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Abstract. It is shown that if 51 is an irreducible C* algebra on a Hilbert space #£ and
N is the set of normal states of 51 then the weak and uniform topologies on N coincide and
are identical to the weak*-5I topology for each 51D £(£pf). It is further shown that all
weak* topologies coincide with the uniform topology on the set of normal states with
finite energy or with finite conditional entropy. A number of continuity properties of the
spectra of density matrices, the mean energy, and the conditional entropy are also derived.
The extension of these results to locally normal states is indicated and it is established that
locally normal factor states are characterized by a doubly uniform clustering property.

t . Introduction

We consider subsets of normal and locally normal states over
C* algebras which have the property that all induced weak* topologies
coincide. These considerations are motivated by quantum statistical
mechanics where the physically relevant structure appears to be given
by subsets of locally normal states equipped with the weak* topology
of the associated quasi-local algebra. As there is an inherent ambiguity
in the choice of the local algebras which generate the quasi-local algebra,
it is of interest to find that on most sets of physical relevance, e.g. the set
of states with finite conditional entropy, all possible choices of the local
algebras lead to the same weak* topology. It is also shown that the
continuity properties of a number of interesting functions, such as the
energy or conditional entropy, are also independent of the choice of
local algebra.

2. Normal States and Density Matrices

Let Jtf* be a Hilbert space. A density matrix is defined to be a non-
negative, trace-class, operator Q on 2? normalized such that
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The set of density matrices can be topologized in various manners with
the aid of the Hilbert space structure and for our purposes, it is con-
venient to consider the topologies induced by irreducible algebras of
bounded operators on ffl.

Let 9Z be an irreducible C* algebra of bounded operators on ffl. We
can associate with each density matrix Q a normal state COQ by the definition

coe(A) = Tr^gA)

and the set of density matrices is isomorphic to the set N of normal
states of 91. In general N is a proper convex subset of the set E% of states
(positive, linear, normalized, functionals) over 91. In the following we
consider the set N as the central object and view this set as the common
component of all the sets E^ associated with C* algebras 91 acting on ffl.

The uniform topology on N is a metric topology defined by the
distance

\\coe-a>ff\\= sup \a>0(A)-coa(A)\.
AeW,\\A\\ = l "

Next recall that the trace norm |||>4||| of an operator A on 3? is given by

sup \TT#(XA)\.

The Kaplansky density theorem however allows us to deduce that the
supremum in this definition can be taken over any irreducible sub C*
algebra 91 of 2(^f). Hence we deduce that

and the uniform topology on N is independent of the particular algebra
91 used in its definition; the uniform topology on N coincides with the
trace-norm topology on the density matrices. A basis of neighbourhoods
for the uniform topology is given by

^(cDe; e) - {coa; oja e N, \\a>Q - coj| < e)

where COQ e N and s > 0. It is readily checked that N is uniformly complete.
Next for each irreducible C* algebra 91 on ̂  we define a weak*-9l

topology by the following basis of neighbourhoods

i^(o}e'9 Al9 . . . , A n , c ) = = { c o a : > Q } f f E N , \ Q } f f ( A i ) - a ) e ( A i ) \ < c z = l, . . . ,«}

where coeeN, A1 e 91, . . . , An e 91, and £>0. The weak*-9l topology is
coarser than the uniform topology. Further each weak*-9I topology is
coarser than the weak*-fi(jf ) topology. We refer to this last topology
as the weak topology on N because for each 91 it coincides with the
weak, or <r(9I*, 91**), topology restricted to N. (This follows from the
irreducibility of 91 and the identification of its bidual 91** with the
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von Neumann enveloping algebra of 21.) Note that if 2^ C 21 2 then the
weak*-^ topology on N is coarser than the weak*-2!2 topology on
N but in general the weak* topologies are not comparable. Note that if
Jtf* is infinite-dimensional then the set N of normal states is not closed
in any of the weak* topologies but is a relatively compact subset of the
dual of 91. If £ is the C* algebra of compact operators on Jtif then N — E^.

In the case that J4? is finite-dimensional all the above topologies of
course coincide. We next prove a result of this nature for the case that
Jf is infinite-dimensional

Theorem 1. Let (£ be the C* algebra of compact operators on the
Hilbert space 3? and 21 a C* algebra on 3? with the property that 21 D (L
Let N denote the set of normal states.

The weak*-*H, weak, and uniform, topologies coincide on N.

Proof. Let (0Q be an arbitrary state in N. We will show that each
neighbourhood of CDQ in the basis defining the uniform topology on Em

contains a neighbourhood of the basis which defines the weak*-2l
topology. The desired result then follows from the ordering of the
topologies.

Now COQ is normal and hence we can choose for each s > 0 a finite
rank projector EQ on ffl such that

For example EQ could be chosen to be a suitable spectral projector of the
density matrix Q associated with COQ. Now we can define a weak*-?!
neighbourhood of COQ by

-^j(co0 ; e) = {ft); co e Eg,, sup \co(EQAEe) - co (EeAE)\ < el .
I AeM,\\A\\ = l \

In this form it is not immediately transparent that i^(coe'9 e) is a weak*-2I
neighbourhood but this is a consequence of the finite rank of EQ. Now
for each co 6 ^^(co^; e) we have

60(1 - Ec) = coe(l - EQ) + CDQ(EQ] - co(Ee)

and hence

0 ̂  o)(l - £e) ̂  |<ue(l - Et)\ + \(ae(Ee) - a,(Ee)\

<2e .

Further for each ̂  e 91 we can apply the triangle inequality and Schwartz
inequality to find

\co(A) - cot(A)\ g \(0(ECAEQ) - a>e(EtAEe)\
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and hence for co e H^(Q\ e) one concludes that

sup \co(A) - co0(A)\ < 8 + 21/e + 2]/2e ,
AeW\\A\\=l

i.e. the weak*-9l neighbourhood i^(a)e'9s) is contained in the uniform
neighbourhood ^{coe;S} where

^(coQ;d) = {a>;coeEyi, \\co- a>e\\ <S}

and

Thus the proof of the theorem is complete.
It is natural to ask whether the conditions of the theorem imply that

all weak*-9l topologies coincide on N even if 91 J G but one can show
by example that this is not the case.

The above result can be restated in terms of Hilbert space topologies
on subsets of the set of density matrices, or as a statement concerning
convergence properties. Note that as each density matrix is a compact
operator it is natural to consider in the latter connection the convergence
properties of eigenvalues and eigenprojectors. If A is a non-negative
compact operator on Jjf we denote by (^m(A))m^1 the eigenvalues of A
arranged in decreasing order and repeated according to multiplicity.
We also associate with A the spectral decomposition

oo

A = j dEA(X)l
0

and for each open subset A of [0, oo) we define the spectral projector

EA(A)=$dEA(l).
A

Theorem 2. Let tytbe a C* algebra of bounded operators on the Hilbert
space 3F which contains the C* algebra (£ of compact operators on Jjf.
Let (ga) be a directed set of density matrices and (a>eo) the corresponding
directed set of normal states over 91.

The following conditions are equivalent
1. (OJQO) converges in the uniform topology to coe.
2. (coQo) converges in the w<?a/c*-9I topology to the normal state coe.
3. (Q~) converges to Q in the trace-norm topology.
4. (Qy) converges to the density matrix Q in the weak Hilbert space

topology.
5. (@a) converges to the density matrix Q in the sense that the eigenvalue

^mtoa) converges to lm(g) for m = 1,2, ... and the eigenprojector EQ(x(A)
converges uniformly to EQ(A] for each interval A = (<5l5 <52) such that the
extremities do not belong to the spectrum of Q.
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The eigenvalues (AmfeJ)m^i and (^m(g))m^ of (0a) and Q satisfy the
inequality

Proof. Note that in condition 2 the specification that the limit element
is a normal state is essential, as is the specification in 4 and 5 that the
limit element is a density matrix. If similar specifications are made all
other intermediate forms of Hilbert space convergence, ultra-weak,
strong, ultra-strong, and uniform, are also of course equivalent to the
conditions of the theorem.

We remark that the estimate for the eigenvalues is true for any trace-
class operators 0a and 0; a proof is given, for example, in the appendix
of [2].

The equivalence of 1 and 2 is a result of Theorem 1 ; the equivalence
of 1 and 3 is discussed at the beginning of the section; the equivalence
of 3 and 4 is actually established in the proof of Theorem 1. It is known
that condition 3 implies condition 5; see, for example, [3] pages 365-367,
where a more general result is established. The proof of the theorem can
be completed by showing that 5 implies 4; this is essentially trivial and
we will omit the details of a formal proof.

Note that in [3] one actually establishes that if a is large enough,
and consequently \\\g — @J|| is small enough, then

\\Eea(A)-EQ(A)\\<C(A)\\\Q-6ai\\\

where C(A) is positive and independent of a.
One can restate the partial content of the above theorem as follows.

Corollary 1 . Let (A^) be a directed set of non-negative trace-class
operators on ffl . The following conditions are equivalent.

1. (Aa) converges in the weak operator topology to a trace-class operator
A and Tr^(^4a) converges to Tr^(yl).

2. (Aa) converges in the trace-norm topology to A.

This corollary is reminiscent of the well-known fact that a sequence
lFn of vectors in ffl converges strongly to *F if, and only if, {Fn converges
weakly to Y and || *FJ converges to | |<P||.

3. States of Bounded Energy

In this section we consider a C* algebra 91 acting irreducibly on $?
and special subsets of the normal states over 91. These subsets will be
singled out by domain requirements for an unbounded operator which
has the properties typical of a local Hamiltonian in quantum statistical
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mechanics; physically the subsets correspond to the states of finite
energy.

Let H be a lower semi-bounded self-adjoint operator on Jti? with the
property that the resolvent of H is compact, i.e. H has discrete spectrum
with finite multiplicities for each of the eigenvalues. We first define an
extension of each normal state to the operator H. There are various
equivalent ways of doing this but the following is most economical for
our present purposes.

Introduce the spectral representation of H by

H= d
- co

then for each m e [0, oc), such that m is not in the spectrum of H, define

Now for each a>Q e N we define H(Q) e [0, +00] by

Note that if (/im(0))m>i are the eigenvalues of Q and (^m)m>i are a cor-
responding complete orthonormal set of eigenfunctions then we have

H(Q)= £ ArM\\H^J2

m ^ l

where Hff^JI is set equal to plus infinity if *Fm is not in the domain
of H^. Using a similar convention one can also make the identifications

H(Q) = TTAQ+HQ*) = Tr^(H W) .

It follows from the last characterization that the function COQ E N
->H(Q) E [0, + oo ] is affine.

Theorem 3. Let $1 be an irreducible C* algebra on the Hilbert space
3? and let N denote the set of normal states. Let H be a lower semi-bounded
self-adjoint operator on 3£ with compact resolvent and introduce the sets
Dn(H) by

Dn(H] = {CDQ- CDQ e N, H(Q] ^n] n ̂  0 .

It follows that
1. Dn(H) is convex and closed in the weak*-$l topology on E<%.
2. The weak*~tyi, weak, and uniform, topologies coincide on Dn(H).

Proof. It clearly suffices to consider the case that H is non-negative.
Using the notation introduced above we define the spectral projector
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Em of H by
m

Em = j d£H(A)
0

and note that Em is of finite rank if m < -foo. Now for each co^ e Dn(H)
we have the inequality

/M x

n ^ #fe) ^ supcoJ J dEjjUU ^ ma>Q(l - Em)
M \m I

i.e. we have

uniformly for all coe e Dn(H) 1.
Next note that if coQx is a directed set of states in Dn(H) which con-

verges in the weak topology of 91, i.e. in the <j(9I*, 91**) topology, to a
state co e J% then one has

where Em is identified as an element of the bidual of 91 and co is identified
with its ultra-weakly continuous extension. It follows immediately that
CD e N. Now note that as CDQ e N-+H(g] is affine Dn(H) is convex. But as
H is defined over N as the supremum of a family of weakly continuous
functions it follows that it is lower semi-continuous in the weak topology
on N. Consequently Dn(H) is closed in the weak topology on N and thus
closed in the weak topology on E^ by the argument given at the beginning
of the paragraph.

It follows from Theorem 1 that the weak and uniform topologies
coincide on Dn(H) because Dn(H) C N and we next demonstrate that they
coincide with the weak*-9l topology.

Using the above estimate and repeating the calculation used in proof
of Theorem 1 we find

\\coQ(B) - coff(B)\ - \coQ(EmBEm) - coa(EmBEJ\\ g 4(n/m)* \\B\\

for all coe, a}a 6 Dn(H) and all B e £(JT). Now take OOQ e Dn(H) and con-
sider the weak neighbourhood W of O)Q given by

where Bt e Q(J^) with || Bt\\ ^ 1 for i = 1, . . . , p, and £ > 0. Now choose m
such that 0 < 4(n/m)* < e/5 and choose A{ e 91 such that

\\(Ai-B^Ea\\<e/5, \\At\\£l, i = l,...,p.
1 We are indebted to O. E. Lanford for pointing out an estimation of this nature in a

related context.
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The last choice is made possible by the finite rank of Em, the irreducibility
of 21 on Jtf, and the Kaplansky density theorem. Finally define the
weak*-2i neighbourhood by

Using these choices and the foregoing inequality we then find for
each coa E Hfyn that

K(£f) - co0(B& < e/5 + \coQ(EmB{EJ - co^E^EJ

\coe(Ai)-coff(Ai)\

i.e. we have ̂ t C W and hence the topologies coincide on Dn(H).
Finally we prove that Dn(H) is closed in the weak*-2I topology on

EW. Let coQx be a directed set of states in Dn(H) which converges in the
weak*-2l topology to a state CD. Thus (coQo) is a Cauchy system for the
weak*-2l topology. But the above estimates immediately show that
(cOgJ is a Cauchy system for the uniform topology. However N is complete
and Dn(H) is closed in this latter topology. Hence Dn(H) is uniformly
complete and (a>eg) has a uniform limit point co' in Dn(H). But we must
then have CD' = co, i.e. co E Dn(H\ and so Dn(H) is closed in the weak*-2l
topology.

In physical applications H(g) is interpretable as the mean value of the
energy of the state coe. It is often useful to have an affine extension of
H to the complete state space E^ of 21.

Corollary 2. Let 21 be an irreducible C* algebra on 3F . Define H as a
function over the state space E^ o/2I by

for coeeN
and

H(co}=+ao for co 6 E^\N .

/t follows that co 6 E<%-+H(co) e [0, + oo] LS o//7n^ an^ /6>wer semi-con-
tinuous in the wea/c*-2l topology.

The affinity follows because H is affine over N and if o/>co e £«a\N
then co; e E^\N. The function is lower semi-continuous because the sets

are closed in the weak*-2I topology by Theorem 3.
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4. The Conditional Entropy

We can assign an entropy S(g) to each density matrix Q by the
definition

S(g)= -Ti>folog0)

if — Q logQ is of trace-class and

S(Q)= +00

if — Qlogg is not of trace-class. Note that as 0 ^ Q rg 1, the operator
— QlogQ is bounded and compact (we follow the usual convention of
setting —tlogt=Q for t = 0) and hence the above definition is un-
ambiguous and defines a function coe e N-+S(a>e) = S(Q) over the normal
states.

In equilibrium statistical mechanics a function of central importance
is the conditional entropy S — fiH where j8 is a positive real number
which is interpreted as the inverse temperature and H is the function,
introduced in the previous section, which corresponds to the mean
energy. The definition of S — fiH is however ambiguous because both
5 and H can take the value plus infinity. In order to give an unambiguous
definition of this function, one must first investigate the relations between
the subsets of normal states for which S(Q)=+CO and H(Q)=+CO
respectively. We next give a result of this nature for a slightly specialized
class of H.

Theorem 42. Let $ denote the set of self-adjoint operators on ffl with
the property that

for all p > 0. For H e 39 define D(H) by

It follows that if coe e D(H) then

0 g - Tr^to logs) ^ pfi(Q) + logTr^ (e^H) < +00

for all (J>Q.

Proof. Note that if H e ̂  then H is automatically lower semi-bounded
with compact resolvent.

Let (/Lm(^))m^1 be the eigenvalues of Q. The above definition of S(Q)
is equivalent to the definition

2 This theorem establishes that the set of states with finite entropy contains the union,
over H e$, of the sets D(H); actually the containment can be proved to be an equality.
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(As all terms in the sum are non-negative it can in all cases be unambig-
uously defined and the sum is finite if, and only if, — Q log Q is of trace-
class.)

Next let (*Fm)m^i be a complete set of orthonormal eigenfunctions
of Q corresponding to the eigenvalues (Am(^))m^1. We have

H(Q)=
m ^ l

and using the convexity of the exponential function one finds that

Thus we have

But using the convexity inequality

— x(logx — logy) ̂ y — x x ^ 0, y > 0

one concludes that

Thus

0 ̂  Sfe) g j^Hfe) + logTr^(e^H) < +00

and the proof is complete.
The above results indicate the following definition for the condi-

tional entropy.
Let Vi be an irreducible C* algebra on the Hilbert space ffl . For each

H e £% and /? > 0 the conditional entropy is defined as a function over the
state space E^ of $1 by

SK / 0 #) = Sto) ~ JBH to) for co0

and
-ao for o)

Theorem 5. Retain the notation introduced above. For each H e $ and
/?>0 the conditional entropy is upper semi-continuous in the weak*-tyt
topology. The weak*-tyt topology and the uniform topology coincide on
the weak*-tyt closed subsets Dn(S; fiH) defined by

Dn(S;
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Proof. We first show that for each n there is an m such that

Da(S;pH)CDm(H)

and hence conclude that the topologies coincide on Dn(S ;/?//) as a
corollary of Theorem 3. If 0 < jS0 < /? we have from Theorem 4 that

g log 7rjr («-'»")- (j8 -jS

and thus the desired result follows with m given by

To deduce the semi-continuity of the conditional entropy over E^
it suffices to show that each of the sets Dn(S; fiH) is closed in the weak*-9I
topology. But from the above argument it then suffices to show that
CDQ 6 Dn(H) -+S(a)Q; PH] is upper semi-continuous for each n.

Now with the notation used in the proof of Theorem 4, we have for
each coQeDn(H)

where xm is defined by

But for each m we have

i\p e-$
Hy

i / \ V z m ' c A m,log

<0

where we have successively applied the two inequalities used in the proof
of Theorem 4. From this last inequality, we can. deduce that

S(toc; (IH)- log7rjr(e-"H) = inf ^ x m .
M

Now by Theorem 3 the weak*-2I topology and the uniform topology
coincide on Dn(H) and by Theorem 2, and the remark at the end of its
proof, the eigenvalues and eigenprojectors of Q are continuous, in this
topology, over Dn(H). Finally noting that one can write
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where HN is the truncated form of H used in the definition of H in
Sections, one sees that o)Qe Dn(H)-+S(a)Q; f$H] is the lower envelope
of a family of functions which are continuous in the weak*-2I topology
induced on Dn(H}. Thus the conditional entropy is upper semi-con-
tinuous in this topology over each Dn(H) and consequently over E^.
We emphasize that the continuity properties of Theorem 5 are valid for
each irreducible C*-algebra $1 on Jf .

5. Locally Normal States

In mathematical physics one is often interested in a situation more
general than the one we have discussed in the foregoing sections. In
particular one is seldom interested in the normal states of C* algebras
but in the locally normal states of algebras with a local structure. We
will next consider this situation from a similar viewpoint to that adopted
for normal states. We first introduce the notions of a locally normal
state and an algebra with local structure. We will not attempt to give the
most general definitions but consider a structure typical of that used to
describe systems of bose particles, i.e. the structure typically related with
the C* algebras associated with the canonical commutation relations.

First consider a collection of Hilbert spaces [J^A}9 where A runs
over the bounded open sets of Rv, which are interrelated by the tensor
product property

whenever A1nA2 = &- Next introduce a family {QA} of compatible
density matrices to be a family with the properties that QA is a density
matrix on 3?A, for each A, and

whenever A1r^A2 = 0. Next we assume that we have a collection of
C* algebras {21^} which satisfy the following conditions:

1. For each A, HA is an irreducible C* algebra of operators on 2tfA.
2. If AI CA2 then 2Iyli C 21 .̂ [In this second condition we implicitly

identify 11 Ai on Jfyli with the algebra HAl®lA2\Al on ^A2 where !AZ\AI

is the identity operator on 3tf'A2\Al.~] Finally we define the C* algebra 21
to be the uniform closure of all 21 .̂

In the sequel we will always assume that the families, {3?A} of Hilbert
spaces, {QA} of density matrices, and {21^} of C* algebras, under dis-
cussion satisfy the above conditions.

Now each family {QA} of density matrices determines a state COQ over
21 by the definition

a)Q(A) = Tr#A(QAA)
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for each A and each A e 91 ,̂ and by continuous extension to the elements
of $1 which are not contained in some 91 .̂ Conversely if we define L to
be the set of states CD over 91 which have the property that the restriction
of oj to each 91̂  is normal then it is easily checked that co defines a family
of compatible density matrices. We call L the set of locally normal states
over 91 and identify the families {QA} of density matrices with the cor-
responding states CDQ e L.

Now note that although the family {Jti?A} uniquely determines the set
of all families {QA} of compatible density matrices, it does not generally
determine the C* algebra 91 in a unique manner. Typically there are
several different families {91^} of local C* algebras which satisfy the
imposed properties and these families determine different C* algebras 91.
Thus the set L of locally normal states can be associated with several
different C* algebras 91 and can be considered as the common com-
ponent of the state spaces of all such algebras. We will again consider the
set L of locally normal states as the central object of our investigation
and refer to each C* algebra 91 with the above structure as an algebra
associated with L.

The set L, or its subsets, can be equipped with many topologies. If
91 is a C* algebra associated with L we can equip this set with the weak*-9l
topology, or alternatively, by restricting the states in L to the subalgebras
91̂  of 91 we can equip the set with the weak*-91^ topologies or the uni-
form-9^ topologies. We have seen in previous sections that there are
many situations in which these latter topologies can coincide. But if we
now consider subsets of L on which the weak*-21^ and uniform-91^
topologies coincide for all A then there are immediate implications for
the weak*-91 topologies.

Theorem 6. Let L be the set of locally normal states and let 91 and £
be two C* algebras associated with L. Denote the generating families of 91
and £ by {91^} and {£A}. Let K be a subset of L with the property that the
weak*-QlA and weak*-QA topologies coincide on K for each A C Rv.

It follows that the weak*-W and weak*-£ topologies coincide on K.
Assume further that the weak*-$lA and the uniform-^A topologies

coincide on K for each A C Rv then it follows that K is metrizable in the
weak*-fl topology.

Proof. The first statement of the theorem is a trivial consequence of
the definition of 91 and fi as the uniform closures of the families {91^}
and {QA} respectively.

The second statement results from the facts that the uniform-91^
topologies are metric topologies and that Rv is metrizable. In fact a
metric can be constructed for the weak*-9I topology as follows. Let
An, n = 1,2, ... denote balls of radius n centred at the origin and introduce
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the definition

N e-coJn= sup \co(A)-coff(A)\,
AeWAn\\A\\ = l

Note that

Now by the assumption that the weak^-91^ and uniform-91^ topo-
logies coincide, we can deduce that the neighbourhoods of each coe e K,
defined by

i^(cDQ;n, e) = {coff; co^eX, ||c0c-c0J|n<e}

form a basis for the weak*-9l topology induced on K. It then follows
from a standard argument (see, for example, [4], pages 208-209) that
the weak*-9I topology on K is determined by the following metric

- V {

\\toe-Wo\\ - L -^T-J

The above theorem is principally of interest in combination with the
results of the previous sections, for example, in combination with
Theorems 3 and 5.

Finally we generalize a theorem, essentially due to Powers [2],
concerning the characterization of locally normal factor states. For this
purpose it is useful to introduce the algebra 91̂  (cf. [5]) to be the C*
subalgebra of 91 generated by {91 ;̂ A r\A = 0). Note that the definition
of the subalgebras <HA of 91 is such that

whenever A1nA2 = 0 and consequently one has

[^,9I/1]=0 for all AcRv.

Theorem 7. Let 91 and £ be two C* algebras associated with the set L
of locally normal states and denote the generating families of 91 and £ by
{91^} and {£A}. For each coeL the following four conditions are equiv-
alent

J-siUfi)- ^ ls a factor state of 91 (of £j.
2^(2 Q). Given A C Rv and c>0 there is a A0C Rv such that

\co(AB)-co(A)a)(B)\<s\\A\\ \\B\\

for all A e WA (all A e £A) and all B e 9I/lo (all B E S,AJ.

This theorem was implicitly proved by Powers [2] in a special case
where the underlying Hilbert spaces are finite dimensional. In this case
there is a unique C* algebra 91 associated with the corresponding set
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of locally normal states and as each $1A is finitely generated the double
uniformity of condition 2^ is clearly equivalent to uniformity in the
"outer" algebra 5l/lo. The proof of the simplified theorem, i.e. the charac-
terization of factor states of 21 by a singly uniform clustering condition,
is then provided by Powers' estimates concerning families of normally
embedded Type-/n factors. In the more general case under consideration
various authors realized that Powers' estimates could be extended to
families of normally embedded Type-/^ factors 3 and have consequently
given characterizations of locally normal factor states by a cluster
property which is uniform in the "outer" algebra 9Iylo [5, 6]. It has how-
ever been overlooked that the local normality condition rather trivially
implies uniformity in the "inner" algebra 21^; this is established by an
estimate of the type made in Sections 2 and 3.

We will not give a detailed proof of the theorem but simply list the
main points of such a proof. It suffices to establish the equivalences for
a general algebra 91 associated with L and the special algebra £ defined
by the family of subalgebras QA — 2(^A). But condition 2fi then trivially
implies condition 2M because $1A C £A etc. Let 7c(9I) and TT(£) denote the
representations of 41 and £ constructed in the canonical fashion from
co. The irreducibility of the 21̂  on J4?A and the local normality of oj imply
easily that the strong closures of 71(91^) and n(£,A) (rc(2l) and TT(£)) are
identical and hence the corresponding centres z% and z2 are identical.
Thus conditions 13I and 1£ are equivalent. The arguments of [2,5,6]
show that

and applying this result in the manner of [2, 5, 6] one finds that 2^
implies 1^ and 1£ implies that if e>0 and E, a finite rank projector in
£,A, are given then there is a A0 3 A such that

o)(EAEB)-o}(EAE)a)(B)\<-^-\\A\\ \\B\\

for all A e£/l and all J5e£ylo. But given £ > 0 we can choose Ee£A

SUChthal

Here we use the fact that CD is normal in restriction to £yl. Finally we have

\a)(AB) - (o(A] co(B)\ < y \\A\\ \\B\\ + \co(EAEB) - co(EAE) co(B)\

<s\\A\\ \\B\\

for all v4e£ /1 and B e £AQ. Thus I f i=>2 f i=>23 l=>l9 j=>l f i and the proof is
complete.

3 This was first communicated to the author by O. E. Lanford in June 1968.
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