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Abstract. A method for constructing representations of non-compact semi-
simple groups from representations of semidirect product groups is presented.
Necessary and sufficient algebraic conditions for the method to work are given, and
these are applied to cases of possible irterest for the classification of elementary
particles.

1. Introduction
Let G be a non-compact, semisimple Lie group with finite center,

with K its maximal compact subgroup. Let G be its Lie algebra,
G = K e P its Cartan decomposition, i.e. [K, P] CP, [P, P] CK. Let G'
be its contracted Lie algebra: G' = K © P', isomorphic as a vector space
with G, and with the same commutation relations, except that

[F, F ] = 0 .
In previous work, we have pointed out that many unitary representations
of G can be constructed from unitary representions of G' in a simple way.
This is important from a practical point of view, since many aspects of
the theory of representations are much simpler for groups, such as G',
which are semidirect products of compact and Abelian groups. For
example, the problem of decomposing their tensor products is compara-
tively easy (e.g., see [3], Chapter 12).

The Gell-Mann formula is a particulary simple method of expressing
the operators of G in terms of those of G'. In [3], Chapter 18, we gave a
set of sufficient conditions that the formula hold, based on the geo-
metric properties of the representations of G'. In this paper we analyze
the formula in a more algebraic manner, using Wigner's method [7]
for describing the representations of Gf. The results to be obtained below
are more complete: again we find that the symmetric spaces KjL on
which G also acts transitively play the key role.

2. Representations of a group in terms of its contracted group
Let G, K, P and P' be as described above. Let Zu, 1 <; u, v, . . . <̂  m,

and Xi9 1 ^ i,j,... <g n9 be bases of K and P, respectively, that are
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orthonormal with respect to the Killing form of G. Adopt the summation
convention on these indices. Write down the structure constants of G
with respect to this basis:

a ) [Zu>Zv] = cuvw%iv

b) [Zu,Z<] = cu<iZ^ (2.1)

c) [Z,,Z,] = c<ittZtt.

Let G' = K © P' be the contracted algebra of G. Suppose that G' is
realized as a Lie algebra of operators on a Hilbert space H such that the
Zu are skew-Hermitian and the X\ are Hermitian operators. Suppose
that (aiuj) is a real tensor such that the following formula defines a
representation of G:

Xt = aiuiZuX'} . (2.2)

We shall examine in the next section the conditions that the (aiuj) must
satisfy in order that this be a representation of G. In this section we shall
assume it is so and deduce the consequences.

First, notice that the Xt so defined are not skew-Hermitian. The
method of [5], Section 5, can be tried to construct an associated skew-
Hermitian representation of G and a system of infinitesimal multipliers
which will enable the representation to be continued analytically.

Let Xf be the Hermitian adjoint of X{. Then,

Xf ~ —aiujXjZu

X, + Xf = «,„,[£„, XJ] (2.3)

The set of operators Xt + Xf is then abelian: By the results of Section 5
of [5] we obtain a skew-Hermitian representation of G by assigning
jj (Xi — Xf) to Xi9 with Zu continuing to define the representation of
K. Further, assigning J (Z< — Xf) + A(Z< + Xf) to Xi9 with I a fixed
complex number, defines an analytic continuation of the representation.

Now, (2.3) can be further simplified under the condition:
AdK acting in P is irreducible. (2.4)
For, AdK acts on the indices i and u via orthogonal transformations,

since the bases (Xt) and (Zu) are orthonormal with respect to the Killing
form and AdK preserves the Killing form. In order that the Xi trans-
form in the same way as the X\ under AdK the tensor (aiuj) must be an
invariant tensor under the action of K. (cuij) is also such an invariant
tensor; hence (diUjCujk) is also an invariant tensor. But, using (2.3), the
only such invariant tensor is a multiple of the tensor dik, i.e. we must
have a relation of the form:

aiujcu3'7c — pdiic •> with /S a real constant. (2.5)
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Hence,
X{ + Xf = pX't, (2.6)

i.e. the X[ themselves are the multipliers for the representation. Further,

\{Xi- Xf) = 1 aiuj (X'fZv + ZuXi)

One obvious candidate for the tensor {aiuj) would be the tensor {cuij).
Now, with this choice,

Let A — ZUZU be the Casimir operator of K. We see that this choice of
Xt leads to the "Gell-Mann formula" type of representation of G, i.e.

Conditions that this actually be a representation of G have been given
in [3]. Further investigations follow.

3. Conditions for the validity of the Gell-Mann formula

Suppose that (2.2) really does define a representation of G. We want
to derive the necessary and sufficient algebraic conditions on the tensor

The first condition is that the tensor be invariant under K. As we
have seen, this leads to (2.5), if (2.4) is satisfied. Now, (2.1c) must be
satisfied:

^ aiuja7cvh

= aiujakvn(ZuZvX'jX'h + ZU\X\, Zv] X'h — ZvZuX'hX-

Now let us apply both sides of this identity to a properly chosen vector
ip°. I t is most convenient to choose ip° as an eigenvector of the operators
X't, i.e.

(Since the operators X^ have continuous spectrum this requires that the
eigenvectors be "outside" the Hilbert space, e.g. "generalized eigen-
vectors" in the sense of GELFAND and VILENKIIST [1], Here, we are
following Wigner's method for describing representations of 0' [7]).
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The adjoint action of K on P' defines an action of K on the vectors
(p^: Let L be the group consisting of those elements of K that leave
($) invariant. L is then what WIGNEB, calls the "little group". Let L be
the corresponding subalgebra of K. For Z £ L,

(Ad Exp (tZ)X$ (tp°) = pVyj0 for all t.

Taking the derivative with respect to t gives:

[Z,X't]{yfi) = 0, or X'iZyfi = tfZyfl , (3.2)

i.e. L has a representation on the space of eigenvectors of P' with given
eigenvalue p$. Conversely, if Z satisfies (3.2), it belongs to L. In particular,
the set of all Z such that

Z(ip°) = 0 for all eigenvectors ip° of eigenvalues p® forms an
ideal of L, which we call L°. *°'

Apply ip° to both sides of (3.1).

CituZvW) = aiuiakvh(^^\Zu,Zv}-cvil^^Zu + cuhlp?pfZv) (yft),

hence:
cikuZu - aiujakvh(pfp%[Zui Zv] - c,np^p\Zu + cuhlp$p?Zv) g L° . (3.4)
Let us put this condition in a form independent of the basis chosen for
G. Define

Note that
Z£Lif and only if [Z9 Z°] - 0 and Z £ K. (3.5)
Now define T as a bilinear map P x P -> K by the formula:

T(Xi,Xi)^atviZu. (3.6)

It is readily calculated that 3.4 takes the form:

[Z, 7] + [T(X, X*), T(Y, X«)]-T(X, [T(Y, X°), X0])

+ T(7, [Z°, T(X, X0)]) ̂  L° for all I ? 7 ( P . (t>"7)

Now, (3.7) is a necessary condition that (2.2) define a representation of G.
However, it is also a sufficient condition: By WINNER'S work, if we chose
another system of eigenvalues (p\) of P', the element X1 = p}Xt would be
conjugate under K to X°. Note that condition (3.7) remains verified if
this replacement is made. Thus (3.1) is an identity among the operators
on II if (3.7) is true for one eigenvector yj°.

Let us now turn to the study of that T which leads to the Gell-Mann
formula, i.e.

T(X, Y) = c [X, Y] for X, Y £ P, where c is a real constant. (3.8)
(3.7) then takes the form:

[X, 7 ] + c*[[X, X°], [7 , X0]] - c2[X, [ [7 , ], ]] +

+ c*[Y, [X°, [X, X0]]] £ L° for all X, 7 £ P .
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Let us also suppose that
L = L°, i.e. the connected component of the little group acts as

the identity in the "rest frame". ^ ' '
We shall not pursue here the most general set of conditions for which

(3.9) is true, but shall concentrate on what seems to be the simplest
situation. Define subspaces M, A, B of G as follows:

A is the set ofX£Tf with [X, Z°] - 0. (3.11)
M and B are the orthogonal complement (with respect to the

Killing form of Q) of L and A in K and P respectively. * ' '
Then,

P = A e B ; K = L e M .
[Z°,B]CM; [X°,M]cB; (AdX0)2 (B) CB .

L © A is the centralizer of X° in G.
Now we can state our main result:
Theorem. Suppose that either:
L e A = Si5a symmetric subalgebra of G, and Gw = K + $P

7 (o.lo)
is simple,
or

AdL acting in M is irreducible, (3.14)
or

L is a symmetric subalgebra of K, and K is simple. (3.15)
Then, assuming (3.10), (3.9) is satisfied for one choice of c, i. e. the

Gell-Mann formula is verified.
Proof. First, assume (3.13). By definition of "symmetric subalgebra",

there is an automorphism s of G such that
a) s2 = identity,
b) S is the set of X $ G such that s (X) = X.
Note that the Killing form of G restricted to S is non-degenerate,

since S = S n K $ S n L . (This is the key property in this argument.)
Hence, G is the direct sum of S and its orthogonal complement, i.e.
B + M, which we call E. Since s leaves this orthogonal complement
invariant, and s has as eigenvalues only ± 1 , s must be minus the
identity on E, i.e.

[E,E]CS [S,E]cE. (3.16)
This gives the conditions

[B ;B]cL; [M,M]CL; [M,B]cA;
[L,B]CB; [L,M]CM; (3.17)
[A,B]cM; [A,M]cB.

(Notice that (3.17) implies (3.16) also.)
Then, (3.10) and (3.17) imply (3.9) in the following cases:

X, r<=B; X, Y£A.
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It only remains to verify (3.9) in the case: X £ A, 7 £ B. In this case (3.9)
is equivalent to

[Z, 7 —c2(AdZ°)2(7)] = 0 . (3.18)

In turn (3.18) is implied by the following condition:
(AdZ0)2 acting in B has a single eigenvalue (which can be

taken as c2). ( 3 '1 9 )

Let us now verify (3.19).
Notice that (3.17) implies that L -f iA is a symmetric subalgebra of

the compact real form of G, Gw = K + iP. We are assuming that Qu

is a simple Lie algebra: This implies that Ad(L + iA) acting in M + iB
is irreducible [2]. Now, iX° belongs to the center of L + iA; hence
Ad(*Z0)2 acting in M -f- iB must commute with Ad(L + iA). By
SCHUR'S lemma, Ad(^Z0)2 acting in M + iB is ~k, for some constant
Jc>0. This implies that Ad(Z0)2 acting in M © B is k, i.e. c can be
chosen as k; (3.19), hence also (3.18) is then satisfied, which implies (3.9).

Now assume (3.14) is satisfied: AdZ0 maps B isomorphically onto
M and commutes with the action of AdL. Hence, again (AdZ0)2 acting
in B must be a constant. Suppose that W is an eigenvector of AdZ0 with
eigenvalue A. (All eigenvalues of AdZ0 are real numbers.) Write

W = Z+Y9 with Z£K, 7 ^ P .
Then,

Conversely, such a pair of elements determines an eigenvector of AdZ°.
Then, either:

/ l - 0 , 7 £ A ; Z£L; o r Y£B;Z£M.

In particular, AdX° has only one positive eigenvalue. Suppose that W
is another eigenvector of AdZ° for eigenvalue X. Then:

[W, W'] = 0 if X + X =1=0

[W, TF']6L©A if I -—A' .

Writing out these relations gives (3.17), hence proves (3.9).
That (3.15) implies (3.14) is a well-known fact in the theory of sym-

metric spaces [2]. This finishes the proof of the Theorem.

Remarks
The fact that K is a compact subalgebra of Cr has not been used very

much; one would expect that some of the results carry over if K is a
general symmetric subalgebra of G. This will be considered in a later
paper. For example, carrying this over successfully would give a "Gell-
Mann formula" for representations of SO(4, 1) (the de Sitter group) in
terms of representations of its contraction, the Poincare group.
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In order that a given subgroup L of K satisfy these conditions, it
does not just suffice that L be a symmetric subgroup of K. In fact the
existence of such an L is a restrictive condition on the symmetric space
GjK. For example, if K has a non-discrete center, i.e. if GjK is a sym-
metric bounded complex domain, then the domain is a special type
called the "Siegel domains of type I". In this case the symmetric space
KjL occurs on the boundary of the domain as the "Silov" or ''distin-
guished" boundary. (Physicists are used to this as the part of the
boundary over which one must integrate for dispersion relations.)
Further, these domains also admit representations as "tube domains",
generalizations of the alternate realization of the inside of the unit
circle in the complex plane (= SL(2, B)I8O(2, R)) as the upper half
plane. See [6] for further details about these ideas.

4. Construction of discrete series representations using the Gell-Mann
formula

Suppose that G = K © P is as before, with the additional assump-
tions :

a) G is a simple Lie algebra.
b) K has a one-dimensional center; say, it is the multiple of (4.1)

an element Z° £ K.
AdZ° acts on P and commutes with the irreducible action there of

AdK. Hence, Z° can be normalized so that:
(AdZ0)2 acting on P is minus the identity. (4.2)
Then, the subset {X + i [Z°, X]: X £ P} = P~ of the complexification

of G is an abelian subalgebra. A representation of G by operators on a
Hilbert space H is said to be of discrete series type if there is a vector in H
which is annihilated by K^ and the abelian algebra P~. (Ks is the maximal -
semisimple ideal of K, which is a direct sum of Ks and the center Z°.)

We will construct discrete series representations in the following
way: Start off with a representation of 6' by operators on a Hilbert
space H such that (3.10) and (3.13) are satisfied, and K has an invariant
vector. Then, the Gell-Mann formula applies (but this representation is
not of the discrete series type). However, the representation of G' can
be modified in the following way:

2/°->Z° + i&, with b a real constant. (However, only certain
discrete values of b are allowed if the representation is to arise from a
representation of the global group G') l£s and P' remain unchanged.

We will now show that L remains unchanged under this modification.
(However, at the group level this is not true, since L, the centralizer of
X° in K, is not connected.) This will prove that the Gell-Mann formula
remains true for the modfied representation.
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We are given that L is a symmetric subalgebra of K. Let s' be an
automorphism of order two of K which has L as its set of fixed points
and M as its eigenvectors with eigenvalue — 1. Since s' is an automorphism,
it must preserve the center and maximal semisimple ideal of K. Then,

== ±Z°
(4.3)

K

s' (Z°) = Z° is impossible, for then Z° £ L, hence [Z°, X°] = 0. Thus

ZQ £ M . (4.4)

Since Z° is the only element of K that is modified, we see that the con-
ditions for the Gell-Mann formula remain verified.

Now, let us compute X, for X £ P, as given via the Gell-Mann
formula by the modified representation. (4.3) implies that L C K# and
that M is a direct sum of its intersection with Ks and Z°, which are also
orthogonal. This implies that the orthonormal basis (Zu) of K can be
chosen so that Zx is the center, while Zu £ Ks for u > 1. The Casimir
operator of K in the modified representation is then

b*. (4.5)

X is now given by:

X=[A,X'] + 2ib[Zl9 X'] + XX' . (4.6)

(In using this formula, care must be taken with its implicit assumptions:
A is the Casimir operator of K in the original representation of G', and
Zx is the element in the center of K whose length in the Killing metric
is—1.)

Now, let us suppose that ip' is a vector of H which is annihilated by
K in the original representation of G'. We shall show that, by a proper
choice of X (depending on b, of course) \pr can be annihilated by
P- = {X + i [Z°, X]: X £ P}. From 4.6, we have:

X + i[Z°,X]+ [A,Xf + i[Z»,X']] + U + 2ab) (X' + i\Z\ X']), (4.7)

where a is the constant such that Z1 = aZ°.

Since A is the Casimir operator of K in the unmodified representation,

The subspace of H spanned by vectors of the form

{Xf + i\_Z\ X']) V ' : X'£ F}

is invariant and irreducible under K. Hence, A has a constant value in
this subspace, say d, which only depends on the way AdK acts in P.
Then,

{X + i [Z\ X]) ip' - (d + X + 2ab) (X' + i [Z°, X']) y>' . (4.8)
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Then, for A = —2ab — d, we see that P~ annihilates ipr, hence the
representation of G is of the "discrete series" type. Of course, it is not,
as it stands, skew-Hermitian, since X is real. This can be handled by
modifying the Hilbert space inner product of the subspace of H generated
by the operators of G applied to ip', following the pattern described in
Section 6 of [5] for the case G = 8L(2, R). (In fact, notice that all of the
work in this section is modelled after the calculations made in [5] for
this case.) We might mention without proof the geometric meaning of
this construction. K acts via the adjoint representation in P. L is the
isotropy subgroup of K at the point X° £ P, hence the orbit of K at X°
is just KjL, i.e. the homogeneous space KjL is a submanifold of P passing
through the point X°. Further, P can be made into a complex vector
space. It can be proved [2, 6] that the homogeneous space GjK can be
realized as a bounded domain D in P having the orbit KjL on the bound-
ary as one of the orbits of G. (In fact, this is the only compact orbit of
G on the boundary.) One can consider a complex analytic line bundle
on G\K. Consider the space of cross-sections of this bundle that are
complex analytic and that can be extended smoothly to the boundary
of D. G will admit a representation on this space of cross-sections
(assuming, of course, that the line bundle is invariant under the action
of 6r), and this representation can be made unitary by a proper choice
of multipliers. However, the cross-sections will also have "boundary
values" as functions on KjL, which, we recall, lies on the boundary of
D. If we realize H as a space of functions on KjL, we recognize that we
have picked out certain subspaces of H that in a certain sense are
"boundary values" of analytic cross-sections of complex analytic line
bundles on D = GjK. Again, these remarks will clear if the reader con-
siders the case where D = (the inside of the unit circle in the complex
plane), KjL = (the boundary).

As an interesting example to which this theory applies and which is
of interest for physical applications, we can consider the case
Q = 8U(n,n), which was briefly treated by the geometric method in [4].
Here we shall emphasize the constructions which show that the hypo-
theses of Theorem 3.1 are satisfied.

Let F be an n dimensional complex Hilbert space, with inner product
denoted by (v\ vfS). Let V be the direct sum F © F of two copies of F,
with the following Hermitian inner product:

(ft ®v2\v{@ v'2) = {v± 1 v{) - (v21 v'2} . (4.9)

This inner product has n plus and n minus signs; its group of unitary
transformations is U(n,?i). (By a "unitary" or "Hermitian" operator,
we mean relative the indefinite metric (4.9) on F'. The adjoint relative
to (4.9) is denoted by *. The Lie algebra of SU(n, n) consists of those
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skew-Hermitian transformations on V with trace zero. Consider the
following unitary transformation:

gQ{vx © v2) = vL © — v2. (4.10)

Then, g% = identity. The subgroup of U (n, n) that commutes with g0

is then U(n) x U(n), i.e. the transformations that preserve the sub-
spaces V © (0) and (0) © F. It is a maximal compact subgroup. Consider
the following operator on V:

XQ{v± © v2) = — v2 © % . (4.11)

&X° is skew-Hermitian, has zero trace, henees belongs to the Lie algebra
of SU(n,n). g £ U(n) x U(n) commutes with X° if and only if g belongs
to the diagonal subgroup of U(n) x U(n). Let us prove this:

Suppose g(vx © v2) = g^ © g2v2,
 a n ( i 0-^° == -̂ °9r- Then,

X°g(vt © v2) = X°(g1v1 © gr2v2) = — g2v2

hence g1 = ^2, i.e. g belongs to the diagonal subgroup.
Now, XI = —identity. Adgo(X°) = —Z°, i.e. XQ $ P. Suppose that

X is a skew-Hermitian operator on F'. Then,

I 0 ! ! 0 * 1 is also skew-Hermitian.

{Proof: {X°XX°-1)^ = —Z°-1Z*Z° - — XQX*X°-K)
Hence, X-> X0XX°~1 defines an automorphism of the Lie algebra

of 8U(n, n) of order two, i.e. the centralizer of X° in the Lie algebra of
SU(n,n) is a symmetric subalgebra, as required to verify the hypo-
theses of the Theorem. In fact (AdiX0)2 is the identity, so that (3.19) is
automatically satisfied.
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