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Abstract. We prove that the 0>(φ)2 quantum field theory satisfies the spectral condition.
The space time translation a = (x, t) is implemented by the unitary group U(a)
= exp(ίtH — ixP), and the joint spectrum of the energy operator H and the momentum
operator P is contained in the forward cone. We also obtain bounds on certain vacuum
expectation values of products of field operators. Our proofs involve an analysis of the limit
F->-oo for approximate theories in a periodic box of volume V. Assuming the existence of a
uniform mass gap, we are able to establish all the Wightman axioms with the exception of
the Lorentz invariance of the vacuum.

1. Introduction

We study a boson quantum field φ with a polynomial self interaction
^(φ) in two dimensional space time. This theory provides an example
of all the Haag-Kastler axioms and many of the Wightman axioms for
quantum field theory. In this paper we prove that the energy-momentum
spectrum lies in the forward cone. In addition, we prove bounds on the
vacuum expectation values of products of the differentiated field operators
dtφ(x, t) = φt and dxφ(x, t) = φx. Three of the Wightman axioms remain
open problems for the &>(φ)2 theory. They are the invariance of the
vacuum under Lorentz rotations, the uniqueness of the vacuum and the
existence of vacuum expectation values of products of the field φ(x, t)
(without differentiation). Assuming the existence of a mass gap, we verify
the latter two of these three missing axioms in Section 4.

The 0*{φ)2 theory is obtained as a limit of cutoff or approximate field
theories. We have previously considered two different space cutoff
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procedures: a "box" cutoff and a "coupling constant" cutoff. In the
"coupling constant" cutoff, the coupling constant λ is replaced by a
space dependent coupling constant λg(x). For instance, g(x) might
equal the characteristic function of a bounded interval. In the "box"
cutoff, the Hamiltonian is translation invariant, but we replace the con-
figuration space R1 by the periodic interval [ — \ F, \ F] of length V.

In [3] we studied the infinite volume limit of the theory with a
coupling constant cutoff. We showed that the limit g -> 1 yields a locally
Fock vacuum. We now use the same techniques to show that the limit
F->oo, of box cutoff theories, yields a locally Fock vacuum. The algebra
of observables 91 and the Poincare automorphisms σ{aM} constructed
from the two infinite volume limits, g -• 1 or F-> oo, are identical. Thus we
obtain from the limit F-> oo a theory incorporating the results previously
established for the limit #-»l. In addition we have new properties for the
limit F->oo. The spectral condition 0 ^ if, 0 ^ H2 — P2 was previously
established in the theory with a box cutoff, V < oo, as were the bounds
on φt and φx [4]. In the present paper, we transfer these results to the
limit F->oo.

We describe the approximate theories in more detail. We follow the
notation of our Les Houches lectures [5]. The time zero fields in infinite
space R1 satisfy the canonical commutation relations

These field operators act on the Fock space #", which is the symmetric
tensor algebra over ^(JR1). For each bounded open interval & c R1, we
define the algebra 51 (J1) of local observables as the von Neumann algebra
generated by the operators

We also use the C*-algebra SlofJ1) generated by these operators; 9I0(
is weakly dense in SΪ(J^). Let

91 = norm closure ((J 2T(

2ί0 = norm closure /(J 9ίo(

The Hamiltonian H(g) with the coupling constant cutoff g is defined by

H(g) = H0+$ :&{φ{x)): g(x) dx-Eg.

Here 3P is a positive polynomial, g is a positive function with compact
support, and Eg is chosen so that inf spectrum//(#) = 0.
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In the periodic box approximation, the field φv satisfies (1.1), namely
l<Pv(fi)> M/2)] = K/i, Λ>, provided ft e J£?2([- \ V, \ F]). The periodic
Fock space J v *s the symmetric tensor algebra over J£?2 ([ — F/2, F/2]).
The Hamiltonian Hv for the volume V is

HV = HOV+ j :0>(φv(x)):dx-Ev,

where Ev is chosen so that inf spectrum Hv = 0.
There is a natural identification

induced in momentum space by identifying /2((2π/F)Z) with the func-
tions in c£?2(.R) that are piecewise constant on intervals of length 2π/F
centered about the points in (2π/F)Z = Zv. Thus we may regard φv and
91 {β, V) as acting on 3F.

For any volume F, with J* C [— F/2, F/2], there is an isomorphism ρv

of 9I 0 W o n t o 2ϊo(^> ^) generated by the correspondence

<P(f)-+<Pv(fY> π(/)-^πF(/).

We have not determined whether ρF is ultraweakly continuous, but a
natural proof awaits a boson version of the Powers-Stormer result [6].
See [8-9].

Lemma 1.1. Let Ae%^(β). Then \ρv{A)\ = \\A\\ and as F-χx),
st. limρv(A) = A.

Proof. Isomorphisms between C*-algebras preserve norm; hence
|| ρv(A) || = || A ||. To prove the second statement, we may take A a generator
of Uo(0S)9 as in (1.2). By the semigroup convergence theorem, it is suffi-
cient to prove convergence of the fields, φv{f)-^φ{f) and πv(f)->π(f),
strongly on a core for φ(f) and π(/). However this convergence is well
known, and can be shown by standard calculations, as in [5].

2. The Locally Fock Property

Each state ω on the C*-algebra 91 gives rise to a *-representation ρω

of 21 by bounded operators on a Hubert space J^ω (the GNS construction).
We say ω is locally Fock if for each bounded open interval ^*, the restric-
tion ω b 2I(^) is normal (ultraweakly continuous). In this case ρω ί" ^(β)
is unitarily implemented there is a unitary transformation Um of Fock
space into J^ω such that
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This follows from the fact that 9I( J>) is a type III factor, and alternately it
follows from the more easily verified fact that each 9I(J*) contains a
type I oo factor. We note that a normal state on 9 I 0 W has a unique
extension to a normal state on its weak closure, 91^), and so a locally
Fock state on 9ί0 yields a locally Fock state on 91.

The Hamiltonian Hv has an eigenvector Ωv satisfying HVΩV = 0,
| |ΩF | | = 1. Since Ωv is unique up to a phase, Ωv is an eigenvector for the
momentum operator Pv for the volume V. Reasoning by continuity in the
coupling constant and using the fact that Pv has pure discrete spectrum,
we see that the eigenvalue is zero, so PVΩV = 0. We define the state ωv on
the algebra 93 (IF) of all bounded operators on 3F by

ωv(A) = (Ωv,AΩv}. (2.1)

This state is invariant under the periodic space translation group with
generator Pv. Likewise we define the state ώv=ωv°ρv on ^Άo{^). As
F->oo, the states ώv are defined eventually on a dense subalgebra of 9ί0.
Thus by standard compactness arguments, there is a w*-convergent
subnet {ώKv}, tending to a state ω defined on all of 9ί0.

Theorem 2.1. Any w*-limit point ω of the sequence {ώv} is locally
Fock.

Our proof is based on the methods of [3], and we begin by outlining
those ideas. In [3] we established the locally Fock property for a vacuum
state defined through the limit g-+l. The Hamiltonian H(g) of (1.3) has a
ground state eigenvector Ωg9 H(g)Ωg = 0, | |ΩJ = 1. We let gn(x) = g(x/n),
hold g fixed and let n->oo. The approximate vacuum state ωn is defined
on 91 as the average over spatial translations (by a distance up to 0(n))
of the states A^>(Ωgn, AΩgn}. The spatial average ensures translation
in variance of a limit point ω of the sequence {ωn \ 91}. A norm limit of
normal states is normal, and ωn f 9I(J*) is normal, so the essential step
in proving the locally Fock property is to show that the sequence
{ωn 19Ϊ(J*)} lies in a norm compact set of states.

Let ^ be a bounded interval of length | # | ^ 1. For 0 < τ < \, we define
the local number operator

w h e r e Nτt« = I a*(p) wτ^(p, q) a(q)dpdq (2.2)

wτ,*(p, q) = (2π)" ' f E*[p - ϊ) μ(ΐfE^l - q)dl (2.3)

and Ecβ is the Fourier transform of the characteristic function of ζ€.
Note that Noi<€ measures the number of particles in # and that
No^ S const.NXt<g.

The locally Fock and norm compact properties are a consequence of
the estimate

ωn(Nτ^)S const. | « | . (2.4)
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We use (2.4) to define a truncated vacuum state ωε

n on

ω*n{A) = ωn{RAR),

where R is the projection onto vectors in 3F with at most M(l +j2)
particles localized in the space interval #}=[/,./ + l ] , 7 = 0, + 1 , . . . .}
Hence R projects onto vectors with at most 0(d3) particles at a distance
d from the origin. For M = M(ε) sufficiently large, the estimate

Hω -ωJ^β (2.5)

follows from (2.4), see [3].
There is no uniform bound on the number of particles in the wave

functions defining ωε

n, and in order to achieve this result, we introduce
a new approximation, ωε

n

δ, all of whose wave functions are supported in a
sufficiently large interval <& = ^{β, δ, ε) containing ^ . We take %> to be
a union of the ^"js. In the approximation ωε

n

δ of ωε

n, the error ωε

n — ωε

n

δ

is small only on the local subalgebra %(β

(2.6)

To define ωε

n

δ, we note that ω* is a normal state, and hence a sum of
vector states. Let <0, θ} be a vector state contributing to ωj; and let
θ^ be the component of θ with i particles in <&J particles in ~<€. In con-
figuration space variables, θy = flyfo ..., xh yl9..., yj), xa e <ΐ9 yβ e ~V.
We now regard θy as an i particle state in J*, depending on parameters
yl9 ...,yj. We thereby eliminate particles outside of V from θ and from
ωε

n. The contribution of <θ, ̂ lθ> to ωε

n

δ(A) is

where A acts on θhj and θf2</ as ix and i2 particle states. We achieve an
equivalent definition of ωε

n

δ by eliminating from A its action on particles
outside <€. We have ^ C #", ^"^ C ̂  and

J Γ - J Γ ^ J Z Γ - ^ (2.8)

where J^^ is the Fock space over ££2 (^) We use a superscript ^ to denote
the natural imbedding

obtained by extending fe ^2^€) to a function identically zero on ~ ^ .
(This is distinct from the periodic imbedding ^VC^) Let Q^ be the
projection of & onto J ^ . Then g ^ β ^ acts on #"*, and β ^ ^ β ^ ® /
acts on #"^(x)#""^. If 4̂̂  is the corresponding operator on J^, under the
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isomorphism (2.8), then

In other words, ωε

n

δ is the state which results from first projecting ωε

n onto
a state on 93 (#"^) by an integration over variables localized outside ^
and then tensoring the result with the no particle (bare vacuum) state
on 93(iF~*).

The algebra Sϊ(^), however, is not contained in 93 ( J ^ ) and the proof
of (2.6) involves an estimate on the difference between the two notions
of localization. The algebra 33 ( # ^ ) is localized with respect to the support
of the configuration space wave functions in # , while the algebra 9I(0&)
is defined by localization of the time zero fields π(x) and φ(x). Due to the
energy factors μ(p)±Ί^ which occur in the definition of π(x) and φ(x% the
configuration space localization of the fields π or φ involves convolution
of the wave functions by one of the kernels

ie-i"xdp. (2.9)

The kernels /c±(x) are (£°° except at x = 0, and outside of a neighborhood
of x = 0, they satisfy

± W . (2.10)

Hence the difference between the localization of φ(x) and π(x) and the
localization of 93 (#"^) involves an exponentially small tail. A lengthy
analysis of this effect yields (2.6), see [3].

Finally we prove that the sequence ωε

n

δ lies in a norm compact set of
states. We use (2.4) with ^ replaced by ΘC } and the facts that Nτt3Cj com-
mutes with R and that bounded functions of NτtSC belong to 93 ( J ^ ) to
show that

This estimate and the fact that

Σ *U
has a compact resolvent on #"^ is sufficient to establish norm compactness
of the states ωε

n

δ, as states on 93(#'). The norm compactness of the
sequence {ωn [ 9I(^)} then follows.

We now use this construction for the periodic field φv and the
approximate vacuum state ωv of (2.1). There are three steps in the
argument: the approximations ωv^>ωε

v and ωε

v^ωεy and the existence
of a norm compact set of states on 93 (J^) containing the family of states
{ωεy : V^ const.}. The vacuum Ωv belongs to $FV [2] and the first two
steps, with Fheld fixed, take place entirely within JV In the third step,



Quantum Field Theory Models 7

7—>oo, and we must work on the full Fock space #". For an interval
^ C [ — 7/2, 7/2] we have the Fock space 3Fγ of elements of JV which
are localized in ζ6. This notion of localization is defined by restricting the
momentum space wave functions to the lattice Zv and then inverting the
Fourier series to obtain periodic configuration space wave functions
with support in #. In terms of the identification 3FV C ̂ % this notion of
localization is 7 dependent. Elements of 3Fγ and $FV yields functions in
3F with piecewise constant Fourier transforms. Such functions never
have compact support in the sense of !F localization and cannot belong
to # T We replace (2.8) with the representation $FV ^ !Fγ (x) JV~^ when
working with a fixed 7

For 0 ^ τ < i and ^ C [ - 7/2, 7/2], we define

Nτ,v,v = (2π/7) £ av(P)* wτ,v,v(P>«) av(Φ

where

where

= j«(p)

pv is the lattice point

av(q) = (

nearest

Vβπf

p,q)a(c

p and

π/V

ί *(«
-π/F

j[) dp dg

where

q + r)dr.

?{lv - qv), (2.12)

The estimates of [3, Section 3] show that NXiVt<g is an operator, and as in
[3], we have the estimate

<»v(Nz,v,«) ^ const.|«Ί, (2.13)

which replaces (2.4).
For convenience, we suppose that 7/2 is an integer, so that [— 7/2,

7/2] is a union of #}'s. Let Rv be the projection onto vectors in J v which
have at most M(l + j 2 ) particles localized in the interval 9C^ &j C [— 7/2,
7/2]. For M = M(ε) sufficiently large (but independent of 7),

as a consequence of (2.13). We define

ωε

v(Λ) = ωv{RvΛRv),
and then

ε. (2.14)

As before, we choose ^ = #( Jf, δ, ε) sufficiently large, and we require
that 7 is large enough so that ^ C [ — 7/2, 7/2]. We repeat our con-
struction above, to obtain the state ωεy, by regarding variables ye ^^
as parameters and integrating them, as in (2.7). Let Qf be the projection
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of &v onto &$. Then

ωB

v

δ(A) = ωlr(QfAQf®I) = ωε

v(Aδ).

Our basic estimates replacing (2.6) are

ωε

v

δ){SΆ(^V)\\<δ, (2.15)

" ωf?) r ΪC(Λ, 7)| | < ε + <5. (2.16)

In order to establish (2.15), we must compare the notion of localization
in 2I(^, F) with the notion of localization in 95(6^^). This is analogous
to the case V = oo, β j = Q*, that led to (2.6). The energy factors μ{pv)

±4t

occur in π F and φv. For example with

k±(x)=V-1 Σ μiPv^e'^*
kεZv (2.17)

W = 00

we have
φF(x) = (4π)-*f {α(p)* + fl(-

-K/2

where the (Newton-Wigner) field φv(y) creates and annihilates a wave
function, localized at y in the sense of $FV localization. By (2.10) and (2.17),

|fe±(x)| ^const.e-mM, y<\x\< V/2,

for any γ > 0. Furthermore fe^ (x) is K00 away from the origin. Using these
facts, we follow the proof of (2.6) in order to establish (2.15).

Next we turn to the third step in the proof of Theorem 2.1, namely the
limit of the states ωε

v

δ as F->oo.

Lemma 2.2. Let ε and δ be fixed. The sequence {ωεy : 1 ^ V} of states
of 93(#") lies in a norm compact set. Any limit point ωεδ is normal.

Proof. Since we consider the norm topology, it is sufficient to work
with sequences. Given any subsequence of the ωεy, we must draw from
it a subsubsequence that is norm convergent as F->oo. Since V is not
fixed, we must work on the full Fock space 3F.

Let τ < \. We show that the resolvent of the operator NτtVt<$ converges
strongly as F ^ o o . It is sufficient to prove that on the one particle space
the resolvent of wttV^ converges strongly to the resolvent of wτ ^. These
operators are defined by the kernels (2.12) and (2.3) respectively. From
[3, Eq. (3.1.11)] we have the inequality

| |w t f t f0| |g const. | | μ 2 τ + ε 0 | | .
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It follows that vvt ^ (and likewise wτ>v ^) is defined on the domain (EJ, and
we take vvτ ^ to be the Friedrichs extension of wτt<€ \ &$.

To compare our $FV periodic configuration space localization in
wτ,v,v W ^ h Λe nonperiodic 3F configuration space localization, we intro-
duce the isometry

Uv =TV-
1XVT : L2(R)-^L2(R) (2.18)

where T is the &2{R) Fourier integral transform, Xv is the orthogonal
projection of S£2 (R) onto functions piecewise constant on lattice inter-
vals in momentum space, and Tf1 is the inverse Fourier series mapping
onto 5£2{—iYAV\ imbedded in <&2(R) as functions with support in

Let <S be the closed operator μτ/2E<#. Since the Friedrichs extension of
wτ^ \ (£^ is the only positive self adjoint extension of wτ^ \^ξ with
domain in 3}{S\

wτtίf = S*S. (2.19)

Similarly, let Δv be the operator d2/dx2 with periodic boundary condi-
tions on &2{-%VAV\ and let

*3τ/ = ~ *-̂ T/r ̂ y ^v *

Then
Wτ y eg == uy by := Uy \&y Λy) Uy

We note that on G ^ x G ^ , the difference SVSV-S*S is bounded and

\\s$sv-s*s\\ mv-1).
Hence by the resolvent equation, the resolvent Rv(ζ) = (SvSv — ζ)~x of
S$SV converges in norm to the resolvent R of S*S — vvτ^. But Uv-+I and
Ufi^I strongly, so

Ry(ζ) = U$Ry(ζ) Uy = ( w ^ " ζ)~ '

converges strongly as F-+oo to R(ζ) = (wτ>#— C)"1. Moreover, this proof
shows that as F-»oo, the resolvent of

Λv= Σ Nr,v,*j (2.20)

converges strongly to the resolvent of

A= Σ Nτ,Xr (2.21)

Since A \ ̂  has a compact resolvent [3] and since
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A has pure discrete spectrum with no accumulation points and with
infinite multiplicity. The same conclusions apply to Av. The usual
contour integral formula shows that eigenspaces and eigenvalues con-
verge, as F->oo.

We restrict the operators to the single particle space, to get more
detailed information. On the single particle space the nonzero eigen-
values of Av or A have finite multiplicity, and when the eigenvalues are
numbered in increasing order, counting multiplicity, they converge as
F-»oo. Also the eigenvectors converge. We construct a basis for J ^ and
3Fy using tensor products of one particle eigenfunctions of A \ ̂  and
Av \ 3Fy. Since the single particle eigenfunctions converge as F->oo, so
do their tensor products. These tensor products are eigenfunctions for
A or Av. Thus we have constructed a basis {eίtV, e2fV,...} for #jf with
the properties

βj = lim ejV exists,

μj= lim μjtV exists,
V —> oo

Avejv = μjtVejv->Aej = μjβj,

0 g μί <. μ2 <; -» oo .

From the last statement, it follows that as; -> oo, μj>κ-> oo, uniformly in V.
The state coy is a normal state on 93 (βF\ so there is a trace class matrix

Av with trace norm \Av\γ = \\ωεy\\ ^ 1 and such that

ωε

v

δ(A) = Tip(Λv A), A e

Now ωε

v

δ has the property
δ 3 Ϊ f

which implies that Av = QfAvQf. Thus Av can be expressed by a matrix
(ρlj) in terms of the basis {ejtV}. Hence by (2.13) and (2.20),

ωε

v

δ(Av)= Σ^ j j

+ Σμtv\QΪt\2

i

S const.

Passing to a subsequence, the ρ^ 's converge as F-^oo. Let

where

QV'K= Σ QΪjeuv®ejf

ij
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and similarly δρv is the tail of the series. Then using the Hubert Schmidt
norm we have

κh (2.22)

Because of the bound (2.21),

for all V, V, if K is chosen large enough so that μKfV> const.y"1, for all V.
We now hold K fixed. The right side of (2.22) is bounded by

Σ (\QΪj~QΪj\ + c o n s t \\euv-ei,v\\
Ujύκ

+ const. \\ejtV - ejιV,\\) + γ/2 <, y

for V, V sufficiently large, in our subsequence. As in [3, Lemma 4.7],

\(ωε

v

δ - ωε

v

δ) (Λ)\ = \Ύ^((ΛV - ΛV.)A)\

^ const.Mil \\ΛV-Λv,\\

for V, V in the subsequence. This completes the proof of the lemma.
Let ω be a w*-limit point of the sequence {ώv : 1 ^ V}. Then there is a

subnet ώF ( α )-»ω. By the norm compactness, Lemma 2.2, there is a sub-
subnet such that the ωε

v

δ have a norm limit ωεδ, for all ε,δ = ί/n:

ωεδ = norm limωεy(0Liβ)). (2.23)

Since the states ωεδ are normal, Theorem 2.1 follows from our next result.

Lemma 2.3. ||(ω - ωεδ) \ 9IO(®)II S ε + δ.

Remark. Assuming the result of Lemma 2.3, we use Theorem 2.1 to
extend ω to a locally Fock state of 91 (J*). By Kaplansky's density theorem,
ω — ωεδ has the same norm, when restricted to 9I 0 (^) or to ^i{β). Hence
Lemma 2.3 yields

|| (ω-ωεδ) f 2I(^)|| ^ε + δ. (2.24)

Proof. As states on 2lo(^)>

ωεδ - ω = (ωεδ - ωεδ o ρv) + (ωεδ - ωε

v

δ) o ρv

{ωεy — ωv) ° ρv-\- ώv — ω .
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Since ωεδ is normal, Lemma 1.1 ensures that the first term is w* con-
vergent to zero as F—>oo. By hypothesis, the last term is w* convergent
to zero. By (2.23), the second term is norm convergent to zero. Thus

(ωεδ - ω) I %0{@) = w*lim(ωε/ - ωv) ° ρv {9T0(Jf). (2.26)
F-> oo

Since ρv is an isomorphism, we have by (2.16),

= \\(ωε

v

δ-ωv) {8lo(Λ, V)\\

Since w*-limits cannot increase norms, the lemma follows from (2.26).
Remark, ω is also a w*-limit of a subsequence of the ώF's. It is sufficient

to prove this for ω Ϊ2IO(^) and ώv\SΆQ(@). We use (2.25) to write
(ώv — ω) I $ίo(ό9) as a sum of four terms. The terms ωεδ-ω and
(ωε

v

δ —ωv)°ρv converge to zero as ε = δ = l/rc-^0, uniformly in V. We
now hold ε = δ = 1/n fixed and let F-> oo. The term ωεδ — ωεδ ° ρv con-
verges to zero in this limit. The final term is (ωεδ — ωεγ) ° ρv. Here V = V(oc)
belongs to the convergent net. Lemma 2.2 gives us norm compactness,
and we can choose a subsequence of the subnet such that ωεδ — ωεy-+0.
By the diagonal process we can choose one subsequence for all ε = δ
= ί/n. Hence as F-»oo through this subsequence, (ώv — ω) \%0{^) is
w*-convergent to zero.

3. The Hamiltonian and Momentum Operators

We show that the space-time translation automorphism σa = στ α

defined previously [2] through the limit #->l of the Hamiltonians H(g)
agrees with the automorphism defined here through the limit F-> oo of the
Hamiltonians Hv.

Theorem 3.1. Let σaV be the two parameter automorphism group
generated by the operators Hv and Pv. Then for A e 5I0(^%

σa(A) = slimσatV(ρv(A)).
V->oo

We also show that the vacuum state ω of Section 2 is translation
invariant,

ω°σa = ω. (3.1)

If Uv(a) is the unitary group generated by Hv and Pv, and ώVj-+ω, we
prove that

ω(Cσa(A)) = lim ωVj(ρVj(C) UVj(a) ρVj(A)). (3.2)
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These results permit us to transfer the spectral condition, previously
established for F<oo [4] to the limit F-»oo. Let A-+Aren denote the
GNS representation defined by ω, and let Aren act on ^ren = J^ω.

Theorem 3.2. There exist commuting self adjoint operators H and P
on J^en that Generate space time translations. Thus for a = (τ, α) e R2 and

U(a) = exp(ίτH-iaP).

Furthermore HΩ = 0 = PΩ, and 0 ^ H 0 ^ H2 - P2.

Remark. The inequalities state that the spectrum lies in the forward
cone. The second inequality is one of the improvements in the 0>{φ)2

theory permitted by this paper. Another improvement is that the bounds
of [4] on vacuum expectation values of products of φt and φx can now
be transferred to the limit K->ao, see Theorem 3.3. We define the (non-
negative) mass operator M by M = (H2 — P2ψ. An important open
question is whether M has an isolated, positive eigenvalue.

Proof of Theorem 3.1. To interpolate between the g and V cutoffs, we
introduce

V/2

H(g,V) = H0,v+ J :0>(φv(x)):g(x)dx-Eg. (3.3)
-V/2

We have the strong limits

exp{iτH(g)) = st. lim exp{ίτH(g, V)), (3.4)
F-»oo

exp(z'αP) = st. lim exp(fαPF) (3.5)
F->oo

where P generates space translation on SF. To prove (3.4), we appeal to
the semigroup convergence theorem, and use strong convergence of the
generators on a core. (£°°(f/0) is a core for H(g\ by Rosen's higher order
estimates [7], and H(g,V)-^H(g) strongly on έ°°(f/0) by elementary
estimates [5]. For (3.5), we also use the core C°°(Ho).

Let A e Slo(Λ), % , + |α, C [- F/2, V/2] and let g equal 1 on Λ,τ, + |β,.
By Lemma 1.1 and (3.4-5),

σa{A) = lim exp(iτH(g, V)) exp(- iaPv) ρv(A)
F->oo

x exp(iaPv) exp( - iτH(g9 V)).

Thus to complete the proof of Theorem 3.1, we only need to show that
Hv and H(g, V) define the same dynamics on 2I(^|α |, V) for times |ί| ^ |τ|.
We use the Trotter formula. In the free periodic box dynamics (i.e. with
the interaction polynomial 3P replaced by zero), the commutator function
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is given by the formula

Δv(x -x\t- t') = ί[φov{x, t), φov(xf, t')

n oo

and
φov(x,t)= J Δv(x-y,t)πv(y)dy

\χ-y\<V/2

\χ-y\<V/2 ϋ t

Since Δ(x91) = Δ^x, t) vanishes outside the light cone, namely for
\t\ < |x|, it follows that

Δv(x,t) = O for |ί| < |x| < F/2 .

Thus the free time translation σ^v with generator Ho v defines an auto-
morphism with unit propagation speed. For A e 2l(^?|φ V) and |ί| ^ |τ|,

Furthermore the interaction dynamics σ\v with generator H^g, V)
leaves each 9l(J*s, V) invariant,

V)) M(as,V) expi-ίtH^g, V)) = 2I(^S, V)

and on S I ^ , V) with \s\ < τ, our restriction on g makes σ\v independent
of g (see [5]). We use the essential self adjointness of H(g, V) and the
Trotter product formula to establish the g independence and unit
propagation speed oϊσtV, see [5]. Taking g = 1 on [— \V,\V~\ and zero
elsewhere yields H(g, V) = Hv + const., which completes the proof of
Theorem 3.1.

Proof of (3.1) and (3.2). First we note that (3.1) follows from the case
C = / of (3.2). In fact since Uv(a)Ωv = Ωv,

ωVj(UVj(a) ρVj{Aj) - ωVj{ρVj(A))->ω{A)

for A G 2 1 0 ( ^ ) J which, combined with (3.2), yields (3.1). We now establish
(3.2). We have

ω(Cσa(A)) - ωv(ρv(C) σatV(ρv(A)))

= (ω-ωEδ)(Cσa(A))

+ ω£δ(Cσa(A)~ Qv(C) σatV(ρv(A))) (3.5)

+ (ωεδ-ωε

v

δ)(ρv(C)σa,v(ρv(A)))

+ (ωε

v

δ-ωv){ρv(C)σa,v{ρv(A))).
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The first and last terms in (3.5) are dominated in magnitude by
(e + δ) \\C\\ Mil, by (2.16), (2.24), and (3.6). We now hold ε and δ fixed. The
third term tends to zero as V-> oo through a subsequence, by Lemma 2.2
and the choice of ωεδ

y since

\\ρv(C)σa,v(ρv(A))\\S\\C\\\\A\\. (3.6)

The second term tends to zero, since ωεδ is a normal state on SR(<F) and
since the operators converge ultrastrongly to zero. This follows from
Lemma 1.1, Theorem 3.1 and the fact that the operators are bounded in
norm, uniformly in V. This proves (3.2).

Proof of Theorem 3.2. This is proved exactly as in [3, 5], where we
construct H, P and # ; e n with 0 ^ H. From (3.2), we have

spectrum{ίf, P} C liminfspectrum{HVj9 PVj},

and the right hand side was bounded in [4].

Theorem 3.3. Let φ v = dxφ or dtφ. There is a Schwartz space norm
\ \n on ^(R2") such that

If <O, φvunn{xl9 h)... φ w e n ( x π , yfl>/(x, t)dxdt\ ^ \f\n, (3.7)

and the above vacuum expectation value is obtained as F-»oo through a
subsequence from the vacuum expectation values of the box cutoff theories.

We consider first a finite volume approximation to the space time
averaged fields ψ(f) = fφ(x,t)f{x,t)dxdt, where f = fe£$(R2). This
operator is self adjoint and essentially self adjoint on the domain (£°°(H0).
The above integral presentation is valid in the sense of bilinear forms on a
dense domain, see [2]. Let φ{f)ren denote the corresponding self adjoint
operator on ^ren. Similarly, let φv(f) be the self adjoint operator deter-
mined by the formula

Ψv(f) = f eiHvtφv(x)e-iHvtf(x9 ήdxdt. (3.8)

Lemma 3.4. With φ(/), φv(f) as above,

exp(zφ(/)) = st.limexp(z</v(/))
V-+oo

Proof. It is sufficient to prove convergence of φv(f) on a core for
φ{f). Furthermore, as in the proof of Theorem 3.1, we may replace Hv

in (3.8) with H(g, F), where g = 1 on a sufficiently large interval. We choose
the core (E00 (#(#)) on which to estimate φv{f)-ψ{f)'

In order to take advantage of the time integration, we note that for
H = R-1 = (H(g) +const),

= Rφ(f)HΘ + iRφ(ft)θ.
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Let A = I f(x, t) φ(x, O)dx, B = i\(dtf) (x, t) φ{x,O)dx. Thus we calculate
(δφ)θ = (φv(f)- φ(f))θ for θe^(())

δ(φ(f))θ = δ(Rφ(f)H)θ + δ(iRφ(ft))θ

= j" δ(eitlί) R(AH + B)e-iH'θdt

\eitΉ(y)RvAyδ{e-itH)Hθdt

+ $eitH(V)RvBvδ(e-itH)θdt.

Here H(V) = H(g, V) + const. = Rγ\

δA = Av-A, δB = Bv-B,

etc. The first term converges to zero as F-> oo since δ{eitH) = eitH(V) — e"H,

st.lim<5(eitJΪ) = 0, (3.9)

uniformly on compact ί intervals, and for Vt ^ oo,

I I Λ M K J = II^.BKJI S |/( , ί)| + \d,f(; t)\ (3.10)

where |/( , t)l denotes a suitable Schwartz space norm independent of
F;. By higher order estimates, ||<5R|| ->0 as F->oo [7], so the second term
converges to zero. Elementary Nτ estimates [5] yield

Convergence of third term follows. The fourth and sixth terms converge
on account of (3.9-10). We use the higher order estimate

\\NrRr\\^Mr, r = l,2,...

to prove for r 2; ̂ degP,

\\δHoθ\\ ^

^const.||<5w||2 ||ίΓ0|| +0{V~1)

and to establish convergence of the fifth term. Here δw is the kernel
wv — w of δHγ. This completes the proof of the lemma.
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Let K e <£%(R2}, I ^ r ^ m, let C e Mo(<%) and let

m

Av = ρΓ(C) Π

Lemma 3.5. Lei ώFj.

Proof.
ω(A) - ωv{Av) = (ω - ωεδ) {A) + ωε5(yl - Av)

+ (ωεδ - ωε/) (Av) + (ωε/ - ωF) (Av).

Note that ||A|| = \\AV\\ = \\C\\. We use (2.16) and (2.24) to bound the first
and last terms, uniformly in V. We choose ε and δ to be small, but fixed,
and then the middle terms converge to zero by (2.23) and Lemma 3.4.

Proof of Theorem 3.3. We have an estimate similar to (3.7), uniform
in F, on the vacuum expectation values in the box cutoff theory, V < oo
[4]. Let/ e e ; ^ 2 ) and let

By induction on n, assume that θ above is defined, ||0|| ^ | ϊ1 ® ••• ®/JΠ J

and for any choice of C, m and hr in Lemma 3.5, assume that

For n = 0, take θ = Ω, θv = Ωv and then the induction hypothesis is
valid by Lemma 3.5. To establish the hypothesis for (ft + 1) consider

FV(S) = (Ωy, Ay

with / e ( £ J . By the induction hypothesis, Fv(s) has a pointwise limit

By the cutoff estimates [4], we have bounds

I/®/®-

uniform in F, with a Schwartz space norm depending on n and α. It
follows that the family {DaFv} of derivatives is equicontinuous as F-»oo,
and hence the derivatives DaFv converge uniformly and F(s)e(ίco.

2 Commun. math. Phys., Vol. 22
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However, the convergence of Fy(s) gives the induction hypothesis for
(n +1). Here we use the fact that vectors {ΛτenΩ} are dense in «^en as C
ranges over (J 9ΪO(^) Choosing A = /, s = 0, we have convergence as

VJ^KX) and the bound (3.7) for product wave functions in K®. The
general bound (3.7) follows by the nuclear theorem.

4. Consequences of a Uniform Mass Gap

The Hamiltonian Hv is renormalized so that 0f^Hv, HvΩv = 0.
Zero is a simple eigenvalue for Hv and Hv [ <FV has a compact resolvent
[2]. Since Hv [ (JV)1 = m> there is a gap between zero and the infimum
E1 of the spectrum of Hv [ {Ωv}

λ. In the limit F-»oo, we expect E1 to
converge to the mass of the lightest particle in the theory, so E1 is called
the mass gap. If Eί = E^V) is bounded uniformly away from zero as
F—>-oo, we say the theory has a uniform mass gap.

Theorem 4.1. // the @>{φ)2 theory has a uniform mass gap, then the
vacuum Ω of Section 3 is unique and the vacuum expectation values of
products of field operators are tempered distributions. Thus in this case
all Wightman axioms are satisfied with the possible exception of unitary
operators to implement Lorentz rotations.

Proof. Let Ae^{β) and let cv = <β F ,ρ v {A)Ω v }. Then cv.-^c
= (Ω,AτenΩ} and so ( i r e n - c / ) Ω ! Ω . Furthermore the set of vectors

μ r e n -c/)o, (4.1)

as A and & vary, span {Ω}1. Thus we prove that Ω is the unique ground
state for H if we prove that (4.1) lies in the range of the spectral projection
for the interval [ £ 1 ? oo). By (3.2),

<(Aren-cI)Ω,eitH(Aren-cI)Ω>

= lim<{ρVj(A) - cVj I)ΩVj9 eitH^ (ρVj(A) - cVjI)ΩVj} .

Considered as functions of ί, we have pointwise convergence and a uni-
form bound in Jδf̂ . Thus the functions converge as distributions in t
and consequently so do their Fourier transforms. On the right side,
the Fourier transforms have support in [ £ 1 ? oo), since

(ρVj(A)-cVjI)ΩVjlΩVj.

Thus the left side also has a Fourier transform with support in [E l 5 oo),
and we have proved that Ω is unique. Moreover

spectrum// \ {Ω}1 C \Eγ, oo). (4.2)
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Next we bound the vacuum expectation values. Let ξ e ^(R1) have a
Fourier transform ξ(E) = $e~itEξ(ήdt with suppt<fc(- oo9EJ2) and
ξ = 1 on (-EJX EJ3). For any /e«9%R2), we write

/ = Λ
Since /2(p, £) vanishes for |£|

fi = (d/dt)h. (4.4)

We assert that

= const.Ω - π{h)Ω, (4.5)

where φ(/) = J <p(x, ί)/(X t)dxdt.
Since φ(/2) = — φt(h) = — π(Λ), we need only show that φ(fι)Ω

= const. £2. However for a bounded function 77,

= φ(η*A)Ω

= φ(η*ξ*f)Ω = φ(ξ*f)Ω

= φ(fi)Ω

if f) = 1 on supptl, suppt// C ( — 2£1/3,2EJ3). For such an 17, the range of
7/(H) is one dimensional and spanned by Ω, by (4.2), proving (4.5). The
constant in (4.5) can be evaluated as

const. = f/(x, t)dxdt(Ω, φ(0,0)Ω} . (4.6)

The right side is finite, by estimates such as (2.13), and defines a con-
tinuous functional on if. Furthermore the mapping f->h is continuous
on £f, since f2 vanishes in a neighborhood of the origin. Thus given any
Schwartz norm | |Sl there is another norm | |S2 with

(4-7)

We use (4.5) to convert the φx and φt = π estimates of Theorem 3.3
into φ estimates. Let ζ e (££ be a nonnegative function with support in
the square |x| ^ 1, |ί| ^ 1 and such that the translates ^(x, t) = ζ({x, t} -j)
by j e Z2 form a partition of unity:

Σ Cj = ι.
jeZ2

Then f^ζjf is continuous on ^ and for any given norm | |Sl on Sf and
any positive integer AT, there is a norm | \S2 on $f such that

|C,./|Sl<; ([/Ί + 1)-N |/ |S 2, all jeZ2 (4.8)

In other words, the series Σ ζjf converges in £f.
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In place of the vacuum Ω in (4.5), we now consider a vector of the form

<PM-<PMQ ( 4 9 )

where each φVί is a φx or a <pr By Theorem 3.3 the vector (4.9) is a con-
tinuous function of hγ...hne £f{R2) x ••• x £f(R2). Also the series

Σ φ^hK)-Ψ^jX)Ω (4.10)
ji e Z2

converges in Sf. We assert that each term belongs to the domain of
φ{ζjf), for any feSf{R2). In fact with our local unitary equivalence
ensured by the locally Fock property, we return to Fock space and recall
that for fx and /2e(£^CR2), <p(/i), <p(/2) and φ(ft + /2) are essentially
self adjoint on a common domain. It follows that

®(φ(/i))π®(φ(/2))C^(<p(Λ +/2)) (4.11)

The inclusion (4.11) is then valid on «^en also, and we see that φ(f1 + f2)
= (φ(fi) + φ(/2))~ W e return to (4.10), and we begin with the fact that
Ωe@(φ(ζjf)). If the space component/ of j is large enough, φ(ζjf)
commutes with the operators φVi(ζj.fhi). Consequently, these operators
map the domain Sι{φ{ζjf)) into itself, proving our assertion in this case.

lΐj—ji is time like, then φ(ζjf) need not commute, but φ(ζjf) is the
sum of a space translate that commutes and a gradient. In fact for
hΛ(x) = h(x - α),

A term in (4.10) belongs to the domain of the gradient φx(h) by
Theorem 3.3, and it belongs to the domain of the space translate of
φ(ζpf) by local commutativity, as above. By (4.11), the term belongs
to 3ι(φ(ζjf)) and the assertion is proved in all cases. Combining this
argument with (4.5), we have

^ ί , , h x ) . . . φVn(ζjnK)Ω

φVί(ζjlhί)...φVn(ζjnhn)π(g1)Ω (4.12)

The constant is given by (4.6), independently of j,jt and ht. gγ and g2

belong to Sf, and for any norm | |Si on Sf9 there is a norm | |S2 on Sf and an
integer M such that

ί ) | / | S 2 (4.13)

We can now sum the series (4.12) over j and (/ l5... jn)GZ2x ••• x Z 2 .
The series converges absolutely, and is dominated term by term by a
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series of the form

X (l/| + 1 ) - » fsuplj-Λl + 1)M (sup|Λ| + ί]~N \hx\a2... \hn\S2 \f\S2 (4.14)

In this series, we first choose the norm | |S i on g1 and g2 required by [4].
This norm determines an M. We then choose | |S2 by (4.13) and also by
(4.8), so that N > M + 2w. In this case (4.14) converges, so (4.9) defines a
vector in the domain of φ(ζjf). Furthermore, we define φ(f) to be the
closure of ]Γ φ(ζjf)9 and then (4.9) belongs to the domain of φ(f) also.

j

B y t h e n u c l e a r t h e o r e m , w e c a n r e p l a c e t h e t e s t f u n c t i o n /^(x) ••• ®hn

e^(R2)(g)' '(S)^(R2) by a test function he^{R2n). We then have

φ(f) (φVί... φVn) (h)Ω = const.(φ v i... φj {h)Ω

+ (φVί...φVnπ)(h1)Q (4.15)

+ (φxφVi...φJ(h2)Ω.

The constant is given by (4.6) and hx and h2 depend continuously on /
and h in the ^-topology. We use (4.15) to bound φ(f1)...φ(fn)Ω by
induction on n. This completes the proof.

We conclude with some comments on the status of the missing
Wightman axioms. Bounds on the vacuum expectation values of products
of fields φ(x, t) would follow, for instance, from an estimate

Nτyt<g ^ const.(Hv + / ) ,

uniform in F, without consideration of the mass gap. It is possible that a
Poincare-invariant vacuum could be constructed by averaging over the
Lorentz automorphism σΛ of homogeneous Lorentz transformations
of 9ί. In the reverse direction, it is possible that a unique vacuum could
be found by decomposing into components irreducible under 91, see [1].
In either case, the problem would be to preserve the locally Fock property
in the construction. Both constructions preserve the spectral condition.
If the vacuum is unique, not just as a Hilbert space vector, but also as a
C* algebra state on 91, then it is Poincare invariant. If we are given a
Poincare invariant state ω, the automorphisms σ{αA} are implemented
by a continuous unitary representation U(α, Λ) of the Poincare group.
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