q)=(V/2n)* | a(g+r)dr.
—n/V
The estimates of [3, Section 3] show that N, y . is an operator, and as in
[3], we have the estimate

@y (N, y.¢) < const.|%], (2.13)

which replaces (2.4).

For convenience, we suppose that V/2 is an integer, so that [—V/2,
V/2] is a union of Z;’s. Let Ry, be the projection onto vectors in %, which
have at most M (1 + j?) particles localized in the interval Z;, Z;C[—V/2,
V/2]. For M = M(¢) sufficiently large (but independent of V),

oy(I —Ry) =362,
as a consequence of (2.13). We define

oy (A4) = oy(RyARy),
and then
oy —owy <e. (2.14)

As before, we choose € = %(4, 0, ¢) sufficiently large, and we require
that V is large enough so that ¥ C[—V/2, V/2]. We repeat our con-
struction above, to obtain the state w$’, by regarding variables ye ~%
as parameters and integrating them, as in (2.7). Let Qf be the projection
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of #, onto #f. Then
0P (4) = 0 Qv AQF ® 1) = wj (A7)
Our basic estimates replacing (2.6) are
(@} — 0f) | AR, V)| <9, (2.15)
[(wy — f) M A(B, V)| <e+5. (2.16)

In order to establish (2.15), we must compare the notion of localization
in (4, V) with the notion of localization in B(Q¥.F,). This is analogous
to the case V = o0, Q% = Q% that led to (2.6). The energy factors u(p,)*?
occur in 7, and ¢,. For example with

K=V Y ulpy)tteire
kezy 2.17)

= Y k*¥(x+nV),

we have
@y(x) = (4m)"* [ {a(p)* +a(—p)}e” P> u(py)"2dp
V2
= | ky(x=y) ¢y(y)dy
-V/2
where the (Newton-Wigner) field @, (y) creates and annihilates a wave
function, localized at y in the sense of %, localization. By (2.10) and (2.17),

ki (x) < const.e ™, y<|x|<V/2,

for any y > 0. Furthermore k;f (x) is €* away from the origin. Using these
facts, we follow the proof of (2.6) in order to establish (2.15).

Next we turn to the third step in the proof of Theorem 2.1, namely the
limit of the states %’ as V— 0.

Lemma 2.2. Let ¢ and 6 be fixed. The sequence {w%°: 1 <V} of states
of B(ZF) lies in a norm compact set. Any limit point »®° is normal.

Proof. Since we consider the norm topology, it is sufficient to work
with sequences. Given any subsequence of the w$’, we must draw from
it a subsubsequence that is norm convergent as ¥ —oo. Since V is not
fixed, we must work on the full Fock space &#.

Let 7 < 4. We show that the resolvent of the operator N, , , converges
strongly as V' — oo. It is sufficient to prove that on the one particle space
the resolvent of w, j,  converges strongly to the resolvent of w, . These
operators are defined by the kernels (2.12) and (2.3) respectively. From
[3, Eq. (3.1.11)] we have the inequality

[w,, 0] < const.||u>**0] .
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It follows that w, , (and likewise w, y. ) is defined on the domain €¢°, and
we take w, ¢ to be the Friedrichs extension of w,_ ¢ | €5

To compare our &, periodic configuration space localization in
w, y.¢ With the nonperiodic & configuration space localization, we intro-
duce the isometry

U, =T;' Xy T : Ly(R)— Ly(R) (2.18)

where T is the %,(R) Fourier integral transform, X, is the orthogonal
projection of %, (R) onto functions piecewise constant on lattice inter-
vals in momentum space, and Ty, ! is the inverse Fourier series mapping
onto %(—1V,1V), imbedded in %,(R) as functions with support in
[-3V.3V]

Let S be the closed operator u*/? E,. Since the Friedrichs extension of
w, ¢ | €5 is the only positive self adjoint extension of w, , | €5 with
domain in 9(8S),

Woe=S*S. (2.19)

Similarly, let 4, be the operator d?/dx* with periodic boundary condi-
tions on %, (—3V,1V), and let

#;/2 =(—AV+m2)t/4’ SV=“1I:’/2E<€=
Sy, = UgsS, Uy, .
Then .
Wev.e = S¢Sy = UF(S¥Sy) Uy .
We note that on € x €%, the difference S§S, — S*S is bounded and
IS5 Sy —S*S| <0V ~1).

Hence by the resolvent equation, the resolvent Ry, ({) = (SES, —{)~* of
S} Sy converges in norm to the resolvent R of S*S = w, . But U, —» I and
U — I strongly, so

RV(C) =UFRy(QUy =Wy, — Ot
converges strongly as V' — o to R({) = (w, ¢ — {)~*. Moreover, this proof
shows that as V' — oo, the resolvent of

Ay = Z Nr,V,ﬁl",— (2.20)

Z;Cc%

converges strongly to the resolvent of
A= ) N,g,. (2.21)

Z;C¥
Since A | # % has a compact resolvent [3] and since

A=A FHRI,
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A has pure discrete spectrum with no accumulation points and with
infinite multiplicity. The same conclusions apply to A4,. The usual
contour integral formula shows that eigenspaces and eigenvalues con-
verge, as V' — oo.

We restrict the operators to the single particle space, to get more
detailed information. On the single particle space the nonzero eigen-
values of 4, or 4 have finite multiplicity, and when the eigenvalues are
numbered in increasing order, counting multiplicity, they converge as
V — 0. Also the eigenvectors converge. We construct a basis for # ¢ and
Z¢ using tensor products of one particle eigenfunctions of 4 | #¢ and
Ay |} #E. Since the single particle eigenfunctions converge as ¥ — o, so
do their tensor products. These tensor products are eigenfunctions for
A or Ay. Thus we have constructed a basis {e; y,e, y, ...} for #¢ with
the properties

e; = lim e;; exists,
Voo

Voo 7
Ayejy = ye;y—Ae;= pe;,
Ospsp < »o0.

From the last statement, it follows that as j — oo, u; ;, — 0o, uniformly in V.
The state w%’ is a normal state on B(F), so there is a trace class matrix
Ay, with trace norm | Ay |, = [|0%’| £1 and such that

0P(4) =Try(A,4), AeB(F).
Now o?’ has the property
P (4) = 0P (QV A07)

which implies that A,, = Qf A, Q¥. Thus A can be expressed by a matrix
(QZ-) in terms of the basis {e; ,;}. Hence by (2.13) and (2.20),

i (4y) = z (v + 1) |QS|2

i<j
+ Z tivlenl? (2.21)
i
< const.
Passing to a subsequence, the QZ’S converge as V—oo. Let
Ah =" +50"
where
oV r = Z Q:;'ei,v®ej,v

i,j<k
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and similarly d¢" is the tail of the series. Then using the Hilbert Schmidt
norm we have

4% — A3l S 10" =" "l + 160" 2 + 100" "Il (222)
Because of the bound (2.21),
1607l + 160" I, < /2

forall V, V', if  is chosen large enough so that y, , > const.y ™", for all V.
We now hold « fixed. The right side of (2.22) is bounded by

Z (|QZ - QZI +const.|e; y—e; |

i,jsx

+const.[le;y—e;pl)+y/2=y
for V, V' sufficiently large, in our subsequence. As in [3, Lemma 4.7],
(@7 — ) (A)] = [Trz((Ay — Ay) A)
= 14l 14y — 4yl
< const. | 4| |43 — 431,
o)Al
for ¥, V’ in the subsequence. This completes the proof of the lemma.
Let w be a w*-limit point of the sequence {®; : 1 < V'}. Then thereis a

subnet @y, — ®. By the norm compactness, Lemma 2.2, there is a sub-
subnet such that the w#’ have a norm limit w®, for all ¢, 6 = 1/n:

£0 __ : o
w® =norm hlrinwﬁ,(a(m) . (2.23)

Since the states w?® are normal, Theorem 2.1 follows from our next result.
Lemma 2.3. |(w — 0®®) } W (B)|| < e + 6.

Remark. Assuming the result of Lemma 2.3, we use Theorem 2.1 to
extend w to alocally Fock state of (%). By Kaplansky’s density theorem,
o — »* has the same norm, when restricted to U,(2) or to A(2). Hence
Lemma 2.3 yields

[(@— ™) N U(B)| <e+6. (2.24)
Proof. As states on (%),

0)66—(0= waé_weéo +w£(5_w£60
( o)+ ( V)e oy (2.25)

+ (@ —wy)o oy + Oy —o.
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Since ®®® is normal, Lemma 1.1 ensures that the first term is w* con-
vergent to zero as V' — co. By hypothesis, the last term is w* convergent
to zero. By (2.23), the second term is norm convergent to zero. Thus

(07 — @) } Ao () = wlim () — wy) ° oy | Uo(%) - (2.26)

Since g, is an isomorphism, we have by (2.16),
(@ = wy)e oy 1 Uo(B)]| = [|(F — wy) I Wo(B, V)|
<e+96.

Since w*-limits cannot increase norms, the lemma follows from (2.26).

Remark. w is also a w*-limit of a subsequence of the @y ’s. It is sufficient
to prove this for w [ Ay(A) and @, |} Ay(%B). We use (2.25) to write
(@y — ) } Ay(#B) as a sum of four terms. The terms w*—w and
(0¥ —wy)° 0y converge to zero as ¢ =6 = 1/n—0, uniformly in V. We
now hold ¢ = § = 1/n fixed and let ¥V —oo. The term w®® — w*®- g, con-
verges to zero in this limit. The final term is (w®® — w%%) < o,,. Here V =V ()
belongs to the convergent net. Lemma 2.2 gives us norm compactness,
and we can choose a subsequence of the subnet such that w®*® — %’ —0.
By the diagonal process we can choose one subsequence for all e=4
=1/n. Hence as V' —oo through this subsequence, (@, — ) | Ao(%H) is
w*-convergent to zero.

3. The Hamiltonian and Momentum Operators

We show that the space-time translation automorphism o,=o0_,
defined previously [2] through the limit g—1 of the Hamiltonians H(g)
agrees with the automorphism defined here through the limit V' — oo of the
Hamiltonians H,,.

Theorem 3.1. Let o, be the two parameter automorphism group
generated by the operators Hy, and P,. Then for A € Wy (AB),

0,(4)= S;E{g o, v(ev(4)).

We also show that the vacuum state w of Section 2 is translation
invariant,
Woo,=w. 3.1)

If Uy(a) is the unitary group generated by Hy and Py, and &y,— w, we
prove that

o(Co,(4) = lim oy, (oy,(€) Uy, (@) ey, (4). (32)
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These results permit us to transfer the spectral condition, previously
established for ¥V < oo [4] to the limit V—>o0. Let 4A— A4,,, denote the
GNS representation defined by w, and let A4,., act on &, = #,,.

Theorem 3.2. There exist commuting self adjoint operators H and P
on F,,, that generate space time translations. Thus for a = (t,o) € R* and

ren

Ae,
04(Aren = U(a@) 4 U(0)*,

U(a) =exp(itH —iaP).

Furthermore HQ =0=PQ, and 0< H; 0 < H?> - P2

Remark. The inequalities state that the spectrum lies in the forward
cone. The second inequality is one of the improvements in the 2(¢p),
theory permitted by this paper. Another improvement is that the bounds
of [4] on vacuum expectation values of products of ¢, and ¢, can now
be transferred to the limit ¥ — oo, see Theorem 3.3. We define the (non-
negative) mass operator M by M = (H?— P?)*. An important open
question is whether M has an isolated, positive eigenvalue.

Proof of Theorem 3.1. To interpolate between the g and V cutoffs, we
introduce

Vi2
Hg,V)=Hoy+ | P(@y(x):g(x)dx—E,. (3.3)
-V/2
We have the strong limits
exp(itH(g)) = st. ‘}im exp(itH(g,V)), 34
exp(ioaP) = st. I}im exp(ioaPy) (3.5

where P generates space translation on . To prove (3.4), we appeal to
the semigroup convergence theorem, and use strong convergence of the
generators on a core. € (H,) is a core for H(g), by Rosen’s higher order
estimates [7], and H(g, V)— H(g) strongly on €®(H,) by elementary
estimates [5]. For (3.5), we also use the core €*(H,).

Let A€ Wy(B), Bjy+1 CL—V/2,V/2] and let g equal 1 on B4y
By Lemma 1.1 and (3.4-5),

0,(4) = lim exp(itH(g, V) exp(~ixPy) 0,(4)
x exp(ioaPy) exp(—itH(g, V)).

Thus to complete the proof of Theorem 3.1, we only need to show that
Hy and H(g, V) define the same dynamics on (%, V) for times |t| < ||.
We use the Trotter formula. In the free periodic box dynamics (i.e. with
the interaction polynomial £ replaced by zero), the commutator function
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is given by the formula

Ay(x =X, t=t)=i[@oy (X, 1), Pop(x, t')]

= ) Ax—x+nV,t—t).

and T
Pov(x,t) = 5 Ay(x =y, t) ny(y)dy
lx=y|<V/2
o4
+ | ZEE=pn)oeyydy.

lx—yi<vjz Ot

Since A4(x,t)=A4,(x,t) vanishes outside the light cone, namely for
[t| < |x], it follows that

Ay(x,t)=0 for |t|<|x|<V/2.
Thus the free time translation o7, with generator H, , defines an auto-
morphism with unit propagation speed. For A€ (%), V) and [t| < ||,
opy(A) = exp(itHy y) Aexp(—itH, y) € W( By 41> V) -

Furthermore the interaction dynamics o;, with generator H(g, V)
leaves each W(4,, V) invariant,

exp(itHyg, V) U(A,.V) exp(~itH(g, V) = U(A,, V)

and on A(A,, V) with |s| <7, our restriction on g makes o} ,, independent
of g (see [5]). We use the essential self adjointness of H(g, V) and the
Trotter product formula to establish the g independence and unit
propagation speed of o, ,, see [5]. Taking g =1 on [—3V,4V] and zero
elsewhere yields H(g, V) = Hy, + const., which completes the proof of
Theorem 3.1.

Proof of (3.1) and (3.2). First we note that (3.1) follows from the case
C =1 of (3.2). In fact since Uy, (a)Q, = Qy,

ij(UVj (@) o, (4) = ij(QVj (4))— w(4)
for A € Wy(A), which, combined with (3.2), yields (3.1). We now establish
(3.2). We have
CO(CO'a (A)) - wV(QV(C) aa, V(QV(A)))
= (0~ ") (Ca,(4))

+ @*(Cay(4) = oy(C) o, v(ev(4) (3.5)
+ (0% — @) (2v(C) 0,,v(2v(4)))
+ (@5 — wy) (ev(C) 0, v (v (4))) -
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The first and last terms in (3.5) are dominated in magnitude by
(e+9)|CJl | A4ll, by (2.16), (2.24), and (3.6). We now hold ¢ and 6 fixed. The
third term tends to zero as V — oo through a subsequence, by Lemma 2.2
and the choice of w®’, since

lev(C) o, v(ev()I < [CIl 1Al - (3.6)

The second term tends to zero, since w®® is a normal state on B(F) and
since the operators converge ultrastrongly to zero. This follows from
Lemma 1.1, Theorem 3.1 and the fact that the operators are bounded in
norm, uniformly in V. This proves (3.2).

Proof of Theorem 3.2. This is proved exactly as in [3, 5], where we
construct H, P and #,,, with 0 < H. From (3.2), we have

spectrum{H, P} Climinfspectrum{Hy , Py },
and the right hand side was bounded in [4].

Theorem 3.3. Let ¢, = 0,¢ or 0,p. There is a Schwartz space norm
-], on & (R?") such that

U <Q’ (pvl,ren(xl’ tl) wvn,ren(xn’ tn)Q> f(x’ t)dx dt' é |f|n ’ (37)

and the above vacuum expectation value is obtained as V — oo through a
subsequence from the vacuum expectation values of the box cutoff theories.

We consider first a finite volume approximation to the space time
averaged fields ¢(f)=[o@(x,1)f(x,t)dxdt, where f= feCP(R?). This
operator is self adjoint and essentially self adjoint on the domain € (H,).
The above integral presentation is valid in the sense of bilinear forms on a
dense domain, see [2]. Let ¢(f),., denote the corresponding self adjoint
operator on %,,,. Similarly, let @, (f) be the self adjoint operator deter-
mined by the formula

Py(f)= [ e py(x)e™ " f(x, dxdt . (3.8)

Lemma 3.4. With o(f), ¢y (f) as above,
exp(io(f)) = st.limexp(ipy (/) -

Proof. 1t is sufficient to prove convergence of ¢ (f) on a core for
¢@(f). Furthermore, as in the proof of Theorem 3.1, we may replace H)
in (3.8) with H(g, V), where g = 1 on a sufficiently large interval. We choose
the core €°(H(g)) on which to estimate ¢, (f)— @(f).

In order to take advantage of the time integration, we note that for
H=R"'=(H(g) + const.),

@(f)0=Ro(f)HO+iRo(f)6.
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Let A= [ f(x,1) @(x,0)dx, B=1i [ (3,f) (x, t) ¢(x, 0)dx. Thus we calculate
©09)0 = (ov(f)— @([f))0 for 0 € €= (H(g)).
3@ ()0 =35(Ro(f)H)0 +5(iRp(f))0
= [6(e"#) R(AH + B)e™'H'0dt

+ [ S*EOASR) (AH + B)e~*H0 dt

+ [ €HVIR, ((SA)H + 6B} e~ "0 dt

+ [ MR, A, S(e” ") HO dt

+ [ SHOIR, 4, e EO(SH)O dt

+ [ eHOR, B, (e~ )0 dt .

Here H(V) = H(g, V) + const. = R,/ !,
6A=A,—A, 6B=B,—B,
etc. The first term converges to zero as ¥ — oo since §(e''H) = e*HY) — gitH

st.limé(e"¥) =0, (39
uniformly on compact ¢ intervals, and for V; < oo,
IR?, Av,| = IR, By, | <1f(, 0 +10, 1 ¢) (3.10)

where | f(-, t)] denotes a suitable Schwartz space norm independent of
V;. By higher order estimates, ||dR|| —0 as V' — oo [7], so the second term
converges to zero. Elementary N, estimates [5] yield

IGAR? + (GB)RE| <OV ) |f(- )l

Convergence of third term follows. The fourth and sixth terms converge
on account of (3.9—-10). We use the higher order estimate

INR| <M, r=12, ..

to prove for r > 1degP,

[6HO| < [|H,0|l + [|6Ho 0l < [(0H) (N +1)""(N +Iy0]
+(0Ho) (N +1)™H (N + 1)8)|
< const.||ow], ||H 0| +0(V 1)
o1,

and to establish convergence of the fifth term. Here dw is the kernel
wy —w of 0H;. This completes the proof of the lemma.
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Let h, e €P(R?), 1 <1 <m, let C e Ay (%) and let

Ay = gy(C) U lfPV(h )

A=C H exp(ip(h,) .

i=1
Lemma 3.5. Lei @y, — . Then

o(4) =limoy, (AVJ_) .
Proof.
o(4) — op(dy) = (@ — ™) (4) + 0*(A — 4y)

+ (0% — @) (4y) + (0F — wy) (4y).
Note that ||A]| = |4y || = ||C|. We use (2.16) and (2.24) to bound the first

and last terms, uniformly in V. We choose ¢ and § to be small, but fixed,
and then the middle terms converge to zero by (2.23) and Lemma 3.4.

Proof of Theorem 3.3. We have an estimate similar to (3.7), uniform
in V, on the vacuum expectation values in the box cutoff theory, V < o0
[4]. Let f;e €F(R?) and let

0 = (Pvl,ren(fl) (pv“,ren(fn)g }
Oy = oy, (f1) - @y, ([1) 2y .

By induction on n, assume that 6 above is defined, |0 < |, ® - ® [l
and for any choice of C, m and h, in Lemma 3.5, assume that

<Q’ Aren9> = hfn<QVJa AVj 0Vj> .

For n=0, take 0 =Q, 6, = Q, and then the induction hypothesis is
valid by Lemma 3.5. To establish the hypothesis for (n+1) consider

Fy(s) = <Qy, Ay exp(isp, y())0y>

with fe €F. By the induction hypothesis, Fy(s) has a pointwise limit
F(s) = {Q, Aren eXp(is@y, ren( /)0 -

By the cutoff estimates [4], we have bounds

d a
(_d;) Fy(s)
uniform in V, with a Schwartz space norm depending on n and «. It

follows that the family {D*F, } of derivatives is equicontinuous as V' — oo,
and hence the derivatives D*F, converge uniformly and F(s)e €*.

SICIIf®f® - ®@f®fi® - ®f

2 Commun. math. Phys., Vol. 22
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However, the convergence of Fj(s) gives the induction hypothesis for

(n+1). Here we use the fact that vectors {4,.,2} are dense in &, as C

ranges over () Wo(%). Choosing 4 =1, s =0, we have convergence as
B

V;— oo and the bound (3.7) for product wave functions in €F. The
general bound (3.7) follows by the nuclear theorem.

4. Consequences of a Uniform Mass Gap

The Hamiltonian H, is renormalized so that 0 < H,, H,Q, =0.
Zero is a simple eigenvalue for Hy, and H,, | %, has a compact resolvent
[2]. Since Hy | (#)*" = m, there is a gap between zero and the infimum
E, of the spectrum of Hy } {Q,}*. In the limit V' — o0, we expect E, to
converge to the mass of the lightest particle in the theory, so E, is called
the mass gap. If E; = E;(V) is bounded uniformly away from zero as
V — o0, we say the theory has a uniform mass gap.

Theorem 4.1. If the P#(p), theory has a uniform mass gap, then the
vacuum Q of Section 3 is unique and the vacuum expectation values of
products of field operators are tempered distributions. Thus in this case
all Wightman axioms are satisfied with the possible exception of unitary
operators to implement Lorentz rotations.

Proof. Let AeWy(#) and let ¢, =<{Qy,0p(4)2y). Then ¢y —c
=<Q, A;,2)> and so (4., — cI)Q L Q. Furthermore the set of vectors
(Ajen —cD)Q, 4.1)

as A and 4 vary, span {Q}*. Thus we prove that Q is the unique ground
state for H if we prove that (4.1) lies in the range of the spectral projection
for the interval [E,, o). By (3.2),

{(Aen— €D, €' ¥ (A, — cDQ)
= li}n<(QVj (A) — ¢y, 1)Qy ,, €57 (0, (A) — ey, Qy > .

Considered as functions of t, we have pointwise convergence and a uni-
form bound in Z,. Thus the functions converge as distributions in ¢
and consequently so do their Fourier transforms. On the right side,
the Fourier transforms have support in [E,, o0), since

(QV_,(A) - chI)QVjLQVj .

Thus the left side also has a Fourier transform with support in [E;, o),
and we have proved that Q is unique. Moreover

spectrum H } {Q}* C[E,, ). 4.2)
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Next we bound the vacuum expectation values. Let £ € & (R') have a
Fourier transform ¢(E) = (e “£&(t)dt with suppté C(— oo, E{/2) and

¢=1on (—E,/3,E,/3). For any f e %(R?), we write

f=htfo=¢xf+(f=Exf). (4.3)
Since f,(p, E) vanishes for |E| <E,/3,
fr=(d/dt)h. (4.9
We assert that
o(f)Q = const.Q — n(h)Q2, 4.5)

where @(f) = [ o(x, 1) f(x, t)dx dt.
Since ¢@(f,) = —¢@,(h)= —=n(h), we need only show that ¢(f;)Q
= const. 2. However for a bounded function #,

(H) o(f)Q2 = [n(t)e”"Ho(f)Qdt
= * f1)Q
=M=+ Q=0+ )Q
=o(f)Q

if 7 = 1 on suppté, suppti C (—2E,/3,2E,/3). For such an #, the range of
n(H) is one dimensional and spanned by Q, by (4.2), proving (4.5). The
constant in (4.5) can be evaluated as

const. = | f(x, 1)dx dt {2, ¢(0,0)Q) . (4.6)

The right side is finite, by estimates such as (2.13), and defines a con-
tinuous functional on . Furthermore the mapping f — h is continuous
on &, since f, vanishes in a neighborhood of the origin. Thus given any
Schwartz norm |-, there is another norm |-|;, with

lhls, = 1115, - .7

We use (4.5) to convert the ¢, and ¢, = = estimates of Theorem 3.3
into ¢ estimates. Let { € € be a nonnegative function with support in
the square [x| < 1, |t| = 1 and such that the translates {(x, t) = {({x, t} — )
by je Z, form a partition of unity:

z (j = 1 .
JjeZy
Then f—{;f is continuous on % and for any given norm |-|; on & and
any positive integer N, there is a norm |-|;, on & such that

Cifls, SU+ DSl all jeZ, 4.3)

In other words, the series ) {;f converges in &.

2% J
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In place of the vacuum Q in (4.5), we now consider a vector of the form

@y, (h)... 0, (h)Q 4.9)

where each ¢, is a ¢, or a ¢,. By Theorem 3.3 the vector (4.9) is a con-
tinuous function of h, ... h, € L(R?) x --- x L (R?). Also the series

Y 0 0, (G R Q2 (4.10)
Jr€Z2
converges in &. We assert that each term belongs to the domain of
@(L;f), for any fe L (R?). In fact with our local unitary equivalence
ensured by the locally Fock property, we return to Fock space and recall

that for f; and f, € €F(R?), o(f,), ¢(f,) and ¢(f; + f,) are essentially
self adjoint on a common domain. It follows that

D(p(f))N2(p(f2) CZ(o(fi + f2))- (4.11)

The inclusion {4.11) is then valid on &, also, and we see that ¢(f; + f,)
= (p(f1) + @(f,))”. We return to (4.10), and we begin with the fact that
Qe D(p(;f)). If the space component j* of j is large enough, ¢((;f)
commutes with the operators ¢, ({;,, h;). Consequently, these operators
map the domain Z(¢({;f)) into itself, proving our assertion in this case.

If j —j; is time like, then ¢({;f) need not commute, but ¢({;f) is the
sum of a space translate that commutes and a gradient. In fact for
h,(x) = h(x — ),

o(h) = p(h) + j(v(m (h)dar .

A term in (4.10) belongs to the domain of the gradient ¢.(h) by
Theorem 3.3, and it belongs to the domain of the space translate of
¢, f) by local commutativity, as above. By (4.11), the term belongs
to 2(p((;f)) and the assertion is proved in all cases. Combining this
argument with (4.5), we have

oCif) o, ). 0, h)2 = const.p, ((, hy)... 0, h,)Q
+ o, ). 0, ) n(g,)Q2  (4.12)
+ 0.(92) ., ) .. 0, h,)Q .

The constant is given by (4.6), independently of j,j; and A;. g; and g,
belong to #, and for any norm |-|;, on %, there is a norm |-|,, on ¥ and an
integer M such that

193k, 192, = [supli=ji + 1" I/, (4.13)

We can now sum the series (4.12) over j and (j;, ... j,)€Z, X -+ X Z,.
The series converges absolutely, and is dominated term by term by a
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series of the form
S +17N (sqp|j~ji| + 1)M (sqpm + 1)*N il - sy 1 f s (4.14)

b Ji

In this series, we first choose the norm |-|;, on g, and g, required by [4].
This norm determines an M. We then choose |-|,, by (4.13) and also by
(4.8), so that N > M + 2n. In this case (4.14) converges, so (4.9) defines a
vector in the domain of ¢(;f). Furthermore, we define ¢(f) to be the
closure of ) ¢({;f), and then (4.9) belongs to the domain of ¢(f) also.

J
By the nuclear theorem, we can replace the test function h ® --- ®bh,
e Z(RH® - ® F(R?) by a test function h e &#(R?"). We then have

o(f)(@,,...0,) (HQ = const.(p,,...p, ) (NQ
+(@y, .. 0,,m) (h)Q (4.15)
+ (@0, .- 0,,) (h;)Q.

The constant is given by (4.6) and h, and h, depend continuously on f
and h in the S-topology. We use (4.15) to bound ¢(f))...o(f,)Q by
induction on n. This completes the proof.

We conclude with some comments on the status of the missing
Wightman axioms. Bounds on the vacuum expectation values of products
of fields ¢(x, t) would follow, for instance, from an estimate

N,y ¢ < const.(H, + 1),

uniform in V, without consideration of the mass gap. It is possible that a
Poincaré-invariant vacuum could be constructed by averaging over the
Lorentz automorphism ¢, of homogeneous Lorentz transformations
of . In the reverse direction, it is possible that a unique vacuum could
be found by decomposing into components irreducible under 2, see [1].
In either case, the problem would be to preserve the locally Fock property
in the construction. Both constructions preserve the spectral condition.
If the vacuum is unique, not just as a Hilbert space vector, but also as a
C* algebra state on 2, then it is Poincaré invariant. If we are given a
Poincaré¢ invariant state w, the automorphisms o, 4 are implemented
by a continuous unitary representation U(a, A) of the Poincaré group.
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