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Abstract. The generalized matrix elements of the unitary representations of
the Poincare group are computed as eigendistributions of a complete commuting
set of infinitesimal operators on the group. The unitary representations of the
Poincare group can be reconstructed from these matrix elements in a Hubert
space of square integrable functions over the space of eigenvalues. Some properties
of these distributions (which are measures) are given and some characters are
computed from the explicit formulae for the matrix elements.

Introduction

It was suggested by LungAT [1] to construct the quantum fields on
the Poincare group instead of Minkowskian space (which is a homogeneous
space of Poincare group). Numerous attempts were made to enlarge the
homogeneous space since then [2, 3]. In the attempt to construct this
field theory, it was necessary to obtain the "exponentials" of the
Poincare group, that is to say to begin to study the Fourier transform
on the group.

The harmonic analysis on the universal covering group of the proper
orthochronous Poincare group (in this paper this covering group is
named improperly Poincare group) is led trough with the simple idea of
using the "exponentials" of the group. These "exponentials" must be
the eigenfunctions of the infinitesimal operators and the method is
therefore straightforward. In this paper, we first compute the eigen-
functions and in the following one, we shall study the Fourier transform.
Chapter 0 is devoted to notations and to some useful definitions.

In Chapter I, we derive the infinitesimal operators (in more mathema-
tical terms: the one-sided invariant vector fields on the group manifold)
by using the Lie algebra of the group. We get ten left generators (which
are ten independent right invariant vector fields) and ten right generators.
In the enveloping algebra we choose a complete subset of commuting
operators, which include the two Casimir operators (namely P2 and W2),
four left operators, and four right operators.

* In partial fulfilment of the requirements for the degree of Docteur d'Etat
es-Sciences Physiques, Faculte d'Orsay, Universite de Paris 1969.

** Laboratoire associe au C.N.R.S.
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In Chapter II, we compute the eigendistributions of this Abelian
subset. The eigendistributions, which depend on the set of eigenvalues,
are in fact measures on the Poincare group and when properly normalized
can be handled as matrix elements of irreducible representations of the
group, expressed on a continuous basis. By this way, we compute the
matrix elements for all the unitary irreducible representations, and we
get a fairly simple expression for them.

In Chapter III, we reconstruct the unitary irreducible represent-
ations from its matrix elements and we give some properties of the matrix
elements. As an application, we compute the characters for non-zero mass
representations.

Chapter 0. Notation and Symbols

A point in space time is denoted by a latin letter or by its com-
ponents :

X = (XQ , 30) = \XQ , X^, X%, Xg) .

The metrics is positive on time like vectors, the Minkowskian product is

C and R are the complex and real number fields, N the set of integers.
The SL(2, C) group is the group of two by two complex unimodular

matrices, its elements are denoted by capitals: X, Y} Z} and the matrix
elements of X are Xίό with i,j= 1,2.

We need some subgroups of SL(2, C):
S U ( 2 ) : unitary unimodular subgroup, its elements are U9 V, W . . .
$£7(1, 1): an element of this group is called 0 (or P, Q . .) and

satisfies the relations Ou = 0*2 Oιa = Ofi.
ST(2): triangular subgroup, its elements are called .72 (or $, T . . .)

and satisfy the relations E21 = 0, En = J?*2

We set dt* = ^v and df. =
« dXti v

We define the differentiation matrices dx, dx*, dx-\ by

and we use the notation

AB...C dz= (AB...G) dz.

In the same way we define
/ o d o Ό

χ — ( χ 0 > x) — \dx0 ' dx1

9 dx2' dxs/'
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Some particular four vectors are useful :
0 3 03

1 = (1,0,0,0); 1 = (0,0,0,1); 1 = (1,0,0,1);

we shall use the same notation with an M replacing the 1's in these
formulae :

o
M = (Jf ,0,0,0) , etc.

Using the standard Pauli matrices σ0 , σ1 , σ2 , cr3 , we define

H(x) = xQσ0 + xlσ1 + #2σ2 + #3σ3 ,

and any X belonging to SL(2,C) realizes a Lorentz transformation
when we give its result Xx on any x by the formula:

H(Xx) = XH(x)X* .

The stabilizator of a time-like (a light-like or a space-like) four
o

vector is isomorphic to S U (2) (to 8 T (2) or to 8 U (1, 1)) which stabilizes 1
/OS 3\

\ 1 or I/ . The homogeneous spaces i.e. the spaces of left cosets of these
subgroups, can be identified to the corresponding orbits, that is :

1 . the positive energy shell of the hyperboloid A2 = 1
2. the positive light cone;
3. the hyperboloid k2 = — 1.

For example, in the first case, the one-to-one correspondence is given by
o

k = X-1 1 ,

and the group acts on its homogeneous space by the canonical trans-
formation

A canonical decomposition of SL(2, G) is obtained once a section in
the classes is given, i.e. when one has chosen an element in each class.
The simplest choice is to take the unique positive Ξermitian element in
each class, which is named Hk. We then have the relations

o o
jEΓj-i 1 = A = x-i i

Σ = UHk (with U £ S 17(2)) .

In the other cases, the results are the same and the formulae too are
similar :
i) SU(2):(U£SU(2))

- kσ] [2 + 2*b]-
1/ (1)

o
k = X-1 1 .

23 Commun. math. Phys., Vol. 12
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Hk is a C°° function of k.

ii)

y α
03

- Z-1 1 ,

!Γfc is a (7°° function of & for any k on the light cone.

in) BU{I,l):φ ζaϋ{l,-I))

2rV2} (1")

[2 |ftj (|fe| + ^)]-1/2}

i^fc is a (7°° function of &0 and .̂
The invariant measure of SL(2, C) splits into an invariant measure on
the subgroup and an invariant measure on the homogeneous space. We
take it to be

(2)

where d3 U is the normalized Haar measure of S U (2) and the Eq. (2) fix
the normalization of the other measures :

*
τ?W

if 0 = α0σ0 + alσI 4- α2σa + iaBσ3 (α§ + α| - αf - α| = 1)

2π* a0

if U = a0σQ + iuσ (α§ + αf + α| + α| = 1) .

We define the norm

This function is left and right invariant by SU(2) translations and its
reciprocal hyperbolic cosine can be used to define a distance between the
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classes of $£7(2). We quote some relations:

IliWT = P *

(3)

The Poincare group.
We denote its elements by Greek letters α, β, γ . . . or by a couple

(a;, X) or (?/, 7) ... where x £ £4 and X ζ SL(2, C).
The product is denoted multiplicatively and is defined by

( x , X ) ( y , Y) = (x + Xx,XY).

The two-sided invariant measure is taken to be

Chapter I. The Infinitesimal Operators

The Poincare group 0* being endowed with its invariant measure, one
can introduce the Hubert space of square integrable functions on ,̂
which is called £?2(&). The group acts on this Hubert space by the
formulae :

These are the left and right regular representations of the group. These
representations are unitary and one can easily check the relations

Z7(α) U(β) = U(xβ);

V(Λ) V(β) = V(*β);

The involution I of ^ί(0>), denned by

realizes a unitary equivalence between these two regular representations.
When a one-parameter subgroup is given by its generator Q, we can

derive an infinitesimal operator on the group manifold. Giving the one-
parameter subgroup in its exponential form, let us define

whenever / is a smooth function, for example C°°, these expressions make
sense and we get the infinitesimal operators associated to any Q. Each Qg

(resp. Qd) is a right invariant (resp. left invariant) vector field on the
23*
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group manifold. They have the same commutation relations as the
generators of the group itself and any Qg commutes with any Qd.

In this way, one can exhibit a complete basis of right (resp. left)
invariant vector fields by taking the Qg's (resp. Qd's) associated with the
four components Pμ of the energy momentum and the six generators of
the homogeneous Lorentz group. These last generators can be written as
two vectors M and N (corresponding respectively to rotations and to
boosts: see for example ref. [4]). We give here the explicit expression of
the infinitesimal operators :

2Mg = - 2ix Λ dx - σX - dx + X^σ dx \ (4)

2Ng = - 2ix dXo - 2ίxQ dx - iσX - dx - iX^'σ - dtf
and

P*~ — X-1 P-*- d — -̂  ± g

2Md = Xσ dz - aX* - 3zt (5)

2Nd = ίXσ dx + iaX* 9zt .

The symbol Λ stands for the vector product in R3.
We can then easily extend the domain of the infinitesimal operators

to include the distributions on the Poincare group.
First, let us define convolution on the group: if S and T are dis-

tributions let us set

(S*T,φ} = (S(κ)® T(β),φ(ocβ)y

whenever this expression makes sense, for any φ in Q) (&} (which is the
classical Schwartz space of functions on &) and with S(<x) ® T(β) as
the product distribution on the product space & X 3P.

Let then εκ be the Dirac measure at the point α ζ &. We define

U(oc)T = sx*T

V(oc)T = T*εΛ-ι.

This definition is consistent with the previous one when T is given by
a function. Finally, we define

(this derivative is to be taken in distribution space [5]) then, one gets
the following relations (which are expected!) :

and the Q's appear as first order differential operators.
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Let us now consider the algebra generated by these infinitesimal
operators. We can easily construct a set of commuting operators in a
standard way. First, among those generated by left operators, as the
last ones have the commutation rules of the Lie algebra of Poincare
group, we can choose the six operators:

P W W2
Γ gj π < 7 3 > π (J

where, as usual, the Wμ's are the Pauli-Lubanski operators

and MQσ is related to the M's and N's in the standard way. As the left
operators commute with the right ones we can also take the six operators

but in fact, we get the relations

n = PI and Wl = W*

and we have only ten algebraically independent commuting infinitesimal
operators.

We can compute explicitly the Pauli-Lubanski operators :

άa) Sx - (Pd σ) X* dxι (6)

2Wd =PaoXσ dx-PaoσXϊ dxi-iPdΛ(Xσ) dx-iPa/\(σΣi) 3tf .

Whenever Pg = M 2 > 0, let us define (h stands for d or g)

Shμ = εM~l Whμ (ε is the sign of the eigenvalue of PhQ)

On the eigenspace defined by Pg = — M, we get the simpler explicit
form:
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o
and when Pd = M

(8)

+ ̂ 11̂ 11 + ^21^21 "~ ^12^12 ~ % 22^22

In fact these operators are first order differential operators on the
stabilizator group, and in this ease, on the 8U(2) subgroup.

Chapter II. The Matrix Elements as Eigendistributions

The solution of the equations

PβΨ(x,X) = -k'ψ(x9X)

can be written in the form

y(x,X) = eik'«y'(X) .

The equations Pd ψ (x, X ) = k ψ (x, X) can then be written as

(X~lkf - k) ψ'(X) = Q .

These equations have a non-zero solution only when k and k' belong to
the same orbit and their solution is a distribution the support of which
is the submanifold defined by the equation X~λk' — k — 0.

1. The Non-Zero Physical Mass Case

The compatibility conditions are

kϋk'Q > 0 .
o

One can solve the particular case when k = k' = ε M (ε is the sign
of energy) by setting

Ψ'(X) = Ψo(X)ωδ3(X)

where ωδ3(X) is the measure defined by

*X= f φ(U)d*U

(this is the invariant measure of the submanifold of $£7(2)).
If one defines (with p2 = q2 and pQqQ > 0) the Dirac measure on the

mass shell at the point q :

ωδ*(p, q) = [ft] δ*(p -q) Θ(p0q0) ,
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then one can write

( ° °\
ωδ*(X) = ωδ*(xi9l)

In fact when one parametrizes X by setting X = UH^, X becomes a
function of U ζSU(2) and of p which belongs to the positive mass shell
of the hyperboloid p2 = 1, and one gets

o
X~l I - p

Po

o
When the integration over d3p is performed, one gets p — 1 so that
X = U and

/ o o\
fωό*\Xl,l) φ(X)d*X^ f φ(U

517(2)

The remaining equations are

(W* + M*s(s + 1)) ωδ3(X) ψ0(X) = 0

With the conditions P g = — Jf and Pd == Jf , the TF/^, up to the constant
factor If, are the infinitesimal operators of the SU(2) subgroup, and
these equations lead to the matrix elements of many representations of
the SU(2) group. We can exhibit them easily by finding a generating
function, namely the function

which is an eigenf unction of W2 with — Mzs(s + 1) as eigenvalue.
The matrix elements are obtained by expanding Φ into eigenfunctions

of W g 3 and Wd%\ this can be easily done by performing a Fourier integra-
tion over the two one-parameter subgroups generated by Wd3 and Wg3.
The normalization is then computed in such a way as to satisfy the
correct multiplicative property for the matrix elements.

The results are

+ (Xizβ-ii + Xzΐe
irι) e - t f '

C = [(β - λ') I (a + λ') ! (s - λ) ! (*

(throughout this paper a\ — Γ(a + 1) is the factorial function).
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These functions are matrix elements of irreducible representations of
SU(2). When 2s ζN, the representations are unitary and the matrix

elements have the usual properties:

.*'* = * A

fsλ>λ(X) = f s λ λ , ( X ) (X is the transposed matrix of X)

and when X belongs to SU(2), the two last relations give

In fact, these functions are defined over the whole group SL(2, G).
Now we can write the solution of our problem in the particular case :

then the general solution can be obtained by translating this particular
solution :

V(8k'kλ'λ; (x, Z)) = efX'ωffiWvXHϊ^l.^HvXHjΓ1) (10)

and we write it in a short-hand notation

The ranges of the eigenvalues are restricted by the conditions :
1. k and k' belong to the same sheet of the mass hyperboloid

2. 2s belongs to N and λ, λ' = — s , — s -f I, . . . , -f s, and Hk is
defined by

2. The Zero-Mass Case

The compatibility conditions are now

In the particular case where we have k0= k'Q — el (ε is the sign of the
energy) the solution is

v'(X) = ψ1(X)vδ*(X)

where v δ3 (X) is an invariant measure carried by S T (2) and defined by

--= f
ST(2)
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In the same way as for non-zero mass, we define the Dirac measure on
the zero -mass shell at the point g :

vδ3(p, q) = \pQ\ 63(p - q) Θ(pQqQ)

and we can write
03 03 \

Now, the Wμ's are operators of the Euclidian group of the plane and the
remaining equations give rise to the matrix elements of this group,
which can be found for example in VILENKIN'S book [6]. For us, it is
very easy to get them by the same method, with a generating function.
We take

ψ(X) =

vΛvhen X =
X12 \
e_iφ!2J .

This function is an eigenfunction of Wg with — ra as eigenvalue and we
expand it (in the same way as before) into eigenf unctions of Wg% and
Wd%i after normalization, the result is

** + 2(λ' ~ λ)η + (λ1 + λ) φ}

and when r = 0, this matrix element is zero unless λ~ λ' : r must be a
real positive number; the eigenvalue of TF2 is — r2, that of Sd3(— Wd3)
is λ and that of W(J3(=- — Sg3) is λ ;; ε' indicates the parity of 2λ and
2/1' (if εr = 0, λ and λ' are integers and if ε' = I, λ and λ' are half integers).
In the case where r — 0 (finite spin), one has λ = λ'.

With these expressions, one can compute the character of S T ( 2 )
(r Φ 0)

*„(*) = Σ' fren(Z) - (δ(φ) + (- l)ε δ(φ ~ 2π)} 2feir\x»\
λ 0

IΣ' πieans a summation over all λ such that 2λ has the parity of ε \ and
\ ^
also the orthogonality relations :

= δetlδλ.λlδλlίld(r - r0)/2r0 .

These functions are matrix elements and Λve have the relations

Σ' /r.AΆ W /r.AΛ^y) = /r.AΆxί-ϊ ^) (for r Φ 0)



We can then write the particular solution and obtain the general one by
translating it :

ψ(rε k'kλ'λ; (x, X)) = e**

in short-hand notation, and the result is similar for the case r = 0.
The ranges of the parameters are given by :
— k and lcf belong to the same sheet of the light cone.

— i f r > 0 , ε = 0, λ and λr are integers
ε = 1, λ and λ' are half integers

— if r = 0, the conditions are the same, but moreover λ = λ f .

3. The Unpliysical Mass Case

The compatibility conditions reduce to

& 2 -&' 2 - - M*^ 0 .

3

In the particular case where one has k = kf = M, the solution is

Ψ ' ( X ) - Ψ l ( X ) ζ S » ( Σ )

where ζ δ*(X) is an invariant measure of 817(1, 1) defined by

ζδ*(X)φ(X)d«X= f
SL(2,C)

As for the other cases, one can define the Dirac measure on the
imaginary mass shell (defined by q) at the point q :

and then one can write
/ 3 3\

ζδ*(X)=ζδ*\Xl,l)

Now, the WμS are operators of the $ £7(1, 1) subgroup and the remaining
equations lead to its matrix elements. Matrix elements of the $£7(1, 1)
group are given by BAROMANN [7] or BARUT and FRONSDAL [8]. From
our standpoint, they are easily obtained by using a generating function,
the same as for the 8U(2) subgroup

ψ(X) - (Xn + X12 + X21 + X^s

and the corresponding eigenvalue for W2 is now M2 s(s 4- 1). One term
of its formal expansion (with α -f β = 2s) written as

(Xu + Σlt)" (ΣΆ + X^

is an eigenf unction of 8gQ(8gQ is defined to be — M~l - W gQ) with

~<f (β ~~ α) as eigenvalues. Now, we expand it into eigenf unctions of
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^do(^do = M~* Wdo) by using an integration over the one-parameter
rotation subgroup generated by Sdo, and we normalize it by a factor
N8(λ',λ). The result is

γ o n n\ / £ 7t J ' / Ί Q'\

. (£ ρίφ I ^ g—i φ\S — λ' g—2 ίλ φ

When the unitarity relation and the composition relations

λ

ψsV^X-i) = ψ8λλ'(%)* (for X ζ S U ( I , 1))

are required, the ranges of the parameters are restricted and the nor-
malization factor is settled up to a phase factor:

1. s = — -a- + i ρ (ρ > 0) 2 λ and 2 λ' are integers having same parity

and any sign
Ns(λ',λ)=l

2. — I ^ 2s< 0; λ, λ' are integers of any sign

3. 2s is an integer ^ — I,2λ and 2 λ f are integers of the same
parity as 25 and

a) λ and λ > s

N8(λ', λ) = [(5 + λ)! (λ' - s

b) λ and Λ/ < s

N,(λf, λ) = [(s - λ)! (- λ1 - s - 1)!]V2 [(^ -/')!(- λ - s - 1) !]-!/' .

These matrix elements have the same normalization as those of Bargmann
in the discrete case (3 a and 3b).

To distinguish between them, we introduce a parameter ε which can be

£ = 0 : continuous series with λ and λ' integer (case 1 or 2)
ε = 1 : continuous series with λ and λ' half integer (case 1)
ε = -f : discrete series with positive λ, λ' (case 3 a)
ε = — : discrete series with negative λ, λ' (case 3b).
Then the values of s and ε completely fix the representation and we

can denote the matrix elements by the symbol

From BARGMANN 's work (or directly from the expressions of the matrix
elements given here in the case of the discrete series) we get the orthogo-
nality relations :



344 N.X.HΔI:

1. Discrete series with s ^ 0

S 17(1,1)

2. Continuous series with 5= — -̂ - -Mρ (ρ > 0 and ε == 0,1)

/
/tanli TΓ nV 2 ε -!>

/?.A A(0)/. ι n AίΛ ] (0)eZ 8 0 = -i - f- - ό(ρ - ρ0) 0,̂ 0.1 . (14')

By summing up the diagonal matrix elements given in their explicit form,
we can compute the characters χε s for :

1. the continuous series
— If Tr X > 2, we set Tr X = 2τch ηj2 with 77 real and τ = ± 1 and we get

-i
shf (15)

If TrJΓ< 2, we get

2. The discrete series
- If TrZ > 2, we set Tr JC - 2τch^/2 and we get

r ~

— If TrX < 2, we set TrJΓ = 2 cos ^9/2 (φ is taken to be the angle of the
rotation conjugate to X), and we get

., =

Now, we define F-^ for k2 — — M2 by settin

Then by translating the particular solution by F^ and F^ , we get the
one

V(e8k'kλ'λ; (x, X)) = e**«ζ&(FvXFϊ*) fesλ>λ(

general one

Chapter III. Properties of the Eigendistributions

Let us define a double index (v} σ) which, as we shall see, characterizes
the representations :

a) Non-zero physical masses M > 0

v = M σ = (ε, s) (with ε = ± 1 and 2s ζ N)

ε is the sign of the energy, s is the spin of the representation and then
λ, λ' = - s, - s -f 1, . . . , + s .
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b) Zero mass
γ = 0; σ = (ε, ε', μ) ε is the sign of energy; ε' distinguishes between

the representations:
— ε' =, 4. or — : finite spin representation, 2μ ζN and the helicity is ε' μ
— ε' — 0, 1 : infinite spin representation, A and λf are integers if

ε' — 0, half integers if s' =. 1, the eigenvalue of W2 is — μ2.
o) Imaginary masses iM

v = ίM, a = (s, ε) .

In the same way, ε distinguishes between the representations:
— if s is an integer ^ 0, ε = ± gives the sign of λ and λ' which are

integers and ελ, ελf > s

— if s is a half integer ^ — -̂  , ε = ± gives the sign of λ, λ' which

are half integers and ελ, sλf > s

- if 5 is continuous and — -̂  ̂  s < 0, ε — 0, A and λ' are integers

— if <s ~ — -9-+ ^ρ with ρ > 0; ε = 0, 1 and 2λ and 2 A' are of the

same parity as ε.
And in any case, k and k' belong to the same mass shell defined by

fcz __ ^'2 _ ^2 (an$ in the cases a and b, they must have the same sign

of energy).
NOΛV we reconstruct the unitary representations from the matrix

elements. First, we define the space 3~va of the parameters (k, λ ) :

a) ^J7eκ = ̂ Sf X / s

b) ^0,εV=n X /βV (17)

C) ^iMse^^iM X ^β-

In these formulae, Jfjf ^s ̂ ne mass shell of mass M and sign of energy ε,
"/^o is the ε-energy light cone, 30*iM is the imaginary mass shell (k2 = — M2)
and discrete spaces for the parameter λ are given by

Is = {— δ , — s -f- 1, . . ., ό }

/ε<r = {εV} if ε = ± (2r then belongs to N)

={Z + ε'/2} if εf = 0, 1

(Z is then the additive group of integers and Z -f -~- its translated by -^-1

/ββ = { ε ( 5 4 - l ) , ε ( « 4 - 2 ) , . . . } if ε^ ±

- {Z + ε/2} if ε - 0, I .

We define the measure on ^~vσ by taking the product of the invariant
measure over the mass shell (we normalize it to be d3k/M2\k0\ in non-
zero mass case and d3hl\k0\ in the zero-mass case) by the natural measure



346 N. X. HAI:

over the discrete space Iΰ for the index λ, which is denoted

== Ti/f 2 1 TT 2*ι (II V =1= Uj

if

&~va is a locally compact space and we can define the matrix elements as
measures over &~va x ^va. Let us denote them by the symbol (τ and τ'
belong to Fva) :

##(α)

and we realize the representations in the space L2(έΓrσ, dμ(τ)) :

(W"(«)φ) (τ) = / W&Mφtτ') d/*(τ') .

In fact, it is easily seen that this integral exists for almost all τ' and
defines an element of L2(έ7~va, dμ) which can be written as

*'r(x, X)φ} (k, λ) = e<»* Σ fsrw(TkXT^)<p(X-ik, λ'} (18)

In these formulae, k' and Jc belong to the right mass shell and the
discrete space Ia has been defined just before. With all the properties we
established for the matrix elements of the respective subgroup, we can
check that these formulae define all the unitary representations of the
Poincare group (of non-null energy momentum). They are Wigner's well-
known formulae and we established them as a subsidary result from our
computation of the "exponentials" of the group. These exponentials are
needed for establishing the explicit formulae for Fourier transforms
on the Poincare group.

We might also note that this gives a method of determination of
irreducible representations of a Lie group one computes the eigendistri-
butions and adjust the normalization to an adequate measure on the
index spaces. This works for the Poincare group and might work for
other Lie groups.

The matrix elements, computed as eigendistributions are, in fact,
fairly simple measures on the group, whose carriers are algebraic sub-
manifolds. We shall study their properties from a measure -theoretic
point of view.
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1. Unίtarity

One extends to distributions the involution I defined in Chapter I by
setting

where T is a distribution, φ a test function and

(Iφ) (α) = φ(a-i) .

When the right-hand side is computed, the following relations are
obtained :

Iψ(*k'kλ'λ; (x, X)} = ψ*(skk'λλf; (x, X))

I<φ(rεk'kλ'λ', (x, X)) = y*(rskkfλλf (x, X)) (19)

Iψ(εsk'kλ'λ] (x, X)) = <ψ*(εskk'λλ'\ (x, X)} .

This is the unitarity of the generalized matrix elements expressed over a
continuous basis indexed by (kλ).

2. Composition Relations

As we have established that the eigendistributions are matrix
elements of unitary irreducible representations of the Poincare group,
the relation

must be interpreted as a weak integral of a measure :

β) ψ(τ") dμ(τ")} dμ(τ') = f <%^(aβ) φ(τ") dμ(τ")

and has a meaning for any φ continuous with compact support. We can
also have another interpretation as a weak integral of measure over the
group itself, that is

/ «#(α) {/ tl Mβ) φ(β) d™ β} dμ(τ') = I(φ) .

The left-hand side is easily computed by applying the Fubini theorem
on the product space έ?~vσX & and when the integration over dμ(τ') is
performed first, the expected result is obtained :

Γ

J
+ 8

f Σ ' ψ ( r ε ' k k f λ λ f ,<z)ψ(rεfk'k"λ'λ"; |8)-ι^r= ψ(refkk"λλ" aβ)

ί Σ ι»(**bb'D' «Λ ,n(*Ak'k"lΊ" R\-^J^-= ψ(εskk"λλ"',aβ).

(20)
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3. Orthogonality Relations

They are similar to the relation

+ 00

/ eikxe~ik'xdx = 2π δ(k ~ kf)
-- 00

which must be understood as

+ oo

x = Zπ {d(k - j f c ' ) , < p ( & ' ) > = 2πφ(k)

This relation is true when φ is smooth enough (for example when φ is
integrable and tlifferentiable). This can be seen as a weak integral of
distributions on the index spaces, and this method gives a justification
for the formal computations, at least in the physical non-zero mass case.

Another way to understand such a formula is to take it as a Bessel-
Parseval formula for the Fourier transform, then the orthogonality
relations hold for all the representations present in the Plancherel
measure (see Part II).

We just list now the result which are easily computed formally:

/ ψ ( s k f k λ f λ α) ψ*(s1k[klλιλ{'9

ψ(rε'k'kλfλ; α) ψ* (r^k'^λ', A t ; α) *°α (21)

= (2π)4ό*(*/ -

sk'kλ'λ\ α) ̂ (^^^7^^^; α)

when 2 5 £ JV and ε = i , and

/ y(sslcΊcλ'λ\ α) ̂ fe^i^^i^^ α) dlQoc
&

ft, *i) ^e,^,^;/^^-^^) a (ρ - ρ0)

when s = — -^--\- iq and ε — 0. 1 Ce(ρ) ™ 4ρ(tanhτrρ)(1~2ε) .

4. ΪV&e Character of Non-Zero Mass Representations

A matrix element is a measure on the Poincare group, so we can
define, for any test function φ the quantity
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When this function of r is integrable, it defines a functional of φ which
is in fact the trace of the operator

defined in the representation space.
This computation has been already done by Joos and SCHRADER [9],

but we were able to prove that, with an adequate limiting process to
define the integral

it makes sense for any <φ continuous with compact support in the physical
mass case; the character is a measure on the group.

In the non physical mass case, we need someting more, namely that
φ is continuously differentiable on the group, then the integral makes
sense and defines a measure.

The characters can be written pointwisely, they are invariant by
conjugation and we give here their expressions for the diagonal element
of each conjugation class :

a) Physical mass :

J
^ o - / ^ ) _ L (22)

kv v '
— oo

/(η + iφ)l*

where X -

b) Non physical mass

2^ ΓJ

where X has the same definition as before, k3 = ]/A;§ -f Jf2 and χ ε s ( X )
are the characters of the representations of $£7(1, 1) we computed in
Chapter II. For more details one can see ref. [9, 10].
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