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Abstract

The intent of this paper is to develop a framework for discrete calculus of variations
with action densities involving a new class of discretization operators. We introduce
first the generalized scale derivatives, study their regularity and state some Leibniz
formulas. Then, we deduce the discrete Euler-Lagrange equations for critical points of
sampled actions that we compare to existing versions. Next, we investigate the case of
general quadratic lagrangians and provide two examples of such lagrangians. At last,
we find nontrivial properties for the discretization of a quadratic null-lagrangian.
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1 Introduction

Discrete calculus of variations is an active field of research and comes in at least three
theories. The quantum framework is depicted for example by Cresson and coauthors in
[4, 5]. Another context uses the ∆ or/and ∇-derivatives on times scales [3, 8, 10]. Discrete
programming and specific mechanic problems are investigated by Marsden and subsequent
authors [12, 13, 14].
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In order to extend the principle of least action to the case of non-differentiable dy-
namical variables, a common trick (see [4, 5]) is to replace the usual derivative ẋ(t) of the
dynamical variable x(t) with expressions such as:

x(t+ε)−x(t)
ε

,
x(t)−x(t−ε)

ε
or

1− i
2ε

x(t+ε)+
i
ε

x(t)−
1+ i
2ε

x(t−ε). (1.1)

Note that these operators are specific and require that t belongs to R to be properly defined.
In contrast, in discrete mechanics, dynamic variables, derivatives and lagrangians are re-
placed at the very beginning of the theory with suitable sequences of numbers but not with
functions [12, 13, 14].

In this paper we modify (1.1) and we use instead generalized scale derivatives. Let [a,b]
be some interval of time, ε > 0 a fixed delay, d the “physical” dimension, N the number of
samples in Cd, (c`)`∈{−N,...,N} ∈ C

2N+1 and, lastly, χ the characteristic function of [a,b]. So
we modify the formulas (1.1) as follows:

�x(t) =
N∑
`=−N

c`x(t+ `ε)χ(t+ `ε), (1.2)

for all x : [a,b]→ Cd. The role of χ(t+ `ε) is to prevent t+ `ε from belonging to an interval
in which x is undefined.

Introducing generalized derivatives such as (1.2), with unspecified parameters c` ∈ C
and variable coefficients χ(t+ `ε) seems to be new and leads to interesting problems. First,
we may discuss the choice of the specific operator occuring in [4, 5]. Next, we may analyze
the similarities and differences between the equations of motion for discretized dynamical
variables and the classical Euler-Lagrange equations

gradxL−
d
dt

gradẋL = 0.

A third problem may consist in the generalization of some results of [4, 5] to operators � not
satisfying a Leibniz formula and to extremal curves x(t) which are not Hölder continuous.

The paper is organized as follows. Section 2 is preparatory and shows how to handle
formula (1.2). In Section 3, we describe a class of operators � satisfying an appropriate
extension of Leibniz formula. In Section 4, we get the necessary first order condition for
finding a minimizer of a discrete actionAd(x). The resulting equations of motion

gradxL+�
?gradẋL = 0, (1.3)

for all lagrangian L, are higlighted. The operator �? is obtained from � by reversing its co-
efficients c`. In Section 5, we compare (1.3) with other versions of discrete Euler-Lagrange
equations. In Section 6, we first introduce the classical and discrete models for the quadratic
lagrangians and emphasize on their similarity. The Section 7 is dedicated to oscillatory so-
lutions of discrete Euler-Lagrange equations for the harmonic oscillator. At last, in Section
8, we investigate the case of a null-lagrangian in the classical setting which behaves very
differently in the discrete one.

Throughout this paper, C.E.L./D.E.L. stand for classical/discrete Euler-Lagrange equations.
Moreover, we suppose for sake of conciseness that 0 < ε < b−a

2N .
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2 Regularity of generalized scale derivatives

The following two results intend to study the continuity of the generalized scale derivatives
defined by (1.2) and the conditions under which they behave as ordinary derivatives.

Proposition 2.1. For all operator � of the shape (1.2) and for all x ∈ C0([a,b],Cd), the
function �x :R→Cd is piecewise continuous, bounded, compactly supported, admits every-
where two finite one-sided limits, and has at most 4N +2 points of discontinuity belonging
to {a+ kε,b+ kε, |k| ≤ N}.

Proof. The main ingredient of the proof is the explicit formula for �x(t), for all function
x : [a,b]→ Cd, that follows from (1.2):

0 if t < a−Nε
cNx(t+Nε) if a−Nε ≤ t < a−Nε+ε

cN−1x(t+Nε−ε)+ cNx(t+Nε) if a−Nε+ε ≤ t < a−Nε+2ε
...

...

cN−px(t+Nε− pε)+ . . .+ cNx(t+Nε)
if p ∈ {0, . . . ,2N −1} and

a+ (p−N)ε ≤ t < a+ (p+1−N)ε
...

...

c−Nx(t−Nε)+ . . .+ cNx(t+Nε) if a+Nε ≤ t ≤ b−Nε
...

...

c−Nx(t−Nε)+ . . .+ cp−Nx(t−Nε+ pε)
if p ∈ {0, . . . ,2N −1} and

b+ (N − p−1)ε < t ≤ b+ (N − p)ε
...

...

c−Nx(t−Nε)+ c1−Nx(t−Nε+ε) if b+Nε−2ε < t ≤ b+Nε−ε
c−Nx(t−Nε) if b+Nε−ε < t ≤ b+Nε

0 if b+Nε < t

(2.1)

This formula shows that the function �x is piecewise continuous and its support is included
in [a−Nε,b+Nε]. We note also that �x is bounded and supt ‖�x(t)‖ ≤ (

∑
|c`|)‖x(t)‖. The

function �x admits everywhere two one-sided limits, and may be not continuous only at the
4N +2 points {a+ kε,b+ kε, |k| ≤ N} depending on the {c`}`. �

Remark 2.2. In order to deal with discrete actions containing �x(t), we need to rewrite (2.1)
under a matricial form. Let S (x) denote the row vector-valued function

S (x)(t) = (x1(t−Nε)χ(t−Nε) . . . x j(t+ `ε)χ(t+ `ε) . . . xd(t+Nε)χ(t+Nε)), (2.2)

where x = (x1, . . . , xd). In S (x) the ordering of variables is lexicographic, first on ` and
next on j. The function S (x) lies in a product of d(2N + 1) affine spaces modeled on
C0([a,b],C) and, in this way, S is an injective continuous linear mapping. If d = 1, for
all x ∈ C0([a,b],C), we have

�x = (c−N . . .c0 . . .cN) (S (x)).

When d ≥ 2, the relationship between �x and S (x) involves a d×d(2N +1) banded matrix
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and is given by

�x =


c−N . . .c0 . . .cN

c−N . . .c0 . . .cN 0

0
. . .

c−N . . .c0 . . .cN

 (S (x))

and is equivalent to (2.1).

Let us define the vector space ON,ε as the set of operators � of the shape (1.2) with
coefficients c` =

γ`
ε , with γ` ∈ C not depending on ε. Algebraically, ON,ε ' C

2N+1. Of
particular interest is the following subclass of operators of O1,ε given by

�[r,s]x(t) = −
s
ε

x(t−ε)χ(t−ε)+
s− r
ε

x(t)χ(t)+
r
ε

x(t+ε)χ(t+ε), (2.3)

where r, s ∈ C. The operators (2.3) are obtained from (1.2) by setting N = 1, s = −c−1ε,
r = c1ε and c0 = −(c−1 + c1). Three examples of such operators �[r,s] are related to the
discrete Euler forward and backward difference operators ∆+ and ∆− respectively, and the
symmetric difference operator equal to the mean of ∆+ and ∆−. Choosing the appropriate
coefficients r, s, we may introduce respectively the analogs �[1,0], �[0,1], and lastly �[ 1

2 ,
1
2 ]. A

fourth example is given by �[ 1−i
2 ,

1+i
2 ], which has the same coefficients than the discretization

operator �q presented in (1.1) and occuring in [4, 5]. Nevertheless, �q occurs without
characteristic functions.

Proposition 2.3. If � ∈ ON,ε, then the following three conditions are equivalent:

(a) for all x ∈ C2([a,b],Cd), the function �x(t) tends to ẋ(t) locally uniformly in ]a,b[ as
ε tends to 0,

(b) �1 = 0 and �t = 1 in [a+Nε,b−Nε],

(c)
N∑
`=−N

γ` = 0 and
N∑
`=−N

`γ` = 1.

Proof. Let us consider the following particular case. When d = 1 and x(t) = αt+β, α,β ∈ C,
the formula (1.2) shows that, for all t ∈ [a+Nε,b−Nε],

�x(t) =
αt+β
ε

N∑
`=−N

γl+α

N∑
`=−N

`γl.

The only way that the functions �x of t ∈ [a+Nε,b−Nε] and ε ∈R? converge to some limit
when ε tends to 0, is that

∑N
`=−N γl = 0. This being noticed, the equivalence between (b) and

(c) is obvious and furthermore, (a) implies (c) by choosing (α,β) = (0,1) and (α,β) = (1,0).
Lastly, let us prove that (c) implies (a). Let δ > 0 and ε < δN . Let us show that the function
�x converges uniformly in [a+ δ,b− δ] to ẋ as ε tends to 0. For all t ∈ [a+Nε,b−Nε] and
η small enough, we use the Taylor-Lagrange inequality

‖x(t+η)−x(t)−ηẋ(t)‖ ≤
1
2
η2 sup

t∈[a,b]
‖ẍ(t)‖. (2.4)
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Since t ∈ [a+ Nε,b− Nε], the formulas (2.1) and (2.4) with η = `ε yield the following
inequality ∥∥∥∥∥∥∥�x(t)−

 N∑
`=−N

c`

x(t)−ε

 N∑
`=−N

`c`

 ẋ(t)

∥∥∥∥∥∥∥ ≤ 1
2
ε2

 N∑
`=−N

`2|c`|

‖ẍ‖∞.

Due to the assumptions (c), we obtain readily lim
ε→0

sup
t∈[a+δ,b−δ]

‖�x(t)− ẋ(t)‖ = 0 for all δ, and

the proof is complete. �

At last, we define ÕN,ε as the affine space of operators � ∈ ON,ε satisfying any condition
of Proposition 2.3. Let us consider the case N = 1. The condition (c) of the previous
Proposition is nothing but γ−1 +γ0 +γ1 = 0 and γ1 −γ−1 = 1. So Õ1,ε is the affine straight
line with elements �[r,1−r], r ∈ C. In this space, we may excerpt the four operators �[1,0],
�[0,1], �[ 1

2 ,
1
2 ] and �[ 1−i

2 ,
1+i
2 ] seen previously.

3 Leibniz formulas for � operators in O1,ε

In order to deduce his version of D.E.L., Cresson found in [4] a product formula for �q

which is an analog of the classical Leibniz formula. When such a formula exists, a principle
of discrete virtual works may be stated. In this section, we generalize Cresson’s identity to
the family of operators (2.3).

Theorem 3.1. Let � ∈ O1,ε be of the shape (2.3) with r, s ∈ C? and s
r < R. Then, for all

continuous functions f,g : [a,b]→ Cd, we get the generalized Leibniz formula

�[r,s](f ·g)(t) = f(t) ·�[r,s]g(t)+g(t) ·�[r,s]f(t)+

ε(rs2
− r2s)

(rs− rs)2 �
[r,s]f(t) ·�[r,s]g(t)−

εrs(r− s)
(rs− rs)2�

[r,s]f(t) ·�[r,s]g(t)+

εrs(r− s)
(rs− rs)2

(
�[r,s]f(t) ·�[r,s]g(t)+�[r,s]f(t) ·�[r,s]g(t)

)
. (3.1)

Proof. Since the formula (3.1) is C-bilinear w.r.t. f and g and � acts component-wise, we
may suppose without loss of generality that d = 1 and f = f ,g = g : [a,b]→ C. We slightly
generalize the proof of Theorem 2.1 of [4]. Let W and W̃ two operators in O1,ε. We study
the existence of four complex numbers d1,d2,d3,d4 such that the following formula holds

W( f g) =W( f )g+ f W(g)+

d1W( f )W(g)+d2W̃( f )W(g)+d3W( f )W̃(g)+d4W̃( f )W̃(g), (3.2)

for all f and g in C0([a,b],C). We choose

W = �[r,s] = r�[1,0]+ s�[0,1] and W̃ = �[r′,s′] = r′�[1,0]+ s′�[0,1]

for some complex numbers r, s,r′, s′ such that rs′ − sr′ , 0. But we have also the two
formulas
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�[1,0]( f g) = f .�[1,0]g+g.�[1,0] f +ε�[1,0] f .�[1,0]g,
�[0,1]( f g) = f .�[0,1]g+g.�[0,1] f −ε�[0,1] f .�[0,1]g.

These two product formulas are merely generalizations of Cresson’s ones [4]. Substituting
the previous formulas in (3.2), the identity (3.2) holds for all f and g in C0([a,b],C) if and
only if the coefficients d1,d2,d3 and d4 satisfy

r2 rr′ rr′ r′2

rs sr′ rs′ r′s′

rs rs′ sr′ r′s′

s2 ss′ ss′ s′2



d1
d2
d3
d4

 =


rε
0
0
−sε

 . (3.3)

This matrix has a determinant equal to −(rs′ − sr′)4 , 0. The coefficients d`, obtained by
solving (3.3), are given by

d1 =
ε

δ
(rs′2− sr′2), d2 = d3 =

εrs
δ

(r′− s′), d4 =
εrs
δ

(s− r) (3.4)

where δ = (rs′− sr′)2. Since s
r <R, we can choose r′ = r and s′ = s so that δ , 0. We replace

the preceding values in (3.2) and we get easily the formula (3.1). �

As an example of (3.2), we get −d1 = d2 = d3 = d4 = −
1
2 iε for the operator �[ 1−i

2 ,
1+i
2 ].

Hence, the operator �q chosen in [4, 5] satisfies the following Leibniz formula, for all
continuous functions f ,g : [a,b]→ R

�q( f g) = �q( f )g+ f�q(g)+
1
2

iε[�q( f )�q(g)−�q( f )�q (g)−�q( f )�q(g)−�q( f )�q (g)],

where �q stands for the complex conjugate operator of �q.

Obvioulsy, the choice of (r′, s′) = (r, s) in the proof is made only to ensure that W̃ may

be expressed conveniently through W. In that way, W̃(f) = W(f). Another choice may be
dictacted by requiring that W and W̃ belong to Õ1,ε. We obtain in that case a Leibniz for-
mula for W = �[r,1−r] and W̃ = �[r−1,2−r].

Theorem 3.1 shows that some operators � may not check a Leibniz formula. As a rule,
integration by parts for

∫ b
a u�vdt may not be readily performed but we shall see in the next

section how to handle this difficulty.

4 Critical points of discrete actions

There exist many ways to define the discrete actions and lagrangians in terms of the classi-
cal ones. A first idea consists in discretizing the integral of action and working with finite
sums. A second one, in time scale calculus, preserves the integral character of the actions
by replacing ẋ(t) with x∆(t) or x∇(t), see [3, 8, 10] for definitions. In this paper, we proceed
in another way.
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Let L : [a,b]×C2d → C be a continuous lagrangian depending on 2d + 1 variables. We
set L(t,S (x)(t)) =L(t,x(t),�x(t)) and we defineAc andAd as

Ac(x) =
∫ b

a
L(t,x(t), ẋ(t))dt (4.1)

and

Ad(x) =
∫ b

a
L(t,S (x)(t))dt =

∫ b

a
L(t,x(t),�x(t))dt. (4.2)

These classical and discrete actions are well-defined, respectively on C1([a,b],Cd) and
C0([a,b],Cd), in consideration of Proposition 2.1.

A fundamental problem is to minimize the action (4.1) under Dirichlet boundary condi-
tions. Then we have to handle real-valued functions and parameters in order to deal with
optima instead of critical points of the action (4.2). For all �, we define �? as the operator
obtained from (1.2) by substituting c−` for c`.

Theorem 4.1. Suppose that L is C1. Let x = (x1, . . . , xd) ∈ C0([a,b],Cd) be a critical point
of (4.2). Then x satisfies the following functional equation

∀ j ∈ {1, . . . ,d},
N∑
`=−N

∂L
∂ξ j,`

(t− `ε,S (x)(t− `ε))χ(t− `ε) = 0 (4.3)

which is equivalent to

∂L

∂x j
(t,x(t),�x(t))+�?

∂L

∂ẋ j
(t,x(t),�x(t)) = 0, (4.4)

for all j ∈ {1, . . . ,d} and t ∈ [a,b].

Proof. Let us remark first that for all x ∈ C0([a,b],Cd), the function t 7→ L(t,x(t),�x(t)) =
L(t,S (x(t))) is Riemann-integrable help to formulas (2.1) and (2.2). Since L is C1, L is also
C1 and Ad admits everywhere a Gâteaux derivative. Indeed, let h ∈ C0([a,b],Cd) be such
that h(a) = 0 and h(b) = 0, so we get

Ad(x+ηh)−Ad(x) =
∫ b

a
(L(t,S (x+ηh)(t))−L(t,S (x)(t)))dt

= η

∫ b

a

d∑
j=1

N∑
`=−N

∂L
∂ξ j,`

(t,S (x)(t))χ(t+ `ε)h j(t+ `ε)dt+O(η2).

In this formula, the coefficient of η is nothing but the Gâteaux derivative DAd(x)(h). By
considering the change of variable t = τ− `ε and by setting

Z j,`(τ) =
∂L
∂ξ j,`

(τ− `ε,S (x)(τ− `ε)),

we obtain
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DAd(x)(h) =
d∑

j=1

N∑
`=−N

∫ b+`ε

a+`ε
Z j,`(τ)χ(τ)h j(τ)dτ.

We may extend the interval of integration to [a−Nε,b+Nε] for each summand by observing

that
∫ b+`ε

a+`ε
f (τ)dτ =

∫ b+Nε

a−Nε
f (τ)χ(τ− `ε)dτ, for all function f . Thus, for all h we have

DAd(x)(h) =
d∑

j=1

∫ b+Nε

a−Nε

N∑
`=−N

Z j,`(τ)χ(τ)χ(τ− `ε)h j(τ)dτ

=

d∑
j=1

∫ b

a
Z j(τ)h j(τ)dτ,

where Z j(τ) =
∑N
`=−N Z j,`(τ)χ(τ− `ε). Since x is a critical point of (4.2), the previous sum

vanishes for all h. Help to the fundamental lemma of the calculus of variations, we get
Z j(t) = 0 for all j ∈ {1, . . . ,d} and t ∈ [a,b], and this amounts to (4.3).
Let us show that (4.3) may be rewritten as (4.4). By definition of L(t,S (x)(t)), we have for
all ` , 0,

∂L
∂ξ j,`

(t,S (x)(t)) =
∂L

∂ẋ j
(t,x(t),�x(t))c`χ(t+ `ε)

and for ` = 0,
∂L
∂ξ j,0

(t,S (x)(t)) =
∂L

∂ẋ j
(t,x(t),�x(t))c0χ(t)+

∂L

∂x j
(t,x(t),�x(t)).

Thus, (4.3) is equivalent to
N∑
`=−N

∂L

∂ẋ j
(t− `ε,x(t− `ε),�x(t− `ε))c`χ(t)χ(t− `ε)+

∂L

∂x j
(t,x(t),�x(t)) = 0.

Replacing ` with −` and having in mind formula (1.2), we notice that the first term is equal

to �?
∂L

∂ẋ j
(t,x(t),�x(t)), and we prove the result. �

5 Comparison of some necessary optimality conditions of Euler-
Lagrange type

In this section, we quote some necessary Euler-Lagrange equations of the first order which
are derived by many authors and which look like (1.3).

Let us first discuss in details distinctive features of equations (1.3) and Cresson’s version.
In [4], Cresson deals with the case N = 1 and the so-called quantum derivative operator �q.
The fact that �q has a Leibniz formula is central in the deduction of his version of D.E.L.
For any function f (x, ε), Cresson defines the ε-dominant part [ f ]ε with a limiting process.
He proved that if

lim
ε→0

DAd(x) = 0,
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then [
∂L

∂x j
−�q
∂L

∂ẋ j

]
ε

= lim
ε→0

(
∂L

∂x j
−�q
∂L

∂ẋ j

)
= 0 (5.1)

which is an asymptotic alternative form of (1.3). Equation (1.3) is different from (5.1) at
least in three respects. First, we do not use any property of �. In contrast, �q is such that

[=(�q f )]ε = 0,<(�?q f ) = −<(�q f ), and [�q f (t)]ε = [−�?q f (t)]ε

for all real-valued function f and all t ∈ [a+ ε,b− ε[. Second, the characteristic functions
χ(t+`ε) of the various intervals appear in the sampling process (1.2) as well as in the action
(4.2). Third, (1.3) does not depend on the coefficients nor on the length 2N +1 of formula
(1.2).

Let us compare now (1.3) with two other versions of the first order optimality condition.
We use the framework of time scale calculus [3]. In [3] and [1], a time scale T is arbitrarily
chosen and the scale derivative is either the ∆-derivative or the ∇-derivative. So the vari-
ational problems consist in minimizing the actions with lagrangians gradxL(t,x ◦σ,∆x) in
[3] and gradxL(t,x◦ρ,∇x) in [1]. The resulting Euler-Lagrange equations are

gradxL(t,x◦σ,∆x)−∆gradvL(t,x◦σ,∆x) = 0,
gradxL(t,x◦ρ,∇x)−∇gradvL(t,x◦ρ,∇x) = 0.

(5.2)

Let us note that the duality between the ∆ and the ∇ approaches may lead to inconsis-
tences (see [7, 11]). Although being obviously similar, the equations (5.2) and (1.3) are of
a distinct nature. First, (5.2) are ordinary differential equations in the intervals with zero
graininess. In constrast, (1.3) consist in functional difference equations. Second, the re-
quired regularity of the minimizers is not the same, C1

rd or C1
ld for (5.2) and C0 for (1.3).

Third, Leibniz formula plays an important role in the derivation of (5.2) and not in the proof
of (1.3).

Unified Euler-Lagrange necessary optimality conditions are provided in [6, 8] and pose
the problem of minimizing or maximizing actions with lagrangians involving ∆ and ∇-
derivatives. The authors of [6, 8] consider a linear combination of lagrangians L = k1L1 +

k2L2 that they discretize by replacing ẋ(t) in some parts of the lagrangian with ∆x and in
other parts with ∇x, that is to say

Ld(x) = k1L1(t,x◦σ,∆x)+ k2L2(t,x◦ρ,∇x). (5.3)

If t ∈ T is left and right-scattered, (5.3) embodies in some way the three terms of the usual
Runge-Kutta operator. The delta-nabla Euler-Lagrange equations on time scales are no
more “local” but integral equations. Another extension of Euler-Lagrange equations on
time scales to set-valued functions has been developed in [9]. Both works lead to necessary
first order conditions which are far different from (1.3).

Lastly, we may cite the Euler-Lagrange equations obtained in [12]. A discrete lagrangian
Ld is associated to the lagrangian L. The construction of Ld from L is based on some
approximation to the action integral using for instance the rectangle rule or the Newmark
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method. Accordingly, the discrete actionAd =
∑M−1

k=0 Ld(qk,qk+1, ε) with ε = b−a
M is defined

on a suitable discrete path space. The first order necessary condition is

grad1Ld(qk,qk+1, ε)+grad2Ld(qk−1,qk, ε) = 0, (5.4)

where grad1 and grad2 denote the gradients w.r.t. the first and the second variable re-
spectively. For each integer k, the vector qk ∈ R

d may be thought as an approximation
of x(a+ kε). Among the differences between (5.4) and (1.3), let us emphasize on the fact
that (1.3) are functional delayed equations while (5.4) are recurrence equations.

6 Quadratic lagrangians in discrete and classical settings

In this section we deal with a system of d ordinary differential equations of the second order
arising from the following lagrangian

L(t,x, ẋ) =
1
2
ẋPẋ+

1
2
xQx+ xRẋ+ J1ẋ+ J2x+ J3, (6.1)

where P(t),Q(t),R(t) ∈ Rd×d, J1(t), J2(t) ∈ Rd and J3(t) is a scalar function. Many physi-
cal systems are modelized by such lagrangians, in electromagnetism, quantum mechanics,
material science, regulators models and so on.

We assume from now on that the coefficients in (6.1) are real and smooth, and that for
all t ∈ [a,b], P(t) and Q(t) are symmetric. Although the symmetric part of R(t) gives rise to
a null lagrangian, we do not assume that R(t) is skew-symmetric.

Theorem 6.1. Let L be a quadratic lagrangian such that P = P, Q = Q, and L associated
to L as in (4.2). The Euler-Lagrange equations associated to (6.1) can be written as

−Pẍ+ (−Ṗ+R− R)ẋ+ (Q− Ṙ)x− J̇1+ J2 = 0. (6.2)

The equations (6.2) may be discretized a posteriori to give

−P�(�x)+ (−Ṗ+R− R)�x+ (Q− Ṙ)x− J̇1+ J2 = 0. (6.3)

If x ∈ C0([a,b],Cd) is a critical point of the action (4.2) under the Dirichlet boundary con-
ditions, then it must satisfy

�?(P�x)+�?( Rx)+R�x+Qx+�?J1+ J2 = 0. (6.4)

Proof. First, (6.2) is straightforward, since we get

∂L(t,x, ẋ)
∂x

= Qx+Rẋ+ J2 and
∂L(t,x, ẋ)
∂ẋ

= Pẋ+ Rx+ J1.

Next, (6.3) is obtained by discretizing the derivatives in (6.2), i.e. by replacing ẋ, ẍ by
�x,�(�x) respectively and the result holds. At last, (6.4) is a consequence of (4.4). Indeed,
using the previous derivatives, (4.4) gives
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�?(P�x+ Rx+ J1)+Qx+R�x+ J2 = 0,

which ends the proof. �

A straightforward computation, using the formula (1.2) for � and �?, shows that (6.4)
may be written, for all t ∈ [a,b], as∑

−2N ≤ ` ≤ 2N
−N ≤ j ≤ N
|`+ j| ≤ N

c`+ jc jχ(t− jε)χ(t+ `ε)P(t− jε)x(t+ `ε)+Q(t)x(t)+

N∑
`=−N

χ(t+ `ε)(c`R(t)+ c−` R(t+ `ε))x(t+ `ε)+�?J1(t)+ J2(t) = 0. (6.5)

This equality is suitable to solve effectively the functional difference equations (1.3) in the
case of quadratic lagrangians as we sall see in the following two sections.

7 A first example: the harmonic oscillator

Let us investigate now the harmonic oscillator. We have in this case d = 1, R= 0, J1 = J2 = 0
and we set moreover P(t) = p, Q(t) = q with pq < 0. Solutions of C.E.L. −pẍ+qx = 0 are
periodic. Let us study the periodicity of solutions of D.E.L. for N = 1 and ε small enough.
If t lies in [a+2ε,b−2ε], (6.5) may be simplified into

pc−1c1[x(t−2ε)+ x(t+2ε)]+ pc0(c−1+ c1)[x(t−ε)+ x(t+ε)]+

(q+ p(c2
−1+ c2

0+ c2
1))x(t) = 0. (7.1)

The result below presents an additional characterization of suitable � for getting pseudo-
periodic solutions.

Proposition 7.1. Let � ∈ Õ1,ε. The two following properties are equivalent.

(a) For all p and q with pq < 0 and for all ε small enough, the roots of the characteristic
polynomial of (7.1) are of modulus 1.

(b) For some k ∈ R, we have � = �[ 1
2 ,

1
2 ]+ ik�[1,−1].

Proof. The characteristic polynomial D(λ) of the recurrence (7.1) is symmetric, that is to
say D(λ)= λ4D( 1

λ ). We set µ= λ+ 1
λ and we define the quadratic E(µ)= ε2

pλ2 D(λ). We easily
get

E(µ) = γ1γ−1µ
2+γ0(γ1+γ−1)µ+ (γ2

0 +γ
2
1 +γ

2
−1−2γ1γ−1+

q
p
ε2).

(a)⇒ (b). We look for the parameters γ−1,γ0,γ1 for which D(λ) has roots on the unit circle,
for ε small enough and for all p,q, pq < 0. This amounts to say that E(µ) has only real
roots in [−2,2] for all p,q, pq < 0, provided ε is small enough. Now, given three complex
numbers α,β,γ with α , 0, the two following properties are equivalent. First, the solutions
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of the quadratic αy2 +βy+γ+η = 0 are in [−2,2] ⊂ R, for all η small enough. Second, we
have α,β,γ ∈ R and

|β| ≤ 4|α|, |γ| ≤ 4|α|, 4αγ ≤ β2, 2|β| ≤ 4|α|+γsgn(α).

The proof of this equivalence is straightforward and relies on explicit computations using
the usual solution of a quadratic. Let us apply this to E(µ). Since � ∈ Õ1,ε, we have �1 =
γ−1+γ0+γ1 = 0 and �t = γ1−γ−1 = 1 inside [a+ε,b−ε] if and only if γ1 = r, γ−1 = r−1
and γ0 = −2r+ 1 for some r ∈ C. So, α = r(r− 1), β = −(2r− 1)2 and γ = 4r2 − 4r+ 2 are
real. Therefore we obtain<(r) = 1/2 and easy computations lead to (b).
(b)⇒ (a). If (b) holds then, by setting r = 1

2 + ik, we get γ1 = r, γ−1 = r−1 and γ0 = −2r+1.
Algebraic computations show that the solutions of

E(µ) = r(r−1)µ2− (2r−1)2µ+ (4r2−4r+2)−ω2ε2, (7.2)

where ω2 = −
q
p , are in [−2,2] ⊂ R for all ε ≤ 1

|ω|
√

1+4k2
. This implies (a). �

Remark 7.2. We recover �[ 1
2 ,

1
2 ] and �[ 1−i

2 ,
1+i
2 ] by setting k = 0 and k = −1

2 in (b) respectively.

Remark 7.3. If � lies in O1,ε but not necessarily in Õ1,ε, the property (a) is equivalent to the
following inequalities for γ−1,γ0,γ1 ∈ C

4|γ1γ−1| − |γ0(γ1+γ−1)| ≥ 0, 4|γ1γ−1| − |γ
2
0 +γ

2
1 +γ

2
−1−2γ1γ−1| ≥ 0,

γ2
0(γ1+γ−1)2−4γ1γ−1(γ2

0 +γ
2
1 +γ

2
−1−2γ1γ−1) ≥ 0 and

16|γ1γ−1|+4γ2
0 +4γ2

1 +4γ2
−1−8γ1γ−1−8|γ0(γ1+γ−1)| ≥ 0.

There exist infinitely many solutions (γ−1,γ0,γ1) of these inequalities which are not of the
shape (r−1,−2r+1,r) nor even (−s, s− r,r) with r, s ∈ C. So there exist operators � < Õ1,ε
satisfying (a) but not (b).

8 A second example: the discretization of a null-lagrangian

We address here the minimization of the discrete actionAd defined as

Ad(x) =
1
ε

∫ b

a
x(t) (γ1x(t+ε)χ(t+ε)+γ0x(t)χ(t)+γ−1x(t−ε)χ(t−ε))dt. (8.1)

Here, d = 1 and N = 1. The action (8.1) is associated to the stationary lagrangianL(t, x,�x)=
x�x and is constrained by the boundary conditions x(a) = α and x(b) = β.

The continuous version of this problem deals withL(x)= xẋ which is a null-lagrangian.
The C.E.L. is equivalent to 0= 0, the actionAc defined as in (4.1) is constant in C1([a,b],C)
and is equal to 1

2 (β2−α2). In constrast, the discrete case is quite different.

Proposition 8.1. Let γ−1,γ0,γ1 ∈ C and letAd defined by (8.1).

• Ad is constant in C0([a,b],C) if and only ifAd ≡ 0.

• If γ−1,γ0,γ1 ∈ R and |γ−1+γ1| ≤ |γ0| thenAd(x) has a constant sign in C0([a,b],R).
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Proof. Indeed, the discrete action (8.1) may be written as a combination of potential energy
and autocorrelation function since we have

Ad(x) =
γ0

ε

∫ b

a
x(t)2dt+

γ1+γ−1

ε

∫ b−ε

a
x(t)x(t+ε)dt. (8.2)

Both integrals are linearly independent functions w.r.t. x in C0([a,b],C). So, x�x is a null-
lagrangian if and only if Ad is constant in C0([a,b],C). This amounts to γ1 +γ−1 = γ0 = 0
and hence,Ad ≡ 0.
The second statement follows from using Cauchy-Schwarz inequality in (8.2) and shows
that 1

γ0
Ad(x) is strictly positive for all x ∈ C0([a,b],R). �

From now on, for sake of conciseness, we assume that γ−1,γ1 ∈R, γ0 ∈R
?, γ = γ1+γ−1

2γ0
,

0 and M = b−a
ε ∈ N. We shall examine the minimization of Ad(x) in two cases. The first

one deals with piecewise constant maps while the second one uses the explicit solutions of
D.E.L..

Proposition 8.2. If |γ| > 1
2 and ε is small enough, the range of the action Ad, defined by

(8.1) on the space of piecewise constant maps, is R.

Proof. We shall consider real piecewise constant maps x : [a,b]→ R. Having in mind that
x(a)= α and x(b)= β, we introduce an arbitrary vector Y = (y1, . . . ,yM−2) ∈RM−2. We define
next x(t) = yk if a+ kε ≤ t < a+ (k+1)ε for all k = 1, . . . ,M−2, x(t) = α if t ∈ [a,a+ ε[ and
lastly, x(t) = β if t ∈ [b− ε,b]. Let V be the (M− 2)-dimensional affine space generated by
those functions. If x ∈ V , we easily get

1
γ0
Ad(x) =

M−1∑
k=0

x2
k +2γ

M−2∑
k=0

xkxk+1 =
XS MX (8.3)

where X and the symmetric tridiagonal matrix S M are respectively defined by

X =

αY
β

 ∈ RM, S M =


1 γ

γ 1
. . .

. . .
. . . γ

γ 1

 ∈ R
M×M. (8.4)

Then we have
1
γ0
Ad(x) = YS M−2Y +2γ(αy1+βyM−2)+α2+β2. (8.5)

The eigenvalues of the matrix S M−2 are the M−2 real numbers λk = 1+2γcos
(
πk

M−1

)
with

k ∈ {1, . . . ,M−2}. For ε small enough, i.e. M large enough, the product of the eigenvalues
of S M−2 associated to k = 1 and k = M−2 is negative since |γ| > 1

2 . Hence, S M−2 has eigen-
values of opposite sign. Let k ∈ {1, . . . ,M− 2} and Y be an eigenvector of S M−2 associated
to λk and X = (α,Y,β) ∈ RM. Then, the value of the action of the function x ∈ V associated
to the previous datas is equal to

Ad(x) = γ0
(
λk‖Y‖2+2γ(αy1+βyM−2)+α2+β2

)
. (8.6)
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Since λ1λM−2 < 0, if Y lies in the union of the two eigenspaces associated to λ1 or λM−2
and ‖Y‖ → ∞, we see that Ad is surjective help to the intermediate value theorem. As a
consequence the range ofAd on the larger set V is also R. �

Now, let us solve the discrete Euler-Lagrange equation associated to (8.1). By using
(6.4), D.E.L. may be written as �x+�?x = 0, that is to say

(γ1+γ−1)(χ(t+ε)x(t+ε)+χ(t−ε)x(t−ε))+2γ0x(t)χ(t) = 0. (8.7)

Proposition 8.3. We suppose that |γ| =
∣∣∣∣γ1+γ−1

2γ0

∣∣∣∣ , 1
2 .

(a) Each solution x ∈ C0([a,b],C) of D.E.L. (8.7) is uniquely determined by its restriction
ϕ to [a,a+ε[.

(b) D.E.L. admits a solution if and only if

β = αexp(±i(M+2)θ) and γ =
−1

2cosθ
(8.8)

where θ = kπ
M+2 for some integer k.

(c) If (8.8) holds, the restriction of Ad to the space of solutions of D.E.L. has range R+,
R−, R or {0}.

Proof. We define r1 and r2 as the roots of the polynomial r2+ r
γ +1. Since |γ| , 1

2 , we have
r1 , ±1, r2 , ±1 and r1 , r2.

(a) Let us consider a solution x ∈C0([a,b],C) of (8.7) and its restriction ϕ to [a,a+ε[. Let
us express x(t) as simple function of k and ϕ(τ) where t = τ+kε with τ ∈ [a,a+ε[ and
k ∈ {0, . . . ,M}. We find it convenient to denote uk = x(τ+kε). When k ∈ {1, . . . ,M−1},
D.E.L. (8.7) is a linear recurrence relationship with three terms

γuk+1+uk +γuk−1 = 0. (8.9)

In contrast, when k = 0 and k = M−1, we get respectively γu1+u0 = 0 and γuM−1+

uM = 0. Solving the difference equation (8.9) gives

uk = (d1rk
1+d2rk

2)ϕ(τ) for all k ∈ {1, . . . ,M−1}.

By using this formula with k = 1 and k = 2, we obtain the two explicit constants d1
and d2 and we may write

uk =
1

r1− r2
ϕ(τ)[(1−γ−2)(rk−1

2 − rk−1
1 )−γ−1(r1rk−1

2 − r2rk−1
1 )]. (8.10)

Thus, uk depends exclusively on the index k and the function u0 = ϕ(τ).

(b) Since the numbers r1 and r2 satisfy r1+r2 =−
1
γ and r1r2 = 1, the formula (8.10) holds

also for k = 0. The values τ = a and k = M, that is τ = b, yield two relationships
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(γ1+γ−1)(uM +uM−2)+2γ0uM−1 = 0,
(γ1+γ−1)(uM−1)+2γ0uM = 0,

from which we deduce β = α(d1rM
1 +d2rM

2 ) and d1rM+1
1 +d2rM+1

2 = 0. Since r1r2 = 1,
we obtain

β

α
= rM

1 d1
(r2− r1)

r2
and r2M

2 = −
d1r1

d2r2
.

By using the explicit formulas for r1,r2,d1,d2, straightforward computations yield
the result.

(c) Let us define ωi and ωs as the infimum and supremum of Ad(x) when x lies in the
subspace of piecewise continuous solutions of D.E.L.. If x is a solution of D.E.L.,
plugging (8.10) into (8.2) and using Chasles formula gives

Ad(x) = c
∫ a+ε

a
ϕ(t)(�ϕ)(t)dt = c(γ0−γ

−1γ1)
∫ a+ε

a
ϕ(t)2dt, (8.11)

where c =
∑M−1

k=0 (d1rk
1 + d2rk

2)2. Let us suppose that c(γ0 − γ
−1γ1) > 0. Then, for all

η > 0, we may find ϕ such that ϕ(a) = α and ϕ(a+ ε) = −γ−1α and lastly, Ad(x) ≤
η. As a consequence, ωi = 0. A similar argument yields ωs = +∞. Otherwise, if
c(γ0−γ

−1γ1)< 0, ωs = 0 and ωi =−∞. Lastly, if c= 0 which is equivalent to c1 = c−1,
Ad vanishes for every solution of D.E.L..

�

Let us give some explanations about Proposition 8.3. The first equality in (8.8) ex-
presses the fact that (8.7) behaves as a first order difference equation and not as a general
second order one as (6.4) since the matrix P is absent from the lagrangian. So β is deter-
mined from α. The second equality in (8.8) expresses the non-resonance property enabling
the linear combination of exp(ikt) and exp(−ikt) to fit the Dirichlet conditions. Lastly, we
notice that the restriction ϕ(τ) of a solution of D.E.L. is arbitrary except for the boundary
values ϕ(a) and ϕ(a+ε).

Table 1 shortens some of the previous results:

Continuous case Discrete case
Gauge yes depends on � (see (8.2))

Values of action 1
2 (β2−α2) R or R+ or R− (depends on γ)

Eqn. of motion 0 = 0 �x+�?x = 0
Sol. of eqn. of motion all functions depends on β/α and M

Table 1. Properties of actions with lagrangians xẋ and x�x

The examples presented in the last two sections show that the discretization process us-
ing generalized scale derivatives leads to intricate conclusions compared to the analogous
continuous setting. Given a specific property of D.E.L. or Ad or Ld, the description of the
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discretization operators � ∈ ON,ε ensuring this property gives rise to various and nontriv-
ial algebraic or analytic problems. Among these problems, convergence of schemes and/or
solutions, shape of solutions of dynamic equations, oscillatory, resonance and spectral prop-
erties are of a special interest.
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