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Abstract. The generalized matrix elements of the unitary representations of
the Poincaré group are computed as eigendistributions of a complete commuting
set of infinitesimal operators on the group. The unitary representations of the
Poincaré group can be reconstructed from these matrix elements in a Hilbert
space of square integrable functions over the space of eigenvalues. Some properties
of these distributions (which are measures) are given and some characters are
computed from the explicit formulae for the matrix elements.

Introduction

It was suggested by LurgaT [1] to construct the quantum fields on
the Poincaré group instead of Minkowskian space (which is a homogeneous
space of Poincaré group). Numerous attempts were made to enlarge the
homogeneous space since then [2, 3]. In the attempt to construct this
field theory, it was necessary to obtain the ‘“‘exponentials” of the
Poincaré group, that is to say to begin to study the Fourier transform
on the group.

The harmonic analysis on the universal covering group of the proper
orthochronous Poincaré group (in this paper this covering group is
named improperly Poincaré group) is led trough with the simple idea of
using the “exponentials’” of the group. These “‘exponentials” must be
the eigenfunctions of the infinitesimal operators and the method is
therefore straightforward. In this paper, we first compute the eigen-
functions and in the following one, we shall study the Fourier transform.
Chapter 0 is devoted to notations and to some useful definitions.

In Chapter I, we derive the infinitesimal operators (in more mathema-
tical terms: the one-sided invariant vector fields on the group manifold)
by using the Lie algebra of the group. We get ten left generators (which
are ten independent right invariant vector fields) and ten right generators.
In the enveloping algebra we choose a complete subset of commuting
operators, which include the two Casimir operators (namely P? and W?),
four left operators, and four right operators.
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In Chapter II, we compute the eigendistributions of this Abelian
subset. The eigendistributions, which depend on the set of eigenvalues,
are in fact measures on the Poincaré group and when properly normalized
can be handled as matrix elements of irreducible representations of the
group, expressed on a continuous basis. By this way, we compute the
matrix elements for all the unitary irreducible representations, and we
get a fairly simple expression for them.

In Chapter IIT, we reconstruct the unitary irreducible represent-
ations from its matrix elements and we give some properties of the matrix
elements. As an application, we compute the characters for non-zero mass
representations.

Chapter 0. Notation and Symbols

A point in space time is denoted by a latin letter or by its com-
ponents:
& = (2o, %) = (g, ¥y, T3, X3) -
The metricsis positive on time like vectors, the Minkowskian product is

XY = %Yo — XY .

C and R are the complex and real number fields, V the set of integers.

The SL(2, C) group is the group of two by two complex unimodular
maitrices, its elements are denoted by capitals: X, Y, Z, and the matrix
elements of X are X;; with ¢,j=1, 2.

We need some subgroups of SL(2, C):

S U (2): unitary unimodular subgroup, its elements are U, V, W . ..

SU(1,1): an element of this group is called 0 (or P,@..) and
satisfies the relations O;; = 0%; 0,5 = 0% .

ST (2): triangular subgroup, its elements are called R(or S, 7T ...)
and satisfy the relations Ry, = 0, Ry, = R¥.
We set ai,-=—a—)ac—; and a;"j:ﬁa?j.

We define the differentiation matrices 0y, 0x«, 0xt by
Xll XIZ) all alz
— N T ( ) ,
X (X21 'X22 X a21 a22
Fow — 0% ai"z) Ot — o a{"z)
X* = aéxel aé‘z ’ xt = aigg 35‘2 )
and we use the notation

A-8X= 2 Aijaz‘j

=12
AB...C-0x=(AB...C)-0x.
In the same way we define

0 0 0 0
0= 0.3 = (52 570 502 320)
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Some particular four vectors are useful:

0 3 03
1=(1,0,0,0); 1=(0,0,01); 1=(1,0,0,1);

we shall use the same notation with an M replacing the 1’s in these

formulae:
0

M= (M0,0,0), ete.
Using the standard Pauli matrices oy, 0y, 05, 05, We define
H(z) = 2%y + 2oy + 220y + 2305,
and any X belonging to SL(2, O) realizes a Lorentz transformation
when we give its result X on any « by the formula:
H(Xx)=XH(@x)X'.
The stabilizator of a time-like (a light-like or a space-like) four
vector is isomorphic to S U (2) (to S T'(2) or to S U (1, 1)) which stabilizes f

03 38
(1 or 1) . The homogeneous spaces i.e. the spaces of left cosets of these
subgroups, can be identified to the corresponding orbits, that is:
1. the positive energy shell of the hyperboloid #% = 1;
2. the positive light cone;
3. the hyperboloid 4% = — 1.
For example, in the first case, the one-to-one correspondence is given by

0
k=X-11,

and the group acts on its homogeneous space by the canonical trans-

formation
k—XEk.

A canonical decomposition of SL(2, C) is obtained once a section in
the classes is given, i.e. when one has chosen an element in each class.
The simplest choice is to take the unique positive Hermitian element in
each class, which is named H;. We then have the relations

0 0
Hi'l=k=X-11
X=UH, (withU¢eSU®).

In the other cases, the results are the same and the formulae too are
similar:

i) SUQ): (U eSU(@2)
X="UH,
Hy=[1+ ko — ko] [2 + 2] /2 (1)
k=X"1 g .

28 Commun.math.Phys.,Vol.12
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H is a O function of k.

i) ST(2): (S €8T (2)
X=8T, @)
afky —pHEe\ . a= (ko + Eey2)2
Ty = (y 7)) with y = (b i) 20
08
k=X"11,

T is a O function of k for any k on the light cone.
iii) SUML1):(0€8U(1,1)
X=0F,
Fro={lk + (1 — |E|)o5] [2]k] — 2]7%/%} 1)
{Uk] + by — ikyoy + ily0,] [2 |K] (K| + F) 172/}

3
k=X"11.
F, is a 0> function of k, and %.
The invariant measure of SZL (2, C) splits into an invariant measure on
the subgroup and an invariant measure on the homogeneous space. We
take it to be
d8X = dBPU d*k[ky = d*S d*k|ky = d*0 d*k/k, 2)

where d3 U is the normalized Haar measure of S U (2) and the Eq. (2) fix
the normalization of the other measures:

1

a8 = m’{d(p dSm dS;kZ
: dor
it S=(5 )
1 d%a
PO =g T
if  0=ay0p+ 6,01 + @30, + 10305 (a§+ af — of — af = 1)
1 d%a
PU =573~
i U=ayo,+iaec (@E+ai+dd+a2=1).
We define the norm

| X[2 = 5 Tr XX" = (x 1.

This function is left and right invariant by SU (2) translations and its
reciprocal hyperbolic cosine can be used to define a distance between the
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classes of SU(2). We quote some relations:

|H, H 2 = p -
|H U= k- Uk
[F5 OF,|* =k2(JO]2 — 1) + 1 3)

1Tt ST|* = B3(IS[* — 1) + 1
[Hyl? = ko;  [F3l® = [Kl; [ T5l* = (kg + 1)/2k, -

The Poincaré group.

We denote its elements by Greek letters «, 5,9 ... or by a couple
(@, X)or(y, Y)... where x € R*and X ¢ SL(2, C).

The product is denoted multiplicatively and is defined by

(@, X)(y, ¥) = (¢ + X, XY) .
The two-sided invariant measure is taken to be
Ao =dizdsX .

Chapter I. The Infinitesimal Operators

The Poincaré group & being endowed with its invariant measure, one
can introduce the Hilbert space of square integrable functions on £,
which is called £2%(&). The group acts on this Hilbert space by the
formulae:

U @) () = floy)

V(@) (7) = f(ye) -
These are the left and right regular representations of the group. These
representations are unitary and one can easily check the relations

U@ UP=Up); Ule)=U(z?
V() V(B) = V(xp); Viw)= V(D).
The involution I of #2(Z), defined by
(L) () = f(e™),

realizes a unitary equivalence between these two regular representations.

When a one-parameter subgroup is given by its generator ¢, we can
derive an infinitesimal operator on the group manifold. Giving the one-
parameter subgroup in its exponential form, let us define

Quf = — o U(e0)f Qaf = — 57 V(e4)f ;

whenever f is a smooth function, for example C'®, these expressions make
sense and we get the infinitesimal operators associated to any . Each @,
(resp. @) is a right invariant (resp. left invariant) vector field on the
28*
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group manifold. They have the same commutation relations as the
generators of the group itself and any @, commutes with any @;.

In this way, one can exhibit a complete basis of right (resp. left)
invariant vector fields by taking the @,’s (resp. §;'s) associated with the
four components P, of the energy momentum and the six generators of
the homogeneous Lorentz group. These last generators can be written as
two vectors M and N (corresponding respectively to rotations and to
boosts: see for example ref. [4]). We give here the explicit expression of
the infinitesimal operators:

P,=1i0,
2M,= — 2ix N0, —6X -0y + X'6 -0yt (4)
2N, = — 2020, — 2i2)0, — 16X -0y — iXTo - 0gt
and
P;=—-X1P,
ZMdZXG‘aX—GXT'aXT (5)

2N, =iXo -0y +i6XT-0xt.
The symbol A stands for the vector product in R3.
We can then easily extend the domain of the infinitesimal operators
to include the distributions on the Poincaré group.
First, let us define convolution on the group: if 8 and 7' are dis-
tributions let us set

ST, 9)=<(S()® T (), p(xp))

whenever this expression makes sense, for any ¢ in 2 (£) (which is the
classical Schwartz space of functions on #) and with S(«) ® 7'(f) as
the product distribution on the product space Z x Z.

Let then ¢, be the Dirac measure at the point o € 2. We define

U)T =¢,+T
V()T =T # g1 .
This definition is consistent with the previous one when T is given by
a function. Finally, we define
QT — — i U(e*Q) T
. 0 iy
QuT = —i5; V(T

(this derivative is to be taken in distribution space [5]) then, one gets
the following relations (which are expected!):

Qs T, @) =—<T,Q,9)
QaT, =T, Qap)

and the @'s appear as first order differential operators.
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Let us now consider the algebra generated by these infinitesimal
operators. We can easily construct a set of commuting operators in a
standard way. First, among those generated by left operators, as the
last ones have the commutation rules of the Lie algebra of Poincaré
group, we can choose the six operators:

Py, Wy, W2

where, as usual, the W,’s are the Pauli-Lubanski operators

uvoo

W,y = g Suvgo PP M2
and ¢ is related to the M's and N's in the standard way. As the left
operators commute with the right ones we can also take the six operators
Py, Wasy, Wi
but in fact, we get the relations
Pi=P2 and Wji= W2

and we have only ten algebraically independent commuting infinitesimal
operators.
We can compute explicitly the Pauli-Lubanski operators:

2W o=~ (P,6)X 0y + X" (P,6) 0yt
2W, =—P,6X -0y + P, X 6-0x5i+iP, N6 X -0x+iP,\ (X16) Oyt
2Wao=X(Py6) 0y — (Py6) Xt -0yt (6)
2W, = P;sX6:0y—Py6 X 051 —iPy A (X6)-0y—iPy A (6XT)- 0yt .
Whenever PZ = M? > 0, let us define (% stands for d or g)
Syp=eM=*W,, (¢is the sign of the eigenvalue of P;)
S = Sy + i85,
Sy = 8p1 — ©85 .

On the eigenspace defined by P, = — M, we get the simpler explicit
form:

S,0=0

28, =—06X 0y +X'a 0yt

S = X105 + X205 — Xp1015 — Xp001

Sy =X§16f1+X§‘281"2~X11321-Xlzazz (7)
28,5 = X1y 0f + X1y 0fs — X3y 051 — X3, 0%,

- Xllall - X12612 -+ X2la21 -+ X22a22
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0
and when P, = M

Sqo=0

28,=X0'0y—6X' -0yt

8§ = — X350% — X585 + X305+ X505 (8)
Sz = — Xf10% — X305+ X12811+ Xp309

2Sd3 == X a Xglag]_ a + X;kza22
=+ Xllall —]L X2la21 - X]zam —X 22822 .

In fact these operators are first order differential operators on the
stabilizator group, and in this case, on the S U (2) subgroup.

Chapter 1I. The Matrix Elements as Eigendistributions
The solution of the equations
Py, X) =~y X)
can be written in the form
p(x, X) =e? 2y (X).
The equations P,y (z, X) = ky(x, X) can then be written as
(X1 — k) y/(X) =
These equations have a non-zero solution only when £ and %’ belong to

the same orbit and their solution is a distribution the support of which
is the submanifold defined by the equation X-1&" — k= 0.

1. The Non-Zero Physical Mass Case
The compatibility conditions are

kK =k2= M*>0

N
0
One can solve the particular case when k= %" = ¢ M (¢ is the sign

of energy) by setting
P (X) = 9, (X) 0 *(X)
where w §%(X) is the measure defined by
[ 0BX) pX)BX= [ p(U)dBU
SL,C) ST @)

(this is the invariant measure of the submanifold of S U (2)).
If one defines (with p? = ¢% and pygq, > 0) the Dirac measure on the
mass shell at the point ¢:

0% (p, q) = |pd] *(P —q) O(pogo) »
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then one can write
00
08 (X) = wd® (X 1, 1) .
In fact when one parametrizes X by setting X = UH,,, X becomes a

function of U € SU (2) and of p which belongs to the positive mass shell
of the hyperboloid p* =1, and one gets

0
X1l=9p

dstdaU‘p_p
Po

00
w§® (X 1, 1) = P, 0%(p) .
0
When the integration over d®p is performed, one gets p =1 so that

X =Uand
00
[ wd® (X 1, 1) pX)d* X = [ oU)dU.
ST
The remaining equations are
(W2 4+ M2s(s + 1)) 0 (X) py(X) = 0
(Wes— MA) 03(X) po(X) =0
(Was — M3) 08 (X) p,(X) = 0.

0 0
With the conditions P, = — M and P, = M, the W,s, up to the constant
factor M, are the infinitesimal operators of the SU(2) subgroup, and
these equations lead to the matrix elements of many representations of
the SU(2) group. We can exhibit them easily by finding a generating
function, namely the function

D(X) = (Xqg + Xy + Xy + Xpp)**

which is an eigenfunction of W?2 with — M?s(s + 1) as eigenvalue.

The matrix elements are obtained by expanding @ into eigenfunctions
of W,5and W,,; this can be easily done by performing a Fourier integra-
tion over the two one-parameter subgroups generated by W, and W .
The normalization is then computed in such a way as to satisfy the
correct multiplicative property for the matrix elements.

The results are

¢ 2n 27 ) . )
fs).’l(X) = Z;.;z—of dnof le {(Xlle"i’i -+ X2le7"1) ere
+ (Xlze—irl + Xzzein) e—icp}ZsezM’n—Zilqz
C=[s—=A)(s+ M) (s— ! (s+ H)Y22s)!
(throughout this paper a! = I'(a + 1) is the factorial function).
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These functions are matrix elements of irreducible representations of
SU(2). When 2s € N, the representations are unitary and the matrix
elements have the usual properties:

48
} 2 fon(X) for, (¥) = fors, (X Y)
) 2 — 8
fsr2(X*) = i 2(X)
fora(X) = fou2(X) (X is the transposed matrix of X)
and when X belongs to SU (2), the two last relations give
foan (XT) = fiv 2(X) .
In fact, these functions are defined over the whole group SL(2, C).
Now we can write the solution of our problem in the particular case:
0
Pl X) = M w8 (X) fop2(X)

then the general solution can be obtained by translating this particular
solution :

Y(sk' kA A; (v, X)) = et¥ 2 & (Hy X Hi V) fopa(Hp X L) (10)
and we write it in a short-hand notation
= e Ty (Hy X HiY)

The ranges of the eigenvalues are restricted by the conditions:
1. k& and %" belong to the same sheet of the mass hyperboloid

BR=F2=M>>0

2.2s belongs to N and A, A= —s,—s+1,...,+s, and H is
defined by

0
Hi M = ek .

2. The Zero-Mass Case
The compatibility conditions are now

E?=k=0 and Fkyky,>0.
) 03
In the particular case where we have k, = &y = ¢ 1 (¢ is the sign of the
energy) the solution is

¥ (&) = 91 (X) v0*(X)
where (X)) is an invariant measure carried by §7'(2) and defined by

v (X) p(X) d°X = [ @(S)d>S.
SL(2, ) ST(?)
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In the same way as for non-zero mass, we define the Dirac measure on
the zero-mass shell at the point ¢:

v0%(p, q) = |Pol 0*(P — q) O (Do)
and we can write

v (X) = va3(X0f,(iS>.

Now, the W,'s are operators of the Kuclidian group of the plane and the
remaining equations give rise to the matrix elements of this group,
which can be found for example in VILENKIN'S book [6]. For us, it is

very easy to get them by the same method, with a generating function.
We take

1. ]
P(X) = exp ot {rXy+ rXfs + 2sq}

et?l2 X,
when X = (0 e_lf ¢/2) .

This function is an eigenfunction of W2 with — 1% as eigenvalue and we
expand it (in the same way as before) into eigenfunctions of W,, and
W ,,; after normalization, the result is

A 1

v ! 17 - a8 d o

f?eAA(X) 27 ()f 7]eXP2 (11)

i {rXem i r Xfhetn + 2(F — Ny + (A + ) g}

and when 7 = 0, this matrix element is zero unless A = A’; »r must be a

real positive number; the cigenvalue of W2 is — 72, that of Sg3(= W)

is A and that of W, (= — §,;) is A'; ¢’ indicates the parity of 24 and

27 (it ¢’ = 0, Aand 1’ are integers and if ¢’ = 1, A and A’ are half integers).
In the case where r = 0 (finite spin), one has 1 = A'.

With these expressions, one can compute the character of S7'(2)
(r=+0)

1reX) = X freaa(X) = (3(g) + (1 ol — 20) [ eir ¥eieo=2 g
0

( 2 means a summation over all A such that 21 has the parity of e) and
2

also the orthogonality relations:

T/(‘ ) frera(S) fr*lsl,z{/ll (S) d?S = 55515/‘.';.{ 5“15(7‘ —79)[27, .
ST

These functions are matrix elements and we have the relations
%” frsZ'A(X) fre},ll(y) = frs}.’ll(X Y) (fOI’ T 0)
frel’l(XT) = ﬁ‘ksll'(X) .
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We can then write the particular solution and obtain the general one by
translating it:

pre k' kXA, (@, X)) = ¥ 9B (T XTi) frows(Tw X T
= ey 3 fLoaa(Tw X T
in short-hand notation, and the result is similar for the case r = 0.
The ranges of the parameters are given by:
— k and & belong to the same sheet of the light cone.
—ifr>0,e=0, 1 and 4’ are integers
e =1, A and 1’ are half integers

— if 7 = 0, the conditions are the same, but moreover 4 = A'.

(12)

3. The Unphysical Mass Case
The compatibility conditions reduce to

R=Fk2=— M2<0.

3
In the particular case where one has k = &’ = M, the solution is

Y (X) = p, (X) £6%(X)
where {§%(X) is an invariant measure of SU (1, 1) defined by

[ BX) pX)dX = [ ¢(0)d0.
SL(2,0) SU@1,1)

As for the other cases, one can define the Dirac measure on the
imaginary mass shell (defined by g) at the point ¢:

C0%(p, q) = |pol *(P — q) O (Peqo)
and then one can write
3 3
L3 X)= (6 (X 1, 1) .

Now, the W,'s are operators of the SU (1, 1) subgroup and the remaining
equations lead to its matrix elements. Matrix elements of the SU(1,1)
group are given by BArRGMANN [7] or BaruT and FronspaL [8]. From
our standpoint, they are easily obtained by using a generating function,
the same as for the SU (2) subgroup;

P(X) = (X1 + Xpp + Xy + Xyp)?*

and the corresponding eigenvalue for W2 is now M2 s(s + 1). One term
of its formal expansion (with o 4+ § = 2s) written as

(Xll + ‘}(12)0C (X21 + X22)’3
is an eigenfunction of §,4(8,, is defined to be — M-1- W) with

1 . . . . .
- (B — «) as eigenvalues. Now, we expand it into eigenfunctions of
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Sa0(Sqo= M~ W,,) by using an integration over the one-parameter
rotation subgroup generated by S;,, and we normalize it by a factor
N (A, A). The result is

N,(¥, 4 2 i ; ,
Pswa(X) = (275 Of do(Xy et + Xype'7)s+

(13)
. (X216i¢ + X22e—itp)s—l’e—2il<p .

When the unitarity relation and the composition relations

4; Wsz'z(X) wsu,(y) = Ysaa, (X7Y)

Pora(XY) = pop(X)* (for X €SU(L, 1))

are required, the ranges of the parameters are restricted and the nor-
malization factor is settled up to a phase factor:

1. s = — % +i90 (o> 0); 21 and 21 are integers having same parity
and any sign
NV, 4)=1
2. — 1= 2s< 0; 4, A are integers of any sign

NV, ) =[5+ DA —s— D2 (s + X)) (A—s — 1)I]-172

3. 2s is an integer = — 1,21 and 21’ are integers of the same
parity as 2s and
a) Aand A>s

N, A =[(s+ MDA —s+ D2 [(s+ AV (A —s—1)1]"12
b) Zand A < s
Ny, D) =[(s— (= A —s— D)IPE[(s — A) (= A —s — 1)1V,

These matrix elements have the same normalization as those of Bargmann
in the discrete case (3a and 3b).

To distinguish between them, we introduce a parameter ¢ which can be

e =0 : continuous series with A and A’ integer (case 1 or 2)

e=1 : continuous series with A and A’ half integer (case 1)

& = + : discrete series with positive 1, A’ (case 3a)

&= — : discrete series with negative 4, A’ (case 3b).

Then the values of s and ¢ completely fix the representation and we
can denote the matrix elements by the symbol

fes).’l(X) .

From BareMaNN’s work (or directly from the expressions of the matrix
elements given here in the case of the discrete series) we get the orthogo-
nality relations:
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1. Discrete series with s = 0
1 y
52 3(0) foy 51272, (0) d20 = EICTES] Os5y 056, 072022, - (14)

SU@,1)

. . . 1.
2. Continuous series with s = — -+ ip (0 > 0 and ¢ = 0,1)

tanh 7z g)(2e~1) _ )
J 120 sy 0 20~ LTI 000 — 00) 81401, 00 - (14)
By summing up the diagonal matrix elements given in their explicit form,
we can compute the characters y,, for:

1. the continuous series
— ITrX > 2, weset TrX = 27chy/2 with yyreal and 7 == + 1 and we get

—1

Zes(X) =1°ch (25 + 1) 5 - |sh o (15)
—IfTrX < 2, we get
Xes(X) =0
2. The discrete series
— If TrX > 2, we set TrX = 27ch#/2 and we get
Kes(X) = 71,—1236_(2“' DI shyj2)-1 (15"

— It TrX < 2, we set TrX = 2cos ¢/2 (¢ is taken to be the angle of the
rotation conjugate to X), and we get

Jor(X) = 5 eiei*(@5 D912 (sin gj2) 1

Now, we define ¥, for k2 = — M2 by setting

3
FiiM =k.

Then by translating the particular solution by ¥} and F,,, we get the
general one

P(esk kA A; (x, X)) = ¥ o0 (Fp XFEY) fosnn (B X FiY) 16
= eiklwcézifesl’l(Fk'-XFk—l) . ( )
Chapter III. Properties of the Eigendistributions

Let us define a double index (v, ¢) which, as we shall see, characterizes
the representations:
a) Non-zero physical masses M > 0
v=M;0= (g8 (withe= 4+1 and 2s¢N)

¢ is the sign of the energy, s is the spin of the representation and then
MA=—s8—-s+1,...,+s.
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b) Zero mass
v=0;0= (g ¢, u) ¢ is the sign of energy; &' distinguishes between
the representations:
— &' = - or —: finite spin representation, 2y € N and the helicity is &'
—& =0,1: inﬁnite bpin representation, 4 and A’ are integers if
== 0, half integers if ¢ = 1, the eigenvalue of W?is — u2
c¢) Imaginary masses ¢ M

v=1M, o=(s,¢).

In the same way, ¢ distinguishes between the representations:
— if s is an integer = 0, ¢ = - gives the sign of A and A’ which are
integers and e, ed’ > s

e . 1 . . B
— if s is a half integer = — 5, & = + gives the sign of 4, A’ which

are half integers and ¢A, e > s

Y ) 1 , )
— if s is continuous and — 7= 8< 0,¢==0, 4 and A" are integers

~if s= — 5+ 1o with 9 > 0;e=0,1 and 22 and 21" are of the
same parity as e.

And in any case, k and k&’ belong to the same mass shell defined by
k? = I'? = »? (and in the cases a and b, they must have the same sign
of energy).

Now we reconstruct the unitary representations from the matrix
elements. First, we define the space 7, of the parameters (&, A):

a) T e oy 1,
b) Tgeer=T0 X Ly, (17)
c) T iarse=H i X L,

In these formulae, /3, is the mass shell of mass M and sign of energy e,
¥ is the e-energy light cone, 57, 5, is the imaginary mass shell (k% = — M?)
and discrete spaces for the parameter A are given by

Io={—s,—s-+1, ..., 8
I, ={c'r} if e= + (27 then belongs to N)
={Z+¢2tif & =0,1

(Z is then the additive group of integers and Z -+ L

1ts translated by 5 )
Lo ={e(s +1),e(s-2),...} if g= &
={Z+¢2} if ¢=0,1.

We define the measure on 7, by taking the product of the invariant
measure over the mass shell (we normalize it to be d®k/M?|k,| in non-
zero mass case and d®k/|k,| in the zero-mass case) by the natural measure
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over the discrete space I, for the index A, which is denoted 3 :
Aels

TEjvoé"::(ka)‘)

@k -
dﬂ(f)*‘m Aé‘g (i 22 0)

_ Pk 2 it =0
kol 2E7,
T, 18 a locally compact space and we can define the matrix elements as
measures over 7 ,, X 7 ,,. Let us denote them by the symbol (z and 7’
belong to J,,):
Uy ()

and we realize the representations in the space L*(Z ., d u(7)):

(@ () ) (v) = [ U (@) p(T) du(T') .

In fact, it is easily seen that this integral exists for almost all 7" and
defines an element of L?(7,,, d u) which can be written as

{QZMSS(’U X (p} k Z. == 6”” 2 fsﬂl (H;CXHX 1k)(p(X—1k, l/)

=8

{w0cr (&, X) @} (b, 2) = @m; EZ: Feran (T X Txhp) o (X%, A') (18)

(@M (0, X)) (0, 7) = €% 3 s (P XF ) (X1, 1)
Nelse

In these formulae, £ and % belong to the right mass shell and the
discrete space I, has been defined just before. With all the properties we
established for the matrix elements of the respective subgroup, we can
check that these formulae define all the unitary representations of the
Poincaré group (of non-null energy momentum). They are Wigner’s well-
known formulae and we established them as a subsidary result from our
computation of the “exponentials’” of the group. These exponentials are
needed for establishing the explicit formulae for Fourier transforms
on the Poincaré group.

We might also note that this gives a method of determination of
irreducible representations of a Lie group; one computes the eigendistri-
butions and adjust the normalization to an adequate measure on the
index spaces. This works for the Poincaré group and might work for
other Lie groups.

The matrix elements, computed as eigendistributions are, in fact,
fairly simple measures on the group, whose carriers are algebraic sub-
manifolds. We shall study their properties from a measure-theoretic
point of view.
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1. Unitarity
One extends to distributions the involution I defined in Chapter I by

setting
AT, ) =<T,19)
where 7' is a distribution, ¢ a test function and
(L) (@) = @)
When the right-hand side is computed, the following relations are
obtained :
Ty(sk'kA A; (2, X)) = p*(skk'A2"; (2, X))
Iy(rek' kA A; (x, X)) = p*(rekk’ AN ; (z, X)) (19)
Ty(esk'kA' 2; (x, X)) = p*(eskk' AN ; (w, X)) .

This is the unitarity of the generalized matrix elements expressed over a
continuous basis indexed by (£ 4).

2. Composition Relations
As we have established that the eigendistributions are matrix
elements of unitary irreducible representations of the Poincaré group,
the relation
J U () U (B A p (') = Ui (o f)
must be interpreted as a weak integral of a measure:
[ (o) {J U5 (B) o) du(x”)} du(v') = [ U5 (xf) @(x") du(r"”)

and has a meaning for any ¢ continuous with compact support. We can
also have another interpretation as a weak integral of measure over the
group itself, that is

J s () {f we (B) p(B) d° By d (') = I(g).

The left-hand side is easily computed by applying the Fubini theorem
on the product space 7 ,,x £ and when the integration over du(z’) is
performed first, the expected result is obtained:

/‘ +s sk’
D) w(skk AN o) w(sk'kE"A' A", ﬁ)m = Y(skk" AA"; a f)

HYy N =—s

[ > y)(rs'lclc’l/'l’;a)w(re’k’k”).'l";ﬂ)%=y)(rs'lck”/u”;ocﬁ)

¥e Vel
3 Jo’ rr 1,
5 pleskk 25 o) plesh kA N"; ) g~ VESRE AN 2 ).
J%M}"el“ °

(20)
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3. Orthogonality Relations
They are similar to the relation

oo
[ etkeemilady = 27 §(k ~ k')

e

which must be understood as

+ o0
[oerr et gk yda = 2x {5k — k'), pk')) = 2m (k) .
This relation is true when ¢ is smooth cnough (for example when ¢ is
integrable and differentiable). This can be scen as a weak integral of
distributions on the index spaces, and this method gives a justification
for the formal computations, at least in the physical non-zero mass case.
Another way to understand such a formula is to take it as a Bessel-
Parseval formula for the Fourier transform, then the orthogonality
relations hold for all the representations present in the Plancherel
measure (see Part 1I).
We just list now the result which are easily computed formally :

[w(sk kA A o) w* (sybrhy Ay A1 o) AV

(27'5)4 (54(11 — /C )1W2w5 (]C /"I) 2 + 1 6;;1(37 /l
gﬂf wre' B kA Ay o) w* (rey ki by 2 Ay o) d00 (21
— @y — )r 8k, k) 2 808,500

[ w(esk kA A; o) p*(eysylei by A Ay ) AV
7

 (2mp
T 2@s+1)

O(k" — ky) M2L 03 (k, ky) OgeOss, 022y 07474
when 2s € N and ¢ = -, and

[ wlesk' kA A; ) w* (ey8,kykey Ay 2y 5 o) AP0
! = (2m)* 04 (k' — ki) M2EO2 (K, ky) 056y 052705 2, C(0) O(0 — 0p)
when s = — + tpand e =0, 1; C,(p) == 4p(tanhs ) —22) .

4. The Character of Non-Zero Mass Representations

A matrix element is a measure on the Poincaré group, so we can
define, for any test function ¢ the quantity

LU, @)y .
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When this function of 7 is integrable, it defines a functional of ¢ which
is in fact the trace of the operator

Up) = [ U (@) p(ax) &0

defined in the representation space.

This computation has been already done by Joos and ScHRADER [9],
but we were able to prove that, with an adequate limiting process to
define the integral

] s, @) d(7)
Tvo
it makes sense for any y continuous with compact support in the physical
mass case; the character is a measure on the group.

In the non physical mass case, we need someting more, namely that
@ is continuously differentiable on the group, then the integral makes
sense and defines a measure.

The characters can be written pointwisely, they are invariant by
conjugation and we give here their expressions for the diagonal element
of each conjugation class:

a) Physical mass:

-+

d
CM ) (x, X) = —égg{% f o1& (o o — 3 &) -7]?— (22)
. en+ig)2 0 -
where X = (0 e—(77+itp)/2)
sin(2s+ 1) /2
20 ="z
ko=)/k3 + >
b) Non physical mass
-+ oo
FMG6O (2, X) = y,4(X) %7;/2 {et oo —Taws) gt (kaGuthsm)} _d]%

9(9) + (g + 271) i M (2,008 0 -+ @, 5in 0) o

+ ng(X) 4511277/2 ,f et M (10080 225In0) 7 ) (22 )

where X has the same definition as before, &, = Vk% + M? and Zes(X)

are the characters of the representations of SU (1, 1) we computed in
Chapter II. For more details one can see ref. [9, 10].
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