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Abstract

We introduce length dilation structures on metric spaces, tempered dilation struc-
tures and coherent projections and explore the relations between these objects and
the Radon-Nikodym property and Gamma-convergence of length functionals. Then
we show that the main properties of sub-riemannian spaces can be obtained from pairs
of length dilation structures, the first being a tempered one and the second obtained
via a coherent projection. Thus we get an intrinsic, synthetic, axiomatic description
of sub-riemannian geometry, which transforms the classical construction of a Carnot-
Carathéodory distance on a regular sub-riemannian manifold into a model for this
abstract sub-riemannian geometry.
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1 Introduction

Motivation: sub-riemannian spaces as approximately self-similar metric spaces. Sub-
riemannian geometry is the study of non-holonomic spaces (introduced by Vrănceanu [28],
[29] in 1926) endowed with a Carnot-Carathéodory distance. Such spaces appear in ap-
plications to thermodynamics (the name ”Carnot-Carathéodory distance” is inspired by the
work of Carathéodory [10] (1909) concerning a mathematical approach to Carnot work in
thermodynamics), in non-holonomic dynamics (see the survey Vershik and Gershkovich
[26]), in the study of hypo-elliptic operators Hörmander [16], in harmonic analysis on ho-
mogeneous cones Folland, Stein [14], and as boundaries of CR-manifolds.

∗E-mail address: Marius.Buliga@imar.ro



A Characterization of Sub-Riemannian Spaces as Length Dilation Structures 71

In several foundational papers on sub-Riemannian geometry, among them Mitchell
[19], Bellaı̈che [3], the paper of Gromov asking for an intrinsic point of view for sub-
riemannian geometry [15], Margulis, Mostow [17], [18], dedicated to Rademacher theorem
for sub-riemannian manifolds and to the construction of a tangent bundle of such manifolds,
Vodopyanov [23] [24], Vodopyanov and Karmanova [25], fundamental results concerning
the intrinsic properties of sub-riemannian spaces endowed with the Carnot-Carathéodory
distance were proved using differential geometry tools.

Among the fundamental results in sub-riemannian geometry, or more general non-
holonomic geometry, a particular position occupies the result concerning the nilpotent
group structure of the tangent space to a point of a regular non-holonomic manifold (for
an evolution of this subject see [27], [2]). According to the introduction of the Agrachev
and Marigo paper [2], non-holonomic tangent functors appear appear via constructions in-
volving nilpotent or graded approximations of the geometrical objects to be studied. We
cite from [2] page 112, 3rd paragraph: ”A weak point of these constructions is their heavy
dependence on the choice of coordinates. Because of that, the approximation looks like an
auxiliary technical tool rather than a fundamental functorial operation; the geometric insight
and the application of geometric machinery are highly impeded.” Agrachev and Marigo pro-
pose therefore an intrinsic construction of the tangent bundle of a non-holonomical mani-
fold. Their notion of ”intrinsic” means ”coordinate free”, in the frame of differential geom-
etry of manifolds.

The point of view of Gromov in [15] is that the only intrinsic object on a sub-riemannian
manifold is the Carnot-Carathéodory distance. The underlying differential structure of the
manifold is then clearly not intrinsic. Nevertheless, in all proofs in the before mentioned
papers on the fundamentals of sub-riemannian geometry this differential structure is used
in order to prove intrinsic statements.

In conclusion, for sub-riemannian geometry there seems to be two meanings of the word
”intrinsic”:

(a) the Carnot-Carathéodory distance as the only intrinsic object permits to formulate
several important results, but the proof of these results is based on the constructions
and approximations of the type mentioned by Agrachev and Marigo,

(b) if we see sub-riemannian geometry as a subspecies of non-holonomic geometry, then
”intrinsic” is only the non-holonomic distribution and differential geometry is ac-
cepted as an ”intrinsic” tool.

One interpretation of this situation is that the Carnot-Carathéodory distance is neces-
sary, but not sufficient for an axiomatization of sub-riemannian geometry. In few words,
the Carnot-Carathéodory distance is not enough and the whole formalism of differential
geometry is too much for describing sub-riemannian geometry.

Together with the Carnot-Carathéodory distance, there is another object which persis-
tently appears in all studies of sub-riemannian geometry: the (anisotropic) dilations.

To my knowledge, topological spaces with dilations were proposed for the first time in
[4]. In the last section of of the paper by Bellaı̈che [3] it is explained how one can obtain
the operation of addition in the the tangent space at a point by using dilations (dilatations,
homotheties, re-scaling, and so on) and a reasoning based on uniform convergence. These
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arguments based on uniform convergence made me return to the subject of spaces with dila-
tions. After a period of experimenting with different constructions related to sub-riemannian
geometry on Lie groups, I proposed the notion of dilation structure [5]. A dilation structure
encodes the approximate self-similarity of a metric space. A dilation structure gives to the
metric space a tangent bundle with conical group operations in each fiber (tangent space to a
point). There is also a notion of derivative associated to a dilation structure. Conical groups
generalize Carnot groups. The affine geometry of conical groups was then studied in [6]. In
[7] it is shown that regular sub-riemannian manifolds admit dilation structures constructed
via normal frames. In that paper I tried to minimize the contribution of classical differential
calculus in the proof of the basic results in sub-riemannian geometry, by showing that in
fact the differential calculus on the underlying differential manifold of the sub-riemannian
space is needed only for proving that normal frames exist, which implies the existence of
dilation structures associated to the Carnot-Carathéodory distance.

The point of view of this paper is that sub-riemannian geometry may be described by
a set of axioms concerning dilation structures. It is true that this viewpoint is less general
than Gromov’s (there are more intrinsic objects than the Carnot-Carathéodory distance).
Nevertheless, in this approach we renounce at the differential structure (of the manifold)
and we replace it with something which is much weaker, a dilation structure. We could
then see sub-riemannian geometry (as well as riemannian geometry) as the geometry of
dilation structures on length metric spaces.

In [8] I showed that there are many dilation structures on ultrametric spaces. The dis-
tance on these metric spaces is not a length distance, therefore such dilation structures are
different from the ones appearing in sub-riemannian geometry.

With this motivation I propose here the notion of a length dilation structure (section
4) with the Radon-Nikodym property (RNP) (section 7). A dilation structure has the RNP
property if any Lipschitz curve is almost everywhere derivable in the sense induced by the
dilation structure. The dilation structure of a regular sub-riemannian manifold is a length
dilation structure with RNP. We can equally endow a riemannian manifold with a dilation
structure with RNP. Are there any other axioms which we have to add in order to obtain
a class of dilation structures which describes the true (non-riemannian) sub-riemannian
geometry?

The answer (theorem 10.10) is that regular sub-riemannian manifolds can be seen as
length dilation structures (definition 4.3) which are constructed with the help of coherent
projections (definition 9.1) and tempered dilation structures (definition 8.1).

Tempered dilation structures are a generalization of riemannian manifolds. They have
the property that for any point x of the space, the dilation based at x is a bi-lipschitz trans-
formation, in a uniform manner with respect to the magnification ε and the base point x.
This property describes riemannian spaces, but not general sub-riemannian spaces.

In order to obtain sub-riemannian spaces we also need coherent projections, which are
objects generalizing non-holonomic distributions. Indeed, consider M a real smooth n-
dimensional manifold. Instead of a distribution D, which is a map associating to any point
x ∈ M a subspace Dx ⊂ TxM, we could use a field of projections

Qx : TxM→ TxM, Qx TxM = Dx, Qx Qx = Qx.

Let us denote by δ̄x
εu = εu the multiplication by positive scalars in the tangent space of M
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at x. Suppose that the distribution D is spanned by a family of vector fields which induces
by the Chow condition a normal frame {Xi : i = 1, ...,n}, definition 6.5, and a non-isotropic
dilation

δx
ε

 n∑
i=1

aiXi(x)

 =  n∑
i=1

aiε
degXi Xi(x)

 ,
as in theorem 6.6. Then the field of projections x 7→ Qx is an uniform limit of ”approximate
projections”:

Qxu = lim
ε→0

Qx
εu, Qx

ε = δ̄
x
ε−1 δ

x
εu.

Under closer scrutiny, it appears that the existence of the limit Qx (as a uniform limit, as well
as having some other algebraic properties) is the basis which can be used for establishing
sub-riemannian geometry.

Outline of the paper. After the introductory section 2 dedicated to basic notions con-
cerning length in metric spaces, in section 3 we describe the notion of a dilation structure,
introduced in [5]. A dilation structure on a metric space directly provides a notion of deriva-
tive, thus endowing the space with its own differential calculus. The class of metric spaces
admitting dilation structures seems rather large, containing riemannian, sub-riemannian as
well as some ultrametric spaces, as explained in [6], [7], [8]. The idea of dilation structures
is that dilations (or dilations, or homotheties, or even contractions as considered in the case
of contractible groups) are central objects for a differential calculus. The field δ of dilations
on a metric space (X,d) obeys 5 axioms, see definition 3.1, stating algebraic and analytical
properties of δ, as well as the compatibility between δ and the distance d.

In section 4 we propose an alternative notion, length dilation structures, which will be
central in further considerations. In a length dilation structure, definition 4.3, the accent
is put on the length functional induced by the distance d. We may imagine the field of
dilations

(x, ε) ∈ X× (0,1] 7→ δx
ε : U(x) ⊂ X→ X

as a field of microscopes with magnification power ε, associating to any x ∈ X a chart U(x)
of a ε-neighbourhood of x, as measured with the distance d. Imagine a curve in X as a road
and the various charts provided by dilations as roadmaps. In a length dilation structure the
lengths of the images of the true road, as seen in different roadmaps, have to agree. Also,
these roadmaps have to be compatible in a clearly stated manner. Finally, the compatibility
of the dilation field with the length functional induced by the distance d is further stated as
a Gamma-convergence condition of induced length functionals, as ε→ 0.

In section 5 is explained the structure of the tangent bundle which comes with a strong
dilation structure or a length dilation structure. The characterization of the tangent bundle
for length dilation structures is new. A key notion which appears is the one of a conical
group, studied in [6], which generalizes Carnot groups and contractible groups as well.

In order to facilitate the understanding of the abstract theory of tempered dilation struc-
tures and coherent projections (sections 8, 9 and 10), we explain in section 6 the case of
dilation structures on sub-riemannian manifolds, following [7].

In section 7 we begin to study dilation structures satisfying the Radon-Nikodym prop-
erty for metric spaces (or rectifiability property, or RNP), definition 7.3. This property says
that Lipschitz curves are derivable almost everywhere in the sense provided by the dilation
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structure. We give examples, then we easily obtain a description of the length functional as
if we were in a kind of a generalized Finsler manifold, theorem 7.4.

Tempered dilation structures, section 8, seem to be the habitat where generalizations of
results of Buttazzo, De Pascale and Fragala [9] and Venturini [22] naturally live. A dilation
structure is tempered, definition 8.1, if the charts provided by dilations are bi-lipschitz with
the real distance, in a uniform manner with respect to the magnification ε and the base
point x. This is locally the case for any C1 riemannian manifold, but it is not true for sub-
riemannian manifolds, for example. From corollary 8.4 to theorem 8.3 we find out that a
tempered dilation structure with RNP is also a length dilation structure.

In section 9 coherent projections are introduced and studied. Coherent projections are
generalizations of distributions. With the help of a coherent projection Q and a tempered
dilation structure (X, d̄, δ̄) we get a new field of dilations δ and a new distance d, quite sim-
ilar to a Carnot-Carathéodory distance. Notice however that in the case of sub-riemannian
manifold we use as a tempered dilation structure the one coming from a riemannian man-
ifold, which according to our language has two very special properties: it is locally linear
(see the paper [6] for the affine geometry of a linear dilation structure) and it is commutative
in the sense that the tangent spaces are commutative conical groups, that is they are vector
spaces. In the general formalism of coherent projections and tempered dilation structures
nothing like this is used.

The main problem that we solve, section 10, is if (X,d, δ) is a length dilation structure.
This problem is solved for coherent projections which satisfy a generalized Chow condition.
This condition is inspired by the classical Chow condition, but for the reader which becomes
familiar with dilation structures is rather clear that Chow condition is only one among an
infinity of other conditions with equivalent effect. Indeed, even if we shall not touch this
in the present paper, the Chow condition seems to be only a convenient way to indicate
an algorithm for going from point A to point B, in terms of vector field brackets. We
explained in [5] that to dilation structures in general is associated a formalism of binary
decorated planar trees. At the level of this formalism the algorithm from Chow condition,
as formulated in this paper, appears as working on a very particular class of such binary
trees.

In subsection 10.3 we finally get that coherent projections which satisfy condition
(Cgen) and tempered dilation structures which satisfy some supplementary conditions (A)
and (B) indeed induce length dilation structures. At the classical level, this implies the new
result that on regular sub-riemannian manifolds the rescaled (with the magnification factor
ε) lengths Gamma-converge to the length in the metric tangent space, for any point.

The paper ends with the conclusion section 11, where we state that Gromov’ viewpoint,
that the CC distance is the only intrinsic object in sub-riemannian geometry, should be
supplemented with Siebert’ result, that a homogeneous Lie group is just a locally compact
group endowed with a contracting and continuous one parameter group of automorphisms.
This is what we do in this paper, by replacing the classical differential structures with the
more general dilation structures.

2 Length in metric spaces

For a detailed introduction into the subject see for example [1], chapter 1.
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Definition 2.1. The (upper) dilation of a map f : X→ Y between metric spaces, in a point
u ∈ Y is

Lip( f )(u) = limsup
ε→0

sup
{

dY ( f (v), f (w))
dX(v,w)

: v , w , v,w ∈ B(u, ε)
}
.

In the particular case of a derivable function f :R→Rn the upper dilation is Lip( f )(t) =
‖ ḟ (t)‖. A function f : (X,d)→ (Y,d′) is Lipschitz if there is C > 0 such that for any x,y ∈ X
we have d′( f (x), f (y))≤C d(x,y). The number Lip( f ) is the smallest such positive constant.
For any x ∈ X we have the obvious relation Lip( f )(x) ≤ Lip( f ).

Definition 2.2. Let c : [a,b]→ X be a curve a metric space (X,d).

(a) If c has L1 upper dilation then the length of the curve c is L( f ) =
∫ b

a
Lip(c)(t) dt,

(b) The variation of the curve c is the quantity

Var(c) = sup

 n∑
i=0

d(c(ti),c(ti+1)) : a = t0 < t1 < ... < tn < tn+1 = b

 ,
(c) The length of the path A = c([a,b]) is the one-dimensional Hausdorffmeasure of the

path:

l(A) = H1(A) = (lim
δ→0

inf

∑
i∈I

diam Ei : diam Ei < δ , A ⊂
⋃
i∈I

Ei

 .
The definitions are not equivalent. For any Lipschitz curve c : [a,b] → X, we have

L(c) = Var(c) ≥ H1(c([a,b])). If c is moreover injective then H1(c([a,b])) = Var( f ).
For further use we state the following reparametrisation theorem.

Theorem 2.3. Any Lipschitz curve c admits a reparametrisation c′ such that Lip(c′)(t) = 1
for almost any t ∈ [a,b].

Definition 2.4. We shall denote by ld the length functional induced by the distance d,
defined only on the family of Lipschitz curves. If the metric space (X,d) is connected by
Lipschitz curves, then the length induces a new distance dl, given by:

dl(x,y) = inf
{
ld(c([a,b])) : c : [a,b]→ X Lipschitz , c(a) = x , c(b) = y

}
.

A length metric space is a metric space (X,d) connected by Lipschitz curves, with d = dl.

Definition 2.5. A curve c : (a,b)→ (X,d) in a metric space is absolutely continuous if
there exists m ∈ L1((a,b)) (called an upper gradient of c) such that for any a < s ≤ t < b we
have

d(c(s),c(t)) ≤
∫ t

s
m(r) dr.
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If c is a Lipschitz curve in a complete length metric space then Lip(c) is an upper gradi-
ent, therefore Lipschitz curves in complete length metric spaces are absolutely continuous.

Definition 2.6. A curve c : (a,b)→ X is metrically derivable in t ∈ (a,b) if the limit

md(c)(t) = lim
s→t

d(c(s),c(t))
| s− t |

exists and it is finite. In this case md(c)(t) is called the metric derivative of c in t.

For the proof of the following theorem see [1], theorem 1.1.2, chapter 1.

Theorem 2.7. Let c : (a,b) → (X,d) be an absolutely continuous curve in the complete
metric space (X,d). Then c is metrically derivable forL1-a.e. t ∈ (a,b), the metric derivative
md(c) belongs to L1((a,b)) and for any upper gradient m of c we have md(c)(t) ≤ m(t) for
L1-a.e. t ∈ (a,b).

3 Dilation structures

We shall use here a slightly particular version of dilation structures. For the general defini-
tion of a dilation structure see [5] (the general definition applies for dilation structures over
ultrametric spaces as well).

Definition 3.1. Let (X,d) be a complete metric space such that for any x ∈ X the closed ball
B̄(x,3) is compact. A dilation structure (X,d, δ) over (X,d) is the assignment to any x ∈ X
and ε ∈ (0,+∞) of a homeomorphism, defined as: if ε ∈ (0,1] then δx

ε : U(x)→ Vε(x), else
δx
ε : Wε(x)→ U(x), with the following properties.

A0. For any x ∈ X the sets U(x),Vε(x),Wε(x) are open neighbourhoods of x. There are
1 < A < B such that for any x ∈ X and any ε ∈ (0,1) we have: Bd(x, ε) ⊂ δx

εBd(x,A) ⊂
Vε(x) ⊂ Wε−1(x) ⊂ δx

εBd(x,B). Moreover for any compact set K ⊂ X there are R =
R(K) > 0 and ε0 = ε(K) ∈ (0,1) such that for all u,v ∈ B̄d(x,R) and all ε ∈ (0, ε0), we
have δx

εv ∈Wε−1(δx
εu).

A1. For any x ∈ X δx
εx = x and δx

1 = id. Consider the closure Cl(domδ) of the set

domδ = {(ε, x,y) ∈ (0,+∞)×X×X : if ε ≤ 1 then y ∈ U(x) , else y ∈Wε(x)} ,

seen in [0,+∞)×X×X endowed with the product topology. . The function
δ : domδ → X, δ(ε, x,y) = δx

εy is continuous, admits a continuous extension over
Cl(domδ) and we have lim

ε→0
δx
εy = x.

A2. For any x,∈ X, ε,µ ∈ (0,+∞) and u ∈U(x), whenever one of the sides are well defined
we have the equality δx

εδ
x
µu = δ

x
εµu.

A3. For any x there is a distance function (u,v) 7→ dx(u,v), defined for any u,v in the
closed ball (in distance d) B̄(x,A), such that uniformly with respect to x in compact
set we have the limit:

lim
ε→0

sup
{
|

1
ε

d(δx
εu, δ

x
εv) − dx(u,v) | : u,v ∈ B̄d(x,A)

}
= 0.
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The dilation structure is strong if it satisfies the following supplementary condition:

A4. Let us define ∆x
ε(u,v) = δδ

x
εu
ε−1δ

x
εv. Then we have the limit, uniformly with respect to

x,u,v in compact set,
lim
ε→0
∆x
ε(u,v) = ∆x(u,v).

Definition 3.2. Let (X,d, δ) be a strong dilation structure. A property P(x1, x2, x3, ...) is true
for x1, x2, x3, ... ∈ X sufficiently close if for any compact, non empty set K ⊂ X, there is a
positive constant C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with
d(xi, x j) ≤C(K).

4 Length dilation structures

Consider (X,d) a complete, locally compact metric space, and a triple (X,d, δ) which satis-
fies A0, A1, A2. Denote by Lip([0,1],X,d) the space of d-Lipschitz curves c : [0,1]→ X.
Let also ld denote the length functional associated to the distance d.

Gamma-convergence of length functionals

Definition 4.1. For any ε ∈ (0,1) we define the length functional lε(x,c) = lx
ε(c) =

1
ε

ld(δx
εc), defined over the space of curves:

Lε(X,d, δ) = {(x,c) ∈ X×C([0,1],X) : c : [0,1] ∈ U(x) ,

δx
ε ◦ c is d−Lip and Lip(δx

εc) ≤ 2 ld(δx
εc)

}
.

For clarity we denoted by ”δx
ε ◦c” the composition of two functions, but in the following

we shall use a simpler notation, like ”δx
εc”.

The last condition from the definition of Lε(X,d, δ) is a selection of parameterization
of the path c([0,1]). Indeed, by the reparameterization theorem, if δx

εc : [0,1]→ (X,d) is a
d-Lipschitz curve of length L = ld(δx

εc) then δx
εc([0,1]) can be reparameterized by length,

that is there exists a increasing function φ : [0,L] → [0,1] such that c′ = δx
εc ◦ φ is a d-

Lipschitz curve with Lip(c′) ≤ 1. But we can use a second affine reparameterization which
sends [0,L] back to [0,1] and we get a Lipschitz curve c” with c”([0,1]) = c′([0,1]) and
Lip(c”) ≤ 2ld(c).

We shall use the following definition of Gamma-convergence (see the book [12] for the
notion of Gamma-convergence).

Definition 4.2. Let Z be a metric space with distance function D and (lε)ε>0 be a family of
functionals lε : Zε ⊂ Z→ [0,+∞]. Then lε Gamma-converges to the functional l : Z0 ⊂ Z→
[0,+∞] if:

(a) (liminf inequality) for any function ε ∈ (0,∞) 7→ xε ∈ Zε such that lim
ε→0

xε = x0 ∈ Z0

we have l(x0) ≤ liminf
ε→0

lε(xε).
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(b) (existence of a recovery sequence) For any x0 ∈ Z0 and for any sequence (εn)n∈N
such that lim

n→∞
εn = 0 there is a sequence (xn)n∈N with xn ∈ Zεn for any n ∈N, such that

l(x0) = lim
n→∞

lεn(xn).

We shall take as the metric space Z the space X×C([0,1],X) with the distance

D((x,c), (x′,c′)) = max
{
d(x, x′) , sup

{
d(c(t),c′(t)) : t ∈ [0,1]

}}
.

Let L(X,d, δ)be the class of all (x,c) ∈ X×C([0,1],X) which appear as limits (xn,cn)→
(x,c), with (xn,cn) ∈ Lεn(X,d, δ), the family (cn)n is d-equicontinuous and εn→ 0 as n→∞.

Definition 4.3. A triple (X,d, δ) is a length dilation structure if (X,d) is a complete, lo-
cally compact metric space such that A0, A1, A2, are satisfied, together with the following
axioms:

A3L. there is a functional l : L(X,d, δ)→ [0,+∞] such that for any εn → 0 as n→∞ the
sequence of functionals lεn Gamma-converges to the functional l.

A4+ Let us define ∆x
ε(u,v) = δδ

x
εu
ε−1δ

x
εv and Σx

ε(u,v) = δx
ε−1δ

δx
εu
ε v. Then we have the limits

lim
ε→0
∆x
ε(u,v) = ∆x(u,v), lim

ε→0
Σx
ε(u,v) = Σx(u,v),

uniformly with respect to x,u,v in compact set.

Remark 4.4. For strong dilation structures the axioms A0 - A4 imply A4+, cf. corollary 9
[5]. The transformations Σx

ε(u, ·) have the interpretation of approximate left translations in
the tangent space of (X,d) at x.

For any ε ∈ (0,1) and any x ∈ X the length functional lx
ε induces the distance d̊x

ε on U(x):

d̊x
ε(u,v) = inf

{
lx
ε(c) : (x,c) ∈ Lε(X,d, δ) , c(0) = u , c(1) = v

}
.

In the same way the length functional l from A3L induces a the distance d̊x on U(x). We
then have

d̊x(u,v) ≥ limsup
ε→0

d̊x
ε(u,v). (4.1)

Remark 4.5. Without supplementary hypotheses we cannot prove A3 from A3L, that is in
principle length dilation structures are not strong dilation structures.

5 Properties of (length) dilation structures

For a dilation structure the metric tangent spaces have a group structure which is compatible
with dilations.

We shall work further with local groups. Such objects are spaces endowed with a locally
defined operation, satisfying the conditions of a uniform group. See section 3.3 [5] for
details about the definition of local groups.
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5.1 Normed conical groups

These have been introduced in section 8.2 [5] and studied further in section 4 [6]. In the
following general definition appear a topological commutative group Γ endowed with a
continuous morphism ν : Γ→ (0,+∞) from Γ to the group (0,+∞) with multiplication. The
morphism ν induces an invariant topological filter on Γ (other names for such an invariant
filter are ”absolute” or ”end”). The convergence of a variable ε ∈ Γ to this filter is denoted
by ε→ 0 and it means simply ν(ε)→ 0 in R.

Particular, interesting examples of pairs (Γ, ν) are: (0,+∞) with identity, which is the
case interesting for this paper, C∗ with the modulus of complex numbers, or N (with ad-
dition) with the exponential, which is relevant for the case of normed contractible groups,
section 4.3 [6].

Definition 5.1. A normed group with dilations (G, δ,‖ · ‖) is a local group G with a local
action of Γ (denoted by δ), on G such that

H0. the limit lim
ε→0
δεx = e exists and is uniform with respect to x in a compact neighbour-

hood of the identity e,

H1. the limit β(x,y) = lim
ε→0
δ−1
ε ((δεx)(δεy)) is well defined in a compact neighbourhood of

e and the limit is uniform with respect to x, y,

H2. the following relation holds: lim
ε→0
δ−1
ε

(
(δεx)−1

)
= x−1, where the limit from the left

hand side exists in a neighbourhood U ⊂G of e and is uniform with respect to x ∈U.

Moreover the group is endowed with a continuous norm function ‖ · ‖ : G→ R which
satisfies (locally, in a neighbourhood of the neutral element e) the properties:

(a) for any x we have ‖x‖ ≥ 0; if ‖x‖ = 0 then x = e,

(b) for any x,y we have ‖xy‖ ≤ ‖x‖+ ‖y‖,

(c) for any x we have ‖x−1‖ = ‖x‖,

(d) the limit lim
ε→0

1
ν(ε)
‖δεx‖ = ‖x‖N exists, is uniform with respect to x in compact set,

(e) if ‖x‖N = 0 then x = e.

Theorem 5.2. (Thm. 15 [5]) Let (G, δ,‖ · ‖) be a locally compact normed local group with
dilations. Then (G,d, δ) is a strong dilation structure, where the dilations δ and the distance
d are defined by: δx

εu = xδε(x−1u), d(x,y) = ‖x−1y‖.

Definition 5.3. A normed conical group N is a normed group with dilations such that for
any ε ∈ Γ the dilation δε is a group morphism and such that for any ε > 0 ‖δεx‖ = ν(ε)‖x‖.

A normed conical group is the infinitesimal version of a normed group with dilations
([5] proposition 2).

Proposition 5.4. Let (G, δ,‖ · ‖) be a locally compact normed local group with dilations.
Then (G,β,δ,‖ · ‖N) is a locally compact, local normed conical group, with operation β,
dilations δ and homogeneous norm ‖ · ‖N .
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5.2 Tangent bundle of a dilation structure

The following two theorems describe the most important metric and algebraic properties
of a dilation structure. As presented here these are condensed statements, available in full
length as theorems 7, 8, 10 in [5]. The first theorem does not need a proof (see theorem 7
[5]).

Theorem 5.5. Let (X,d, δ) be a strong dilation structure. Then the metric space (X,d) ad-
mits a metric tangent space at x, for any point x ∈ X. More precisely we have the following
limit:

lim
ε→0

1
ε

sup
{
| d(u,v)−dx(u,v) | : d(x,u) ≤ ε , d(x,v) ≤ ε

}
= 0.

Length dilation structures were introduced in this paper. Straightforward modifications
in the proof of the before mentioned theorems allow us to extend some results to length
dilation structures.

Theorem 5.6. (a) If (X,d, δ) is a strong dilation structure then for any x ∈ X the triple
(U x, δx,dx) is a locally compact normed conical group, with operation Σx(·, ·), neutral ele-
ment x and inverse invx(y) = ∆x(y, x).

(b) If (X,d, δ) is a length dilation structure then for any x ∈ X the triple (U x,Σx, δx) is a
conical local group, that is (U x,Σx, x, invx) is a group with operation Σx(·, ·), neutral element
x and inverse invx(y) = ∆x(y, x)Moreover, the length functional lx = l(x, ·) is invariant with
respect to left translations Σx(y, ·), y ∈ U(x), and for any µ ∈ (0,1] we have the equality

l(x, δx
µc) = µ l(x,c)

for any curve c ∈ L(X,d, δ) with image in U(x).

Proof. We shall only prove the statements concerning length dilation structures. For prov-
ing that the triple (U x,Σx, δx) is a conical local group we need only A4+ and algebraic
relations from theorem 11 [5] which are true only from A0, A1, A2. Indeed, we notice that
the proof of theorem 10 [5] has two parts: in the first part is proved A4+ from the axioms od
strong dilation structures, then we pass to the limit in the algebraic relations from theorem
11 [5]. For length dilation structures A4+ is true, so the second part of the mentioned proof
can be repeated verbatim in order to obtain a proof of the first part of the statement (b).

For proving that lx = l(x, ·) is invariant with respect to left translations Σx(y, ·), y ∈
U(x), consider a curve c such that (δx

εy,c) ∈ Lε(X,d, δ) for any ε sufficiently small. Then
(x,Σx

ε(y, ·)c) ∈ Lε(X,d, δ) and moreover lε(δx
εy,c) = lε(x,Σx

ε(y, ·)c). Indeed, this is true be-
cause of the equality: δδ

x
εyc = δx

εΣ
x
ε(y, ·)c. By passing to the limit with ε→ 0 and using A3L

and A4+ we get l(x,c) = l(x,Σx(y, ·)c).
For the last part of the statement (b) remark that for any ε,µ > 0 (and sufficiently

small) (x,c) ∈ Lεµ(X,d, δ) is equivalent with (x, δx
µc) ∈ Lε(X,d, δ) and moreover: lε(x, δx

µc) =
1
ε

ld(δx
εµc) = µ lεµ(x,c). We pass to the limit with ε→ 0 and we get the desired equality. �

Definition 5.7. The conical group (U(x),Σx, δx) can be seen as the tangent space of (X,d, δ)
at x. We shall denote it by Tx(X,d, δ) = (U(x),Σx, δx), or by TxX if (d, δ) are clear from the
context.
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The following proposition is corollary 6.3 from [6], which gives a more precise descrip-
tion of the conical group (U(x),Σx, δx).

Proposition 5.8. Let (X,d, δ) be a strong dilation structure. Then for any x ∈ X the local
group (U(x),Σx) is locally a simply connected Lie group whose Lie algebra admits a positive
graduation (a homogeneous group), given by the eigenspaces of δx

ε for an arbitrary ε ∈
(0,1).

Remark 5.9. S. Vodopyanov (private communication) made the observation that in the proof
of corollary 6.3 [6] it is used Siebert’ proposition 5.4 [21], which is true for conical groups
(in our language), while I am using it for local conical groups. This is true and constitutes a
gap in the proof of the corollary 6.3. Fortunately the recent paper [13] provides the needed
result for local groups. Indeed, theorem 1.1 [13] states that a locally compact, locally
connected, contractible (with Siebert’ wording) group is locally isomorphic to a contractive
Lie group.

5.3 Differentiability with respect to dilation structures

For any strong dilation structure or length dilation structure there is an associated notion
of differentiability (section 7.2 [5]). First we need the definition of a morphism of conical
groups.

Definition 5.10. Let (N, δ) and (M, δ̄) be two conical groups. A function f : N → M is a
conical group morphism if f is a group morphism and for any ε > 0 and u ∈ N we have
f (δεu) = δ̄ε f (u).

The definition of the derivative, or differential, with respect to dilations structures fol-
lows. In the case of a pair of Carnot groups this is just the definition of the Pansu derivative
introduced in [20].

Definition 5.11. Let (X,d, δ) and (Y,d, δ) be two strong dilation structures or length and
f : X → Y be a continuous function. The function f is differentiable in x if there exists
a conical group morphism D f (x) : TxX → T f (x)Y , defined on a neighbourhood of x with
values in a neighbourhood of f (x) such that

lim
ε→0

sup
{

1
ε

d
(

f
(
δx
εu

)
, δ

f (x)
ε D f (x)(u)

)
: d(x,u) ≤ ε

}
= 0. (5.1)

The morphism D f (x) is called the derivative, or differential, of f at x.

The definition also makes sense if the function f is defined on a open subset of (X,d).

6 Dilation structures on sub-riemannian manifolds

In [7] we proved that we can associate dilation structures to regular sub-Riemannian mani-
folds. This result, explained further, is the source of inspiration of the notion of a coherent
projection (section 9).
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Let M be a connected n dimensional real manifold. A distribution is a smooth subbundle
D of M. To any point x ∈ M there is associated the vector space Dx ⊂ TxM. The dimension
of the distribution D at point x ∈ M is m(x) = dim Dx, locally constant. We suppose further
that the dimension of the distribution is globally constant and we denote it by m. Clearly
m ≤ n; we are interested in the case m < n.

A horizontal curve c : [a,b]→ M is a curve which is almost everywhere derivable and
for almost any t ∈ [a,b] we have ċ(t) ∈ Dc(t). The class of horizontal curves will be denoted
by Hor(M,D).

Further we shall use the following notion of non-integrability of the distribution D. The
Chow condition (C) [11] gives a sufficient condition for the distribution D to be completely
non-integrable.

Definition 6.1. The distribution D is completely non-integrable if M is locally connected
by horizontal curves curves c ∈ Hor(M,D).

Theorem 6.2. (Chow) Let D be a distribution of dimension m in the manifold M. Suppose
there is a positive integer number k (called the rank of the distribution D) such that for any
x ∈ X there is a topological open ball U(x) ⊂ M with x ∈ U(x) such that there are smooth
vector fields X1, ...,Xm in U(x) with the property:

(C) the vector fields X1, ...,Xm span Dy and these vector fields together with their iterated
brackets of order at most k span the tangent space TyM at every point y ∈ U(x).

Then the distribution D is completely non-integrable in the sense of definition 6.1.

Definition 6.3. A sub-riemannian manifold or SR manifold is a triple (M,D,g), where
M is a connected manifold, D is a completely non-integrable distribution on M, and g is a
metric (Euclidean inner-product) on the distribution (or horizontal bundle) D.

Given a distribution D which satisfies the hypothesis of Chow theorem 6.2, let us con-
sider a point x ∈ M, a neighbourhood U(x) of x and the vector fields X1, ...,Xm satisfying
the condition (C). One can define on U(x) a filtration of bundles as follows. Define first the
class of horizontal vector fields on U(x):

X1(U(x),D) =
{
X ∈ X∞(U) : ∀y ∈ U(x) , X(y) ∈ Dy

}
.

Next, define inductively for all positive integers j:

X j+1(U(x),D) = X j(U(x),D) + [X1(U(x),D),X j(U(x),D)].

Here [·, ·] denotes the bracket of vector fields. We obtain therefore a filtrationX j(U(x),D) ⊂
X j+1(U(x),D). We evaluate now this filtration at y ∈ U(x):

V j(y,U(x),D) =
{
X(y) : X ∈ X j(U(x),D)

}
.

According to the hypothesis of Chow theorem, there is a positive integer k such that for all
y ∈ U(x) we have

Dy = V1(y,U(x),D) ⊂ V2(y,U(x),D) ⊂ ... ⊂ Vk(y,U(x),D) = TyM.
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Consequently, to the sub-riemannian manifold is associated the string of numbers:

ν1(y) = dimV1(y,U(x),D) < ν2(y) = dimV2(y,U(x),D) < ... < n = dim M.

Generally k, ν j(y) may vary from a point to another. The number k is called the step of the
distribution at y. The distribution D is regular if ν j(y) are constant on the manifold M. The
sub-riemannian manifold (M,D,g) is regular if D is regular and for any x ∈ M there is a
topological ball U(x) ⊂ M with x ∈U(M) and an orthonormal (with respect to the metric g)
family of smooth vector fields {X1, ...,Xm} in U(x) which satisfy the condition (C).

The lenght of a horizontal curve is

l(c) =
∫ b

a

(
gc(t)(ċ(t), ċ(t))

) 1
2 dt.

Definition 6.4. The Carnot-Carathéodory distance (or CC distance) associated to the sub-
riemannian manifold is the distance induced by the length l of horizontal curves:

d(x,y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y} .

The Chow theorem ensures the existence of a horizontal path linking any two suffi-
ciently close points, therefore the CC distance is locally finite. The distance depends only
on the distribution D and metric g, and not on the choice of vector fields X1, ...,Xm satisfy-
ing the condition (C). The space (M,d) is locally compact and complete, and the topology
induced by the distance d is the same as the topology of the manifold M. (These important
details may be recovered from reading carefully the constructive proofs of Chow theorem
given by Bellaı̈che [3] or Gromov [15].)

6.1 Normal frames

Chow condition (C) is used to construct an adapted frame starting from a family of vector
fields which generate the distribution D. A fundamental result in sub-riemannian geometry
is the existence of normal frames. This existence result is based on the accumulation of var-
ious results by Bellaı̈che [3], first to speak about normal frames, providing rigorous proofs
for this existence in a flow of results between theorem 4.15 and ending in the first half of
section 7.3 (page 62), Gromov [15] in his approximation theorem p. 135 (conclusion of the
point (a) below), as well in his convergence results concerning the nilpotentization of vec-
tor fields (related to point (b) below), Vodopyanov and others [23] [24] [25] concerning the
proof of basic results in sub-riemannian geometry under very weak regularity assumptions
(for a discussion of this see [7]).

In the following we shall work further only with regular sub-riemannian manifolds. For
such a manifold M we stay in some small open neighbourhood of an arbitrary, but fixed
point x0 of the manifold M. We shall no longer mention the dependence of various objects
on x0, on the neighbourhood U(x0), or the distribution D.

Adapted frames. An adapted frame {X1, ...,Xn} is a collection of smooth vector fields
which is obtained by the following construction. We start with a collection X1, ...,Xm

of vector fields which satisfy the condition (C). In particular for any point x the vectors
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X1(x), ...,Xm(x) form a basis for Dx. We further associate to any word a1....aq with letters
in the alphabet 1, ...,m the multi-bracket [Xa1 , [...,Xaq]...]. One can add, in the lexicographic
order, n−m elements to the set {X1, ...,Xm} until we get a collection {X1, ...,Xn} such that:
for any j = 1, ...,k and for any point x the set

{
X1(x), ...,Xν j(x)

}
is a basis for V j(x).

Let {X1, ...,Xn} be an adapted frame. For any j = 1, ...,n the degree deg X j of the vector
field X j is defined as the only positive integer p such that for any point x we have

X j(x) ∈ V p
x \V p−1(x).

According with Gromov suggestions in the last section of Bellaı̈che [3], the key details
in the definition below are the uniform convergence assumptions.

Definition 6.5. An adapted frame {X1, ...,Xn} is a normal frame if the following two con-
ditions are satisfied:

(a) we have the limit lim
ε→0+

1
ε

d

exp

 n∑
1

εdeg XiaiXi

 (y),y

 = A(y,a) ∈ (0,+∞), which is

uniform with respect to y in compact sets and vector a = (a1, ...,an) ∈W, with W ⊂ Rn

compact neighbourhood of 0 ∈ Rn,

(b) for any compact set K ⊂ M with diameter (with respect to the distance d) sufficiently
small, and for any i = 1, ...,n there are functions Pi(·, ·, ·) : UK ×UK ×K → R, with
UK ⊂ R

n a sufficiently small compact neighbourhood of 0 ∈ Rn such that for any
x ∈ K and any a,b ∈ UK we have

exp

 n∑
1

aiXi

 (x) = exp

 n∑
1

Pi(a,b,y)Xi

◦ exp

 n∑
1

biXi

 (x)

and such that the following limit uniform with respect to x ∈ K and a,b ∈ UK :

lim
ε→0+
ε−deg Xi Pi(εdeg X ja j, ε

deg Xk bk, x) ∈ R.

In order to understand normal frames let us look to the case of a Lie group G endowed
with a left invariant distribution. The distribution is completely non-integrable if it is gen-
erated by the left translation of a vector subspace D of the algebra g = TeG which bracket
generates the whole algebra g. Take {X1, ...,Xm} a collection of m = dim D left invariant
independent vector fields and define with their help an adapted frame. Then the adapted
frame {X1, ...,Xn} is in fact normal.

With the help of a normal frame we can prove the existence of strong dilation structures
on regular sub-riemannian manifolds (theorems 6.3, 6.4 [7]).

Theorem 6.6. Let (M,D,g) be a regular sub-riemannian manifold, U ⊂ M an open set
which admits a normal frame. Define for any x ∈ U and ε > 0 (sufficiently small if neces-
sary), the dilation δx

ε given by:

δx
ε

exp

 n∑
i=1

aiXi

 (x)

 = exp

 n∑
i=1

aiε
degXi Xi

 (x).

Then (U,d, δ) is a strong dilation structure.
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Proof. Indeed, it is enough to check the axioms A3, A4 of a strong dilation structure,
because the other axioms are obviously true. By theorem 6.3 [7] A3 is true and by theorem
6.4 [7] A4 is true. �

6.2 Carnot groups

Carnot groups appear in sub-riemannian geometry as models of tangent spaces, [3], [15],
[20]. In particular such groups can be endowed with a structure of sub-riemannian manifold.

Carnot groups are particular cases of normed conical groups.

Definition 6.7. A Carnot (or stratified homogeneous) group (N,V1) is a pair consisting
of a real connected simply connected group N with a distinguished subspace V1 of the Lie
algebra Lie(N), such that the following direct sum decomposition occurs:

n =
m∑

i=1

Vi , Vi+1 = [V1,Vi].

The number m is the step of the group. The number Q =
m∑

i=1

i dimVi is called the homo-

geneous dimension of the group.

Because the group is nilpotent and simply connected, the exponential mapping is a
diffeomorphism. We shall identify the group with the algebra, if is not locally otherwise
stated.

The structure that we obtain is a set N endowed with a Lie bracket and a group mul-
tiplication operation, related by the Baker-Campbell-Hausdorff formula. Remark that the
group operation is polynomial.

Any Carnot group admits a one-parameter family of dilations. For any ε > 0, the asso-
ciated dilation is:

x =
m∑

i=1

xi 7→ δεx =
m∑

i=1

εixi.

Any such dilation is a group morphism and a Lie algebra morphism.
In a Carnot group N let us choose an euclidean norm ‖ · ‖ on V1. We shall endow

the group N with a structure of a sub-riemannian manifold. For this take the distribution
obtained from left translates of the space V1. The metric on that distribution is obtained by
left translation of the inner product restricted to V1.

Because V1 generates (the algebra) N then any element x ∈ N can be written as a product
of elements from V1, in a controlled way, described in the following useful lemma (slight
reformulation of Lemma 1.40, Folland, Stein [14]).

Lemma 6.8. Let N be a Carnot group and X1, ...,Xp an orthonormal basis for V1. Then
there is a a natural number M and a function g : {1, ...,M} → {1, ..., p} such that any element
x ∈ N can be written as:

x =
M∏

i=1

exp(tiXg(i)). (6.1)

Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can be chosen such
that | ti |≤C‖x‖1/m.
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As a consequence we get:

Corollary 6.9. The Carnot-Carathéodory distance

d(x,y) = inf
{∫ 1

0
‖c−1ċ‖ dt : c(0) = x, c(1) = y,

c−1(t)ċ(t) ∈ V1 for a.e. t ∈ [0,1]
}

is finite for any two x,y ∈ N. The distance is obviously left invariant, thus it induces a norm
on N.

The Carnot-Carathéodory distance induces a homogeneous norm on the Carnot group
N by the formula: ‖x‖ = d(0, x). From the invariance of the distance with respect to left
translations we get: for any x,y ∈ N

‖x−1y‖ = d(x,y).

For any x ∈ N and ε > 0 we define the dilation δx
εy = xδε(x−1y). Then (N,d, δ) is a

dilation structure, according to theorem 5.2.
Such dilation structures have the Radon-Nikodym property (defined further), as proven

several times, in [17], [20], or [23].

7 The Radon-Nikodym property

Let (X,d, δ) be a strong dilation structure or a length dilation structure. We have then a no-
tion of differentiability for curves in X, seen as continuous functions from (a open interval
in) R, with the usual dilation structure, to X with the dilation structure (X,d, δ). Further we
want to see what differentiability in the sense of definition 5.11 means for curves. In propo-
sition 7.2 we shall arrive to a kind of intrinsic notion of a distribution in a dilation structure,
with the geometrical meaning of a cone of all possible derivatives of curves passing through
a point.

Definition 7.1. In a normed conical group N we shall denote by D(N) the set of all u ∈ N
with the property that ε ∈ ((0,∞),+) 7→ δεu ∈ N is a morphism of groups.

D(N) is always non empty, because it contains the neutral element of N. D(N) is also a
cone, with dilations δε, and a closed set.

Proposition 7.2. Let (X,d, δ) be a strong dilation structure or a length dilation structure
and let c : [a,b]→ (X,d) be a continuous curve. For any x ∈ X and any y ∈ Tx(X,d, δ) we
denote by

invx(y) = ∆x(y, x)

the inverse of y with respect to the group operation in Tx(X,d, δ). Then the following are
equivalent:

(a) c is derivable in t ∈ (a,b) with respect to the dilation structure (X,d, δ);
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(b) there exists ċ(t) ∈ D(Tc(t)(X,d, δ)) such that

1
ε

d(c(t+ε), δc(t)
ε ċ(t))→ 0,

1
ε

d(c(t−ε), δc(t)
ε invc(t)(ċ(t)))→ 0.

Proof. It is straightforward that a conical group morphism f : R → N is defined by its
value f (1) ∈ N. Indeed, for any a > 0 we have f (a) = δa f (1) and for any a < 0 we have
f (a) = δa f (1)−1. From the morphism property we also deduce that

δv =
{
δav : a > 0,v = f (1) or v = f (1)−1

}
is a one parameter group and that for all α,β > 0 we have δα+βu= δαuδβu. We have therefore
a bijection between conical group morphisms f : R→ (N, δ) and elements of D(N).

The curve c : [a,b]→ (X,d) is derivable in t ∈ (a,b) if and only if there is a morphism
of normed conical groups f : R→ Tc(t)(X,d, δ) such that for any a ∈ R we have

lim
ε→0

1
ε

d(c(t+εa), δc(t)
ε f (a)) = 0.

Take ċ(t) = f (1). Then ċ(t) ∈ D(Tc(t(X,d, δ)). For any a > 0 we have f (a) = δc(t)
a ċ(t); oth-

erwise if a < 0 we have f (a) = δc(t)
a invc(t) ċ(t). This implies the equivalence stated on the

proposition. �

Definition 7.3. A strong dilation structure or a length dilation structure (X,d, δ) has the
Radon-Nikodym property (or rectifiability property, or RNP) if any Lipschitz curve
c : [a,b]→ (X,d) is derivable almost everywhere.

7.1 Two examples

The following two easy examples will show that not any strong dilation structure has the
Radon-Nikodym property.

For (X,d) = (V,d), a real, finite dimensional, normed vector space, with distance d
induced by the norm, the (usual) dilations δx

ε are given by:

δx
εy = x+ε(y− x).

Dilations are defined everywhere.
There are few things to check: axioms 0,1,2 are obviously true. For axiom A3, remark

that for any ε > 0, x,u,v ∈ X we have:

1
ε

d(δx
εu, δ

x
εv) = d(u,v),

therefore for any x ∈ X we have dx = d.
Finally, let us check the axiom A4. For any ε > 0 and x,u,v ∈ X we have

δ
δx
εu
ε−1δ

x
εv = x+ε(u− x)+

1
ε

(x+ε(v− x)− x−ε(u− x)) =
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= x+ε(u− x)+ v−u,

therefore this quantity converges to

x+ v−u = x+ (v− x)− (u− x).

as ε→ 0. The axiom A4 is verified.
This dilation structure has the Radon-Nikodym property.
Further is an example of a dilation structure which does not have the Radon-Nikodym

property. Take X = R2 with the euclidean distance d. For any z ∈ C of the form z = 1+ iθ we
define dilations

δεx = εzx.

It is easy to check that (R2,d, δ) is a dilation structure, with dilations

δx
εy = x+δε(y− x).

Two such dilation structures (constructed with the help of complex numbers 1+ iθ and
1+ iθ′) are equivalent if and only if θ = θ′ (mod 2π).

There are two other interesting properties of these dilation structures. The first is that if
θ , 0 then there are no non trivial Lipschitz curves in X which are differentiable almost ev-
erywhere. It means that such dilation structure does not have the Radon-Nikodym property.

The second property is that any holomorphic and Lipschitz function from X to X (holo-
morphic in the usual sense on X =R2 =C) is differentiable almost everywhere, but there are
Lipschitz functions from X to X which are not differentiable almost everywhere (enough to
take a C∞ function from R2 to R2 which is not holomorphic).

7.2 Length formula from Radon-Nikodym property

Theorem 7.4. Let (X,d, δ) be a strong dilation structure with the Radon-Nikodym property,
over a complete length metric space (X,d). Then for any x,y ∈ X we have

d(x,y) = inf
{∫ b

a
dc(t)(c(t), ċ(t)) dt : c : [a,b]→ X Lipschitz ,

c(a) = x,c(b) = y} .

Proof. From theorem 2.7 we deduce that for almost every t ∈ (a,b) the upper dilation of c
in t can be expressed as:

Lip(c)(t) = lim
s→t

d(c(s),c(t))
| s− t |

.

If the dilation structure has the Radon-Nikodym property then for almost every t ∈ [a,b]
there is ċ(t) ∈ D(Tc(t)X) such that

1
ε

d(c(t+ε), δc(t)
ε ċ(t))→ 0.
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Therefore for almost every t ∈ [a,b] we have

Lip(c)(t) = lim
ε→0

1
ε

d(c(t+ε),c(t)) = dc(t)(c(t), ċ(t)).

The formula for length follows from here. �

A straightforward consequence is that the distance d is uniquely determined by the
”distribution” x ∈ X 7→ D(Tx(X,d, δ)) and the function which associates to any x ∈ X the
”norm” ‖ · ‖x : D(Tx(X,d, δ))→ [0,+∞).

Corollary 7.5. Let (X,d, δ) and (X, d̄, δ̄) be two strong dilation structures with the Radon-
Nikodym property , which are also complete length metric spaces, such that for any x ∈ X we
have D(Tx(X,d, δ)) = D(Tx(X, d̄, δ̄)) and dx(x,u) = d̄x(x,u) for any u ∈ D(Tx(X,d, δ)). Then
d = d̄.

7.3 Equivalent dilation structures and their distributions

Definition 7.6. Two strong dilation structures (X, δ,d) and (X, δ,d) are equivalent if

(a) the identity map id : (X,d)→ (X,d) is bilipschitz and

(b) for any x ∈ X there are functions Px,Qx (defined for u ∈ X sufficiently close to x) such
that

lim
ε→0

1
ε

d
(
δx
εu, δ

x
εQ

x(u)
)
= 0, (7.1)

lim
ε→0

1
ε

d
(
δ

x
εu, δ

x
εP

x(u)
)
= 0, (7.2)

uniformly with respect to x, u in compact sets.

Proposition 7.7. (X, δ,d) and (X, δ,d) are equivalent if and only if

(a) the identity map id : (X,d)→ (X,d) is bilipschitz,

(b) for any x ∈ X there are conical group morphisms:

Px : Tx(X, δ,d)→ Tx(X, δ,d) and Qx : Tx(X, δ,d)→ Tx(X, δ,d)

such that the following limits exist

lim
ε→0

(
δ

x
ε

)−1
δx
ε(u) = Qx(u), (7.3)

lim
ε→0

(
δx
ε

)−1 δ
x
ε(u) = Px(u), (7.4)

and are uniform with respect to x, u in compact sets.

The next theorem shows a link between the tangent bundles of equivalent dilation struc-
tures.
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Theorem 7.8. Let (X,d, δ) and (X,d, δ) be equivalent strong dilation structures. Then for
any x ∈ X and any u,v ∈ X sufficiently close to x we have:

Σ
x
(u,v) = Qx (Σx (Px(u),Px(v)

))
. (7.5)

The two tangent bundles are therefore isomorphic in a natural sense.

As a consequence, the following corollary is straightforward.

Corollary 7.9. Let (X,d, δ) and (X,d, δ) be equivalent strong dilation structures. Then for
any x ∈ X we have

Qx(D(Tx(X, δ,d))) = D(Tx(X, δ,d)).

If (X,d, δ) has the Radon-Nikodym property , then (X,d, δ) has the same property.
Suppose that (X,d, δ) and (X,d, δ) are complete length spaces with the Radon-Nikodym

property . If the functions Px,Qx from definition 7.6 (b) are isometries, then d = d.

8 Tempered dilation structures

The notion of a tempered dilation structure is inspired by the results from Venturini [22]
and Buttazzo, De Pascale and Fragala [9].

The examples of length dilation structures from this section are provided by the exten-
sion of some results from [9] (propositions 2.3, 2.6 and a part of theorem 3.1) to dilation
structures.

The following definition gives a class of distances D(Ω, d̄, δ̄), associated to a strong di-
lation structure (Ω, d̄, δ̄), which generalizes the class of distancesD(Ω) from [9], definition
2.1.

Definition 8.1. For any strong dilation structure (Ω, d̄, δ̄) we define the class D(Ω, d̄, δ̄) of
all distance functions d on Ω such that

(a) d is a length distance,

(b) for any ε > 0 and any x,u,v sufficiently close the are constants 0 < c <C such that:

c d̄x(u,v) ≤
1
ε

d(δ̄x
εu, δ̄

x
εv) ≤ C d̄x(u,v). (8.1)

The dilation structure (Ω, d̄, δ̄) is tempered if d̄ ∈ D(Ω, d̄, δ̄).
On D(Ω, d̄, δ̄) we put the topology of uniform convergence (induced by distance d̄) on

compact subsets of Ω×Ω.

To any distance d ∈ D(Ω, d̄, δ̄) we associate the function:

φd(x,u) = limsup
ε→0

1
ε

d(x, δx
εu),

defined for any x,u ∈Ω sufficiently close. We have therefore

c d̄x(x,u) ≤ φd(x,u) ≤ C d̄x(x,u). (8.2)
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Notice that if d ∈ D(Ω, d̄, δ̄) then for any x,u,v sufficiently close we have

−d̄(x,u)O(d̄(x,u)) + c d̄x(u,v) ≤

≤ d(u,v) ≤ C d̄x(u,v) + d̄(x,u)O(d̄(x,u)).

If c : [0,1]→ Ω is a d-Lipschitz curve and d ∈ D(Ω, d̄, δ̄) then we may decompose it in
a finite family of curves c1, ...,cn (with n depending on c) such that there are x1, ..., xn ∈ Ω

with ck is d̄xk -Lipschitz. Indeed, the image of the curve c([0,1]) is compact, therefore we
may cover it with a finite number of balls B(c(tk),ρk, d̄c(tk)) and apply (8.1). If moreover
(Ω, d̄, δ̄) is tempered then it follows that c : [0,1]→ Ω d-Lipschitz curve is equivalent with
c d̄-Lipschitz curve.

By using the same arguments as in the proof of theorem 7.4, we get the following
extension of proposition 2.4 [9].

Proposition 8.2. If the triple (Ω, d̄, δ̄) is tempered, with the Radon-Nikodym property, and
d ∈ D(Ω, d̄, δ̄) then

d(x,y) = inf
{∫ b

a
φd(c(t), ċ(t)) dt : c : [a,b]→ X d̄-Lipschitz ,

c(a) = x,c(b) = y} .

The next theorem is a generalization of a part of theorem 3.1 [9].

Theorem 8.3. Let (Ω, d̄, δ̄) be a strong dilation structure which is tempered, with the Radon-
Nikodym property, and dn ∈D(Ω, d̄, δ̄) a sequence of distances converging to d ∈D(Ω, d̄, δ̄).
Denote by Ln,L the length functional induced by the distance dn, respectively by d. Then
Ln Γ-converges to L.

Proof. This is the generalization of the implication (i)⇒ (iii), theorem 3.1 [9]. The proof (p.
252-253) is almost identical, we only need to replace everywhere expressions like | x−y | by
d̄(x,y) and use proposition 8.2, relations (8.2) and (8.1) instead of respectively proposition
2.4 and relations (2.6) and (2.3) [9]. �

Using this result we obtain a large class of examples of length dilation structures.

Corollary 8.4. If (Ω, d̄, δ̄) is strong dilation structure which is tempered and it has the
Radon-Nikodym property then it is a length dilation structure.

Proof. Indeed, from the hypothesis we deduce that δ̄x
εd̄ ∈ D(Ω, d̄, δ̄). For any sequence

εn→ 0 we thus obtain a sequence of distances dn = δ̄
x
εn

d̄ converging to d̄x. We apply now
theorem 8.3 and we get the result. �
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9 Coherent projections

For a given dilation structure with the Radon-Nikodym property, we shall give a procedure
to construct another dilation structure, such that the first one looks down to the the second
one.

This will be done with the help of coherent projections.

Definition 9.1. Let (X, d̄, δ̄) be a strong dilation structure. A coherent projection of (X, d̄, δ̄)
is a function which associates to any x ∈ X and ε ∈ (0,1] a map Qx

ε : U(x)→ X such that:

(I) Qx
ε : U(x)→ Qx

ε(U(x)) is invertible and the inverse will be denoted by Qx
ε−1 ; for any

ε,µ > 0 and any x ∈ X we have

Qx
ε δ̄

x
µ = δ̄

x
µQx
ε,

(II) the limit lim
ε→0

Qx
εu = Qxu is uniform with respect to x,u in compact sets,

(III) for any ε,µ > 0 and any x ∈ X we have Qx
εQx
µ = Qx

εµ. Also Qx
1 = id and Qx

εx = x.

(IV) Let us define Θx
ε(u,v) = δ̄x

ε−1 Qδ̄
x
εQ

x
εu

ε−1 δ̄x
εQ

x
εv. Then the limit exists

lim
ε→0
Θx
ε(u,v) = Θx(u,v)

and it is uniform with respect to x,u,v in compact sets.

Remark 9.2. Property (IV) is basically a smoothness condition on the coherent projection
Q, relative to the strong dilation structure (X, d̄, δ̄).

Proposition 9.3. Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
We define δx

ε = δ̄
x
εQx
ε. Then:

(a) for any ε,µ > 0 and any x ∈ X we have δx
ε δ̄

x
µ = δ̄

x
µ δ

x
ε.

(b) for any x ∈ X we have Qx Qx = Qx (thus Qx is a projection).

(c) δ satisfies the conditions A1, A2, A4 from definition 3.1.

Proof. (a) this is a consequence of the commutativity condition (I) (second part). Indeed,
we have δx

ε δ̄
x
µ = δ̄

x
εQx
ε δ̄

x
µ = δ̄

x
ε δ̄

x
µQx
ε = δ̄

x
µ δ̄

x
εQx
ε = δ̄

x
µ δ

x
ε.

(b) we pass to the limit ε → 0 in the equality Qx
ε2
= Qx

εQx
ε and we get, based on

condition (II), that Qx Qx = Qx.
(c) Axiom A1 for δ is equivalent with (III). Indeed, the equality δx

ε δ
x
µ = δ

x
εµ is equivalent

with: δ̄x
εµQx

εµ = δ̄
x
εµQx

εQx
µ. This is true because Qx

εQx
µ = Qx

εµ. We also have δx
1 = δ̄

x
1Qx

1 =

Qx
1 = id. Moreover δx

εx = δ̄
x
εQx
εx = Qx

ε δ̄
x
εx = Qx

εx = x. Let us compute now:

∆x
ε(u,v) = δδ

x
εu
ε−1 δ

x
εv = δ̄

δx
εu
ε−1 Qδ

x
εu
ε−1 δ

x
εv =

= δ̄
δx
εu
ε−1 δ̄

x
εΘ

x
ε(u,v) = ∆̄x

ε(Q
x
εu,Θ

x
ε(u,v)).
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We can pass to the limit in the last term of this string of equalities and we prove that the
axiom A4 is satisfied by δ: there exists the limit

∆x(u,v) = lim
ε→0
∆x
ε(u,v), (9.1)

which is uniform as written in A4, moreover we have the equality

Θx
ε(u,v) = Σ̄x

ε(Q
x
εu,∆

x
ε(u,v)). (9.2)

�

We collect two useful relations in the next proposition.

Proposition 9.4. Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
We denote by δ the field of dilations induced by the coherent projection, as in the previous
proposition. The expression ∆x is defined by (9.1). Then:

∆x(u,v) = ∆̄x(Qxu,Θx(u,v)), (9.3)

Qx∆x(u,v) = ∆̄x(Qxu,Qxv). (9.4)

Proof. After passing to the limit with ε→ 0 in the relation (9.2) we get the formula (9.3).
In order to prove (9.4) we notice that:

Qδ
x
εu
ε ∆

x
ε(u,v) = Qδ

x
εu
ε δ

δx
εu
ε−1δ

x
εv =

= δ̄
δx
εu
ε−1 δ̄

x
εQ

x
εv = ∆̄

x
ε(Q

x
εu,Q

x
εv),

which gives (9.4) as we pass to the limit with ε→ 0 in this relation. �

Next is described the notion of Q-horizontal curve.

Definition 9.5. Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. A
curve c : [a,b]→ X is Q-horizontal if for almost any t ∈ [a,b] the curve c is derivable and
the derivative of c at t, denoted by ċ(t) has the property:

Qc(t)ċ(t) = ċ(t). (9.5)

A curve c : [a,b]→ X is Q-everywhere horizontal if for all t ∈ [a,b] the curve c is derivable
and the derivative has the horizontality property (9.5).

We shall now use the notations from section 4. We look first at some induced dilation
structures.

For any x ∈ X and ε ∈ (0,1) the dilation δx
ε can be seen as an isomorphism of strong

dilation structures with coherent projections:

δx
ε : (U(x), δx

εd̄, δ̂
x
ε, Q̂

x
ε)→ (δx

εU(x),
1
ε

d̄, δ̄,Q),

which defines the dilations δ̂x,·
ε,· and coherent projection Q̂x

ε by:

δ̂x,u
ε,µ = δ

x
ε−1 δ̄

δx
εu
µ δ

x
ε,
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Q̂x,u
ε,µ = δ

x
ε−1 Qδ

x
εu
µ δ

x
ε.

Also the dilation δ̄x
ε is an isomorphism of strong dilation structures with coherent projec-

tions:
δ̄x
ε : (U(x), δ̄x

εd̄, δ̄
x
ε, Q̄

x
ε)→ (δ̄x

εU(x),
1
ε

d̄, δ̄,Q),

which defines the dilations δ̄x,·
ε,· and coherent projection Q̄x

ε by:

δ̄x,u
ε,µ = δ̄

x
ε−1 δ̄

δ̄x
εu
µ δ̄

x
ε,

Q̄x,u
ε,µ = δ̄

x
ε−1 Qδ̄

x
εu
µ δ̄

x
ε.

Because δx
ε = δ̄

x
εQx
ε we get that

Qx
ε : (U(x), δx

εd̄, δ̂
x
ε, Q̂

x
ε)→ (Qx

εU(x), δ̄x
εd, δ̄

x
ε, Q̄

x
ε)

is an isomorphism of strong dilation structures with coherent projections.
Further is a useful description of the coherent projection Q̂x

ε.

Proposition 9.6. With the notations previously made, for any ε ∈ (0,1], x,u,v ∈ X sufficiently
close and µ > 0 we have:

(i) Q̂x,u
ε,µv = Σ

x
ε(u,Q

δx
εu
µ ∆

x
ε(u,v)),

(ii) Q̂x,u
ε v = Σx

ε(u,Q
δx
εu∆x
ε(u,v)).

Proof. (i) implies (ii) when µ→ 0, thus it is sufficient to prove only the first point. This is
the result of a computation:

Q̂x,u
ε,µv = δ

x
ε−1 Qδ

x
εu
µ δ

x
ε =

= δx
ε−1 δ

δx
εu
ε Qδ

x
εu
µ δ

δx
εu
ε−1 δ

x
ε = Σ

x
ε(u,Q

δx
εu
µ ∆

x
ε(u,v)).

�

Notation concerning derivatives. We shall denote the derivative of a curve with re-

spect to the dilations δ̂x
ε by

d̂x
ε

dt
. Also, the derivative of the curve c with respect to δ̄ is

denoted by
d̄
dt

, and so on.

By computation we get: the curve c is δ̂x
ε-derivable if and only if δx

εc is δ̄-derivable and

d̂x
ε

dt
c(t) = δx

ε−1

d̄
dt

(
δx
εc

)
(t).

With these notations we give a proposition which explains that the operator Θx
ε , from

the definition of coherent projections, is a lifting operator.

Proposition 9.7. If the curve δx
εc is Q-horizontal then

d̄x
ε

dt
(
Qx
εc

)
(t) = Θx

ε(c(t),
d̂x
ε

dt
c(t)).
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Proof. If the curve Qx
εc is δ̄x

ε derivable and Q̄x
ε horizontal. We have therefore:

d̄x
ε

dt
(
Qx
εc

)
(t) = δ̄x

ε−1 Qδ
x
εc(t) δ̄x

ε

d̄x
ε

dt
(
Qx
εc

)
(t),

which implies:

δ̄x
ε

d̄x
ε

dt
(
Qx
εc

)
(t) = Qδ

x
εc(t)
ε−1 δ̄

x
ε

d̄x
ε

dt
(
Qx
εc

)
(t) = Qδ

x
εc(t)
ε−1 δ

x
ε

d̂x
ε

dt
c(t),

which is the formula we wanted to prove. �

9.1 Distributions in sub-riemannian spaces

The inspiration for the notion of coherent projection comes from sub-riemannian geometry.
We shall look to the section 6 with a fresh eye.

Further we shall work locally, just as in the mentioned section. Same notations are used.
Let {Y1, ...,Yn} be a frame induced by a parameterization φ : O ⊂ Rn → U ⊂ M of a small
open, connected set U in the manifold M. This parameterization induces a affine dilation
structure on U, by

δ̃
φ(a)
ε φ(b) = φ (a+ε(−a+b)) .

We take the distance d̃(φ(a),φ(b)) = ‖b−a‖.
Let {X1, ...,Xn} be a normal frame, cf. definition 6.5, d be the Carnot-Carathéodory

distance and let

δx
ε

exp

 n∑
i=1

aiXi

 (x)

 = exp

 n∑
i=1

aiε
degXi Xi

 (x)

be the dilation structure associated, cf. theorem 6.6.
We may take another dilation structure, constructed as follows: extend the metric g on

the distribution D to a riemannian metric on M, denoted for convenience also by g. Let d̄
be the riemannian distance induced by the riemannian metric g, and the dilations

δ̄x
ε

exp

 n∑
i=1

aiXi

 (x)

 = exp

 n∑
i=1

aiεXi

 (x).

Then (U, d̄, δ̄) is a strong dilation structure which is equivalent with the dilation structure
(U, d̃, δ̃).

From now we may define coherent projections associated either to the pair (δ̃, δ) or to the
pair (δ̄, δ). Because we put everything on the manifold (by the use of the chosen frames),
we shall obtain different coherent projections, both inducing the same dilation structure
(U,d, δ).

Let us define Qx
ε by:

Qx
ε

exp

 n∑
i=1

aiXi

 (x)

 = exp

 n∑
i=1

aiε
degXi−1Xi

 (x). (9.6)

Proposition 9.8. Q is a coherent projection associated with the dilation structure (U, d̄, δ̄) .
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Proof. (I) definition 9.1 is true, because δx
ε u = Qx

ε δ̄
x
ε and δx

ε δ̄
x
ε = δ̄

x
εδ

x
ε. (II), (III) and (IV) are

consequences of these facts and theorem 6.6, with a proof similar to the one of proposition
9.3. �

Definition (9.6) of the coherent projection Q implies that:

Qx

exp

 n∑
i=1

aiXi

 (x)

 = exp

 ∑
degXi=1

aiXi

 (x). (9.7)

Therefore Qx can be seen as a projection onto the (classical differential) geometric distri-
bution.

Remark 9.9. The projection Qx has one more interesting feature: for any x and

u = exp

 ∑
degXi=1

aiXi

 (x)

we have Qxu = u and the curve

s ∈ [0,1] 7→ δx
s u = exp

s
∑

degXi=1

aiXi

 (x)

is D-horizontal and joins x and u. This will be related to the supplementary condition (B)
further.

We may equally define a coherent projection which induces the dilations δ from δ̃.
Also, if we change the chosen normal frame with another of the same kind, we shall pass to
a dilation structure which is equivalent to (U,d, δ). In conclusion, coherent projections are
not geometrical objects per se, but in a natural way one may define a notion of equivalent
coherent projections such that the equivalence class is geometrical, i.e. independent of the
choice of a pair of particular dilation structures, each in a given equivalence class.

The bottom line is that (U, d̄, δ̄) is a dilation structure which belongs to an equivalence
class which is independent on the distribution D, and also independent on the choice of
parameterization φ. It is associated to the manifold M only. On the other hand (U, d̄, δ̄)
belongs to an equivalence class which is depending only on the distribution D and metric g
on D, thus intrinsic to the sub-riemannian manifold (M,D,g). The only advantage of choos-
ing δ̄, δ related by the normal frame {X1, ...,Xn} is that they are associated with a coherent
projection with a simple expression.

9.2 Length functionals associated to coherent projections

Definition 9.10. Let (X, d̄, δ̄) be a strong dilation structure with the Radon-Nikodym prop-
erty and Q a coherent projection. We define the associated distance d : X × X → [0,+∞]
by:

d(x,y) = inf
{∫ b

a
d̄c(t)(c(t), ċ(t)) dt : c : [a,b]→ X d̄-Lipschitz ,

c(a) = x,c(b) = y, and ∀a.e. t ∈ [a,b] Qc(t)ċ(t) = ċ(t)
}
.
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The relation x ≡ y if d(x,y) < +∞ is an equivalence relation. The space X decomposes
into a reunion of equivalence classes, each equivalence class being connected by horizontal
curves.

It is easy to see that d is a finite distance on each equivalence class. Indeed, from
theorem 7.4 we deduce that for any x,y ∈ X d(x,y) ≥ d̄(x,y). Therefore d(x,y) = 0 implies
x = y. The other properties of a distance are straightforward.

Later we shall give a sufficient condition (the generalized Chow condition (Cgen)) on
the coherent projection Q for X to be (locally) connected by horizontal curves.

Proposition 9.11. Suppose that X is connected by horizontal curves and (X,d) is complete.
Then d is a length distance.

Proof. Because (X,d) is complete, it is sufficient to check that d has the approximate middle
property: for any ε > 0 and for any x,y ∈ X there exists z ∈ X such that

max {d(x,z),d(y,z)} ≤
1
2

d(x,y)+ε.

Given ε > 0, from the definition of d we deduce that there exists a horizontal curve
c : [a,b]→ X such that c(a) = x, c(b) = y and d(x,y)+2ε ≥ l(c) (where l(c) is the length of
c with respect to the distance d̄). There exists then τ ∈ [a,b] such that∫ τ

a
d̄c(t)(c(t), ċ(t)) dt =

∫ b

τ
d̄c(t)(c(t), ċ(t)) dt =

1
2

l(c).

Let z = c(τ). We have then: max {d(x,z),d(y,z)} ≤
1
2

l(c) ≤
1
2

d(x,y)+ ε. Therefore d is a
length distance. �

Notations concerning length functionals. The length functional associated to the dis-
tance d̄ is denoted by l̄. In the same way the length functional associated to the distance δ̄x

εd̄
given by: (

δ̄x
εd̄

)
(u,v) =

1
ε

d̄
(
δ̄x
εu, δ̄

x
εv

)
is denoted by l̄x

ε.
We introduce the space Lε(X,d, δ) ⊂ X×Lip([0,1],X,d):

Lε(X,d, δ) = {(x,c) ∈ X×C([0,1],X) : c : [0,1] ∈ U(x) ,

δx
εc is d̄−Lip, Q−horizontal and Lip(δx

εc) ≤ 2εld(δx
εc)

}
.

For any ε ∈ (0,1) we define the length functional

lε :Lε(X,d, δ)→ [0,+∞], lε(x,c) = lx
ε(c) =

1
ε

l̄(δx
εc).

By theorem 7.4 we have:

lx
ε(c) =

∫ 1

0

1
ε

d̄δ
x
εc(t)

(
δx
εc(t),

d̄
dt

(
δx
εc

)
(t)

)
dt =

=

∫ 1

0

1
ε

d̄δ
x
εc(t)

δx
εc(t), δx

ε

d̂x
ε

dt
c(t)

 dt.

Another description of the length functional lx
ε is the following.
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Proposition 9.12. For any (x,c) ∈ Lε(X,d, δ) we have

lx
ε(c) = l̄x

ε

(
Qx
εc

)
.

Proof. Indeed, we shall use an alternate definition of the length functional. Let c be a curve
such that δx

εc is d̄-Lipschitz and Q-horizontal. Then:

lx
ε(c) = sup

 n∑
i=1

1
ε

d̄
(
δx
εc(ti), δx

εc(ti+1)
)

: 0 = t1 < ... < tn+1 = 1

 =
= sup

 n∑
i=1

1
ε

d̄
(
δ̄x
εQ

x
εc(ti), δ̄x

εQ
x
εc(ti+1)

)
: 0 = t1 < ... < tn+1 = 1

 =
= l̄x
ε

(
Qx
εc

)
.

�

9.3 Supplementary hypotheses

Definition 9.13. Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection.
Further is a list of supplementary hypotheses on Q:

(A) δx
ε is d̄-bilipschitz in compact sets in the following sense: for any compact set K ⊂ X

and for any ε ∈ (0,1] there is a number L(K) > 0 such that for any x ∈ K and u,v
sufficiently close to x we have:

1
ε

d̄
(
δx
εu, δ

x
εv

)
≤ L(K) d̄(u,v),

(B) if u = Qxu then the curve t ∈ [0,1] 7→ Qx δx
t u = δ̄x

t u = δx
t u is Q-everywhere horizontal

and for any a ∈ [0,1] we have

limsup
a→0

l̄
(
t ∈ [0,a] 7→ δ̄x

t u
)

d̄(x, δ̄x
au)

= 1

uniformly with respect to x,u in compact set K.

Condition (A), as well as the property (IV) definition 9.1, is another smoothness condi-
tion on Q with respect to the strong dilation structure (X, d̄, δ̄).

The condition (A) has several useful consequences, among them the fact that for any
d̄-Lipschitz curve c, the curve δx

εc is also Lipschitz. Another consequence is that Qx
ε is

locally d̄-Lipschitz. More precisely, for any compact set K ⊂ X and for any ε ∈ (0,1] there
is a number L(K) > 0 such that for any x ∈ K and u,v sufficiently close to x we have:(

δ̄x
εd̄

) (
Qx
εu,Q

x
εv

)
≤ L(K) d̄(u,v). (9.8)
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Indeed, we have: (
δ̄x
εd̄

) (
Qx
εu,Q

x
εv

)
=

1
ε

d̄
(
δx
εu, δ

x
εv

)
≤ L(K) d̄(u,v).

See the remark 9.9 for the meaning of the condition (B) for the case sub-riemannian
geometry, where it is explained why condition (B) is a generalization of the fact that the
”distribution” x 7→ QxU(x) is generated by horizontal one parameter flows.

Condition (B) will be useful later, along with the generalized Chow condition (Cgen).

10 The generalized Chow condition

Notations about words. For any set A we denote by A∗ the collection of finite words
q= a1...ap, p ∈N, p> 0. The empty word is denoted by ∅. The length of the word q= a1...ap

is | q |= p; the length of the empty word is 0.
The collection of words infinite at right over the alphabet A is denoted by Aω. For any

word w ∈ Aω∪A∗ and any p ∈ N we denote by [w]p the finite word obtained from the first
p letters of w (if p = 0 then [w]0 = ∅ (in the case of a finite word q, if p >| q | then [q]p = q).

For any non-empty q1,q2 ∈ A∗ and w ∈ Aω the concatenation of q1 and q2 is the finite
word q1q2 ∈ A∗ and the concatenation of q1 and w is the (infinite) word q1w ∈ Aω. The
empty word ∅ is seen both as an infinite word or a finite word and for any q ∈ A∗ and w ∈ Aω

we have q∅ = q (as concatenation of finite words) and ∅w = w (as concatenation of a finite
empty word and an infinite word).

10.1 Coherent projections as transformations of words

To any coherent projection Q in a strong dilation structure (X, d̄, δ̄) we associate a family of
transformations as follows.

Definition 10.1. For any non-empty word w ∈ (0,1]ω and any ε ∈ (0,1] we define the trans-
formation

Ψεw : X∗εw ⊂ X∗ \ {∅} → X∗,

given by: for any non-empty finite word q = xx1...xp ∈ X∗εw we have

Ψεw(xx1...xp) = Ψ1
εw(x)...Ψk+1

εw (xx1...xk)...Ψp+1
εw (xx1...xp).

The functions Ψk
εw are defined by: Ψ1

εw(x) = x, and for any k ≥ 1 we have

Ψk+1
εw ([q]k+1) = δx

ε−1 Qδ
x
εΨ

k
εw([q]k)

wk δx
ε qk+1. (10.1)

If w = ∅ then Ψk
ε∅ is defined as previously Ψ1

ε∅(x) = x, with the only difference that for any
k ≥ 1 we have

Ψk+1
ε∅ ([q]k+1) = δx

ε−1 Qδ
x
εΨ

k
εw([q]k) δx

ε qk+1.
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The domain X∗εw ⊂ X∗ \ {∅} is such that the previous definition makes sense. By using
the definition of a coherent projection, we may redefine X∗εw as follows: for any compact
set K ⊂ X there is ρ = ρ(K) > 0 such that for any x ∈ K the word q = xx1...xp ∈ X∗εw if for
any k ≥ 1 we have

d̄
(
xk+1,Ψ

k
εw([q]k)

)
≤ ρ.

We shall explain the meaning of these transformations for ε = 1.

Proposition 10.2. Suppose that condition (B) holds for the coherent projection Q. If

y = Ψk+1
1∅ (xx1...xk)

then there is a Q-horizontal curve joining x and y.

Proof. By definition 10.1 for ε = 1 we have:

Ψ1
1w(x) = x, Ψ2

1w(x, x1) = Qx
w1

x1,

Ψ3
1w(x, x1, x2) = Q

Qx
w1

x1
w2 x2 ...

Suppose now that condition (B) holds for the coherent projection Q. Then the curve
t ∈ [0,1] 7→ δ̄x

t Qxu is a Q-horizontal curve joining x with Qxu. Therefore by applying induc-
tively the condition (B) we get that there is a Q-horizontal curve between Ψk

1∅(xx1...xk−1)
and Ψk+1

1∅ (xx1...xk) for any k > 1 and a Q-horizontal curve joining x and Ψ2
1∅(xx1). �

There are three more properties of the transformations Ψεw.

Proposition 10.3. With the notations from definition 10.1, we have:

(a) ΨεwΨε∅ = Ψε∅. Therefore we have the equality of sets:

Ψε∅
(
X∗ε∅∩ xX∗

)
= Ψεw

(
Ψε∅

(
X∗ε∅∩ xX∗

))
,

(b) Ψk+1
ε∅ (xq1...qk) = δx

ε−1Ψ
k+1
1∅ (xδx

εq1...δ
x
εqk),

(c) lim
ε→0
δx
ε−1Ψ

k+1
1∅ (xδx

εq1...δ
x
εqk) = Ψk+1

0∅ (xq1...qk) uniformly with respect to x,q1, ...,qk in
compact set.

Proof. (a) We use induction on k to prove that for any natural number k

Ψk+1
εw

(
Ψ1
ε∅(x)...Ψk+1

ε∅ (xq1...qk)
)
= Ψk+1

ε∅ (xq1...qk). (10.2)

For k = 0 we have to prove that x = x which is trivial. For k = 1 we have to prove that

Ψ2
εw

(
Ψ1
ε∅(x)Ψ2

ε∅(xq1)
)
= Ψ2

ε∅(xq1).

This means:
Ψ2
εw

(
xδx
ε−1 Qxδx

εq1
)
= δx
ε−1 Qx

w1
δx
ε δ

x
ε−1 Qx δx

εx1 =

= δx
ε−1 Qx δx

εx1 = Ψ
2
ε∅(xq1).

Suppose now that l≥ 2 and for any k≤ l the relations (10.2) are true. Then, as previously,
it is easy to check (10.2) for k = l+1.

(b) is true by direct computation. The point (c) is a straightforward consequence of (b)
and definition of coherent projections. �
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Definition 10.4. Let N ∈N be a strictly positive natural number and ε ∈ (0,1]. Then a point
x ∈ X is (ε,N,Q)-nested in a open neighbourhood U ⊂ X if there is ρ > 0 such that for any
finite word q = x1...xN ∈ XN with

δ̄x
εd̄

(
xk+1,Ψ

k
ε∅([xq]k)

)
≤ ρ

for any k = 1, ...,N, we have q ∈ UN .
If x ∈ U is (ε,N,Q)-nested then denote by U(x, ε,N,Q,ρ) ⊂ UN the collection of words

q ∈ UN such that δ̄x
εd̄

(
xk+1,Ψ

k
ε∅([xq]k)

)
< ρ for any k = 1, ...,N.

Definition 10.5. A coherent projection Q satisfies the generalized Chow condition if:

(Cgen) for any compact set K there are ρ = ρ(K) > 0, r = r(K) > 0, a natural number N =
N(Q,K) and a function F(η) = O(η) such that for any x ∈ K and ε ∈ (0,1] there are
neighbourhoods U(x), V(x) such that any x ∈ K is (ε,N,Q)-nested in U(x), such that
B(x,r, δ̄x

εd̄) ⊂ V(x) and such that the mapping

x1...xN ∈ U(x,N,Q,ρ) 7→ ΨN+1
ε∅ (xx1...xN)

is surjective from U(x, ε,N,Q,ρ) to V(x). Moreover for any z ∈ V(x) there exist
y1, ...yN ∈ U(x, ε,N,Q,ρ) such that z = ΨN+1

ε∅ (xy1, ...yN) and for any k = 0, ...,N − 1
we have

δx
εd̄

(
Ψk+1
ε∅ (xy1...yk),Ψk+2

ε∅ (xy1...yk+1)
)
≤ F(δx

εd̄(x,z)).

Condition (Cgen) is inspired from lemma 1.40 Folland-Stein [14]. If the coherent pro-
jection Q satisfies also (A) and (B) then in the space (U(x), δ̄x

ε), with coherent projection
Q̂x,·
ε.·, we can join any two sufficiently close points by a sequence of at most N horizontal

curves. Moreover there is a control on the length of these curves via condition (B) and con-
dition (Cgen); in sub-riemannian geometry the function F is of the type F(η) = η1/m with m
positive natural number.

Definition 10.6. Suppose that the coherent projection Q satisfies conditions (A), (B) and
(Cgen). Let us consider ε ∈ (0,1] and x,y ∈ K, K compact in X. With the notations from
definition 10.5, suppose that there are numbers N = N(Q,K), ρ = ρ(Q,K) > 0 and words
x1...xN ∈ U(x, ε,N,Q,ρ) such that

y = ΨN+1
ε∅ (xx1...xN).

For any t ∈ [0,N] let k = [t], where [b] is the integer part of the real number b. We define
then a short curve joining x and y, c : [0,N]→ X, by

c(t) = δ̄
x,Ψk+1
ε∅

(xx1...xk)
ε,t+N−k QΨ

k+1
ε∅

(xx1...xk)xk+1.

Any short curve joining x and y is a increasing linear reparameterization of a curve c de-
scribed previously.
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10.2 The candidate tangent space

Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. Then we have the
induced dilations

δ̊x,u
µ v = Σx(u, δx

µ∆
x(u,v))

and the induced projection
Q̊x,u
µ v = Σx(u,Qx

µ∆
x(u,v)).

For any point x ∈ X we introduce an associated length functional, denoted by lx, which is
defined for any δ̊x-derivable and Q̊x-horizontal almost everywhere curve c : [0,1]→ U(x):

lx(c) =
∫ 1

0
d̄x

x,∆x(c(t),
d̊x

dt
c(t))

 dt.

Associated to this length functional is the distance function:

d̊x(u,v) = inf
{
lx(c) : c : [0,1]→ U(x) is δ̊x-derivable,

and Q̊x-horizontal a.e. , c(0) = u,c(1) = v
}
.

We want to prove that (U(x), d̊x, δ̊x) is a strong dilation structure and Q̊x is a coherent
projection. For this we need first the following proposition.

Proposition 10.7. The curve c : [0,1]→ U(x) is δ̊x-derivable, Q̊x-horizontal almost every-
where, and lx(c) < +∞ if and only if the curve Qxc is δ̄x-derivable almost everywhere and
l̄x(Qxc) < +∞. Moreover, we have

l̄x(Qxc) = lx(c).

Proof. The curve c is Q̊x-horizontal almost everywhere if and only if for almost any t ∈ [0,1]
we have

Qx∆x(c(t),
d̊x

dt
c(t)) = ∆x(c(t),

d̊x

dt
c(t)).

We shall prove that c is Q̊x-horizontal is equivalent with

Θx(c(t),
d̊x

dt
c(t)) =

d̄x

dt
(
Qxc

)
(t) (10.3)

Indeed, (10.3) is equivalent with

lim
ε→0
δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε)) = ∆̄x(Qxc(t),Θx(c(t),
d̊x

dt
c(t))),

which is equivalent with

lim
ε→0
δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε)) = ∆x(c(t),
d̊x

dt
c(t)).
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But this is equivalent with:

lim
ε→0
δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε)) = lim
ε→0
δx
ε−1∆

x(c(t),c(t+ε)). (10.4)

The horizontality condition for the curve c can be written as:

lim
ε→0

Qxδx
ε−1∆

x(c(t),c(t+ε)) = lim
ε→0
δx
ε−1∆

x(c(t),c(t+ε)).

We use now the properties of Qx in the left hand side of the previous equality:

Qxδx
ε−1∆

x(c(t),c(t+ε)) = δ̄x
ε−1 Qx∆x(c(t),c(t+ε)) =

= δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε)),

thus after taking the limit as ε→ 0 we prove that the limit

lim
ε→0
δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε))

exists and we obtain:

lim
ε→0
δx
ε−1∆

x(c(t),c(t+ε)) = lim
ε→0
δ̄x
ε−1∆̄

x(Qxc(t),Qxc(t+ε)).

This last equality is the same as (10.4), which is equivalent with (10.3).
As a consequence we obtain the following equality, for almost any t ∈ [0,1]:

d̄x
x,∆x(c(t),

d̊x

dt
c(t))

 = ∆̄x(Qxc(t),
d̄x

dt
(
Qxc

)
(t)). (10.5)

This implies that Qxc is absolutely continuous and by theorem 2.7, as in the proof of the-
orem 7.4 (but without using the Radon-Nikodym property property, because we already
know that Qxc is derivable a.e.), we obtain the following formula for the length of the curve
Qxc:

l̄x(Qxc) =
∫ 1

0
d̄x

(
x, , ∆̄x(Qxc(t),

d̄x

dt
(
Qxc

)
(t))

)
dt.

But we have also:

lx(c) =
∫ 1

0
d̄x

x,∆x(c(t),
d̊x

dt
c(t))

 dt.

By (10.5) we obtain l̄x(Qxc) = lx(c). �

Proposition 10.8. If (X, d̄, δ̄) is a strong dilation structure, Q is a coherent projection and
d̊x is finite then the triple (U(x),Σx, δx) is a normed conical group, with the norm induced
by the left-invariant distance d̊x.

Proof. The fact that (U(x),Σx, δx) is a conical group comes directly from the definition 9.1
of a coherent projection. Indeed, it is enough to use proposition 9.3 (c) and the formalism
of binary decorated trees in [5] section 4 (or theorem 11 [5]), in order to reproduce the part
of the proof of theorem 10 (p.87-88) in that paper, concerning the conical group structure.
There is one small subtlety though. In the proof of theorem 5.6(a) the same modification
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of proof has been done starting from the axiom A4+, namely the existence of the uniform
limit lim

ε→0
Σx
ε(u,v) = Σx(u,v). Here we need first to prove this limit, in a similar way as in

the corollary 9 [5]. We shall use for this the distance d̊x instead of the distance in the metric
tangent space of (X,d) at x denoted by dx (which is not yet proven to exist). The distance
d̊x is supposed to be finite by hypothesis. Moreover, by its definition and proposition 10.7
we have

d̊x(u,v) ≥ d̄x(u,v),

therefore the distance d̊x is non degenerate. By construction this distance is also left in-
variant with respect to the group operation Σx(·, ·). Therefore we may repeat the proof of
corollary 9 [5] and obtain the result that A4+ is true for (X,d, δ).

What we need to prove next is that d̊x induces a norm on the conical group (U(x),Σx, δx).
For this it is enough to prove that

d̊x(δ̊x,u
µ v, δ̊x,u

µ w) = µ d̊x(v,w). (10.6)

for any v,w ∈ U(x). This is a direct consequence of relation (10.5) from the proof of the
proposition 10.7. Indeed, by direct computation we get that for any curve c which is Q̊x-
horizontal a.e. we have:

lx(δ̊x,u
µ c) =

∫ 1

0
d̄x

x,∆x
δ̊x,u
µ c(t),

d̊x

dt

(
δ̊x,u
µ c

)
(t)

 dt =

=

∫ 1

0
d̄x

x, δx
µ∆

x
c(t),

d̊x

dt
c(t)

 dt.

But c is Q̊x-horizontal a.e., which implies, via (10.5), that

δx
µ∆

x
c(t),

d̊x

dt
c(t)

 = δ̄x
µ∆

x
c(t),

d̊x

dt
c(t)

 ,
therefore we have

lx(δ̊x,u
µ c) =

∫ 1

0
d̄x

x, δ̄x
µ∆

x
c(t),

d̊x

dt
c(t)

 dt = µ lx(c).

This implies (10.6), therefore the proof is done. �

Theorem 10.9. If the generalized Chow condition (Cgen) and condition (B) are true then
(U(x),Σx, δx) is local conical group which is a neighbourhood of the neutral element of a
Carnot group generated by QxU(x).

Proof. For any ε ∈ (0,1], as a consequence of proposition 9.6 we can put the recurrence
relations (10.1) in the form:

Ψk+1
εw ([q]k+1) = Σx

ε

(
Ψk
εw([q]k),Qδ

x
εΨ

k
εw([q]k)

wk ∆x
ε

(
Ψk
εw([q]k),qk+1

))
. (10.7)

This recurrence relation allows us to prove by induction that for any k the limit

Ψk
w([q]k) = lim

ε→0
Ψk
εw([q]k)
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exists and it satisfies the recurrence relation:

Ψk+1
0w ([q]k+1) = Σx

(
Ψk

0w([q]k),Qx
wk
∆x

(
Ψk

0w([q]k),qk+1
))
. (10.8)

and the initial condition Ψ1
0w(x) = x. We pass to the limit in the generalized Chow con-

dition (Cgen) and we thus obtain that a neighbourhood of the neutral element x is (alge-
braically) generated by QxU(x). Then the distance d̊x is finite. Therefore by proposition
10.8 (U(x),Σx, δx) is a normed conical group generated by QxU(x).

Let c : [0,1]→ U(x) be the curve c(t) = δx
t u, with u ∈ QxU(x). Then we have Qxc(t) =

c(t) = δ̄x
t u. From condition (B) we get that c is δ̄-derivable at t = 0. A short computation of

this derivative shows that:
dδ̄
dt

c(0) = u.

Another easy computation shows that the curve c is δ̄x-derivable if and only if the curve c
is δ̄-derivable at t = 0, which is true, therefore c is δ̄x-derivable, in particular at t = 0. More-
over, the expression of the δ̄x-derivative of c shows that c is also Qx-everywhere horizontal
(compare with the remark 9.9). We use the proposition 10.7 and relation (10.3) from its
proof to deduce that c = Qxc is δ̊x-derivable at t = 0, thus for any u ∈ QxU(x) and small
enough t, τ ∈ (0,1) we have

δ̊x,x
t+τu = Σ̄

x(δ̄x
t u, δ̄x

τu). (10.9)

By previous proposition 10.8 and corollary 6.3 [6] (here proposition 5.8) the normed con-
ical group (U(x),Σx, δx) is in fact locally a homogeneous group, i.e. a simply connected
Lie group which admits a positive graduation given by the eigenspaces of δx. Indeed,
corollary 6.3 [5] is originally about strong dilation structures, but the generalized Chow
condition implies that the distances d, d̄ and d̊x induce the same uniformity, which, along
with proposition 10.8, are the only things needed for the proof of this corollary. The con-
clusion of corollary 6.3 [6] therefore is true, that is (U(x),Σx, δx) is locally a homogeneous
group. Moreover it is locally Carnot if and only if on the generating space QxU(x) any
dilation δ̊x,x

ε u = δ̄x
ε is linear in ε. But this is true, as shown by relation (10.9). This ends the

proof. �

10.3 Coherent projections induce length dilation structures

Theorem 10.10. If (X, d̄, δ̄) is a tempered strong dilation structure, has the Radon-Nikodym
property and Q is a coherent projection, which satisfies (A), (B), (Cgen) then (X,d, δ) is a
length dilation structure.

Proof. We shall prove that:

(a) for any function ε ∈ (0,1) 7→ (xε,cε) ∈ Lε(X,d, δ) which converges to (x,c) as ε→ 0,
with c : [0,1]→ U(x) δ̊x-derivable and Q̊x-horizontal almost everywhere, we have:

lx(c) ≤ liminf
ε→0

lxε(cε),
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(b) for any sequence εn → 0 and any (x,c), with c : [0,1]→ U(x) δ̊x-derivable and Q̊x-
horizontal almost everywhere, there is a recovery sequence (xn,cn) ∈Lεn(X,d, δ) such
that

lx(c) = lim
n→∞

lxn(cn).

Proof of (a). This is a consequence of propositions 10.7, 9.12 and definition 9.1 of a
coherent projection. With the notations from (a) we see that we have to prove that

lx(c) = l̄x(Qxc) ≤ liminf
ε→0

l̄xε(Qxε
ε cε).

This is true because (X, d̄, δ̄) is a tempered dilation structure and because of condition (A).
Indeed from the fact that (X, d̄, δ̄) is tempered and from (9.8) (which is a consequence of
condition (A)) we deduce that Qε is uniformly continuous on compact sets in a uniform
way: for any compact set K ⊂ X there is are constants L(K) > 0 (from (A)) and C > 0 (from
the tempered condition) such that for any ε ∈ (0,1], any x ∈ K and any u,v sufficiently close
to x we have:

d̄
(
Qx
εu,Q

x
εv

)
≤ C

(
δ̄x
εd̄

) (
Qx
εu,Q

x
εv

)
≤ C L(K) d̄(u,v).

The sequence Qx
ε uniformly converges to Qx as ε goes to 0, uniformly with respect to

x in compact sets. Therefore if (xε,cε) ∈ Lε(X,d, δ) converges to (x,c) then (xε,Q
xε
ε cε) ∈

Lε(X, d̄, δ̄) converges to (x,Qxc). Use now the fact that by corollary 8.4 (X, d̄, δ̄) is a length
dilation structure. The proof is done.

Proof of (b). We have to construct a recovery sequence. We are doing this by dis-
cretization of c : [0,L] → U(x). Recall that c is a curve which is δ̊x-derivable a.e. and
Q̊x-horizontal, that is for almost every t ∈ [0,L] the limit

u(t) = lim
µ→0
δx
µ−1 ∆

x(c(t),c(t+µ))

exists and Qx u(t) = u(t). Moreover we may suppose that for almost every t we have
d̄x(x,u(t)) ≤ 1 and l̄x(c) ≤ L.

There are functions ω1,ω2 : (0,+∞)→ [0,+∞) with lim
λ→0
ωi(λ) = 0, with the following

property: for any λ > 0 sufficiently small there is a division Aλ = {0 < t0 < ... < tP < L} such
that

λ

2
≤ min

{
t0

t1− t0
,

L− tP

tP− tP−1
, tk − tk−1 : k = 1, ...,P

}
, (10.10)

λ ≥ max
{

t0
t1− t0

,
L− tP

tP− tP−1
, tk − tk−1 : k = 1, ...,P

}
, (10.11)

and such that u(tk) exists for any k = 1, ...,P and

d̊x(c(0),c(t0)) ≤ t0 ≤ λ2, (10.12)

d̊x(c(L),c(tP)) ≤ L− tP ≤ λ
2, (10.13)

d̊x(u(tk−1),∆x(c(tk−1),c(tk)) ≤ (tk − tk−1) ω1(λ), (10.14)

|

∫ L

0
d̄x(x,u(t)) dt −

P−1∑
k=0

(tk+1− tk) d̄x(x,u(tk)) |≤ ω2(λ). (10.15)
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Indeed (10.12), (10.13) are a consequence of the fact that c is d̊x-Lipschitz, (10.14) is a
consequence of Egorov theorem applied to

fµ(t) = δx
µ−1 ∆

x(c(t),c(t+µ))

and (10.15) comes from the definition of the integral

l(c) =
∫ L

0
d̄x(x,u(t)) dt.

For each λ we shall choose ε = ε(λ) and we shall construct a curve cλ with the properties:

(i) (x,cλ) ∈ Lε(λ)(X,d, δ),

(ii) lim
λ→0

lx
ε(λ)(cλ) = lx(c).

At almost every t the point u(t) represents the velocity of the curve c seen as the the left
translation of d̊x

dt c(t) by the group operation Σx(·, ·) to x (which is the neutral element for the
mentioned operation). The derivative (with respect to δ̊x) of the curve c at t is

y(t) = Σx(c(t),u(t)).

Let us take ε > 0, arbitrary for the moment. We shall use the points of the division Aλ
and for any k = 0, ...,P−1 we shall define the point:

yεk = Q̂x,c(tk)
ε Σx

ε(c(tk),u(tk)). (10.16)

Thus yεk is obtained as the ”projection” by Q̂x,c(tk)
ε of the ”approximate left translation”

Σx
ε(c(tk), ·) by c(tk) of the velocity u(tk). Define also the point:

yk = Σ
x(c(tk),u(tk)).

By construction we have:
yεk = Q̂x,c(tk)

ε yεk (10.17)

and by computation we see that yεk can be expressed as:

yεk = δ
x
ε−1 Qδ

x
εc(tk) δ

δx
εc(tk)
ε u(tk) = (10.18)

= Σx
ε(c(tk),Qδ

x
εc(tk) u(tk)) = δx

ε−1 δ̄
δx
εc(tk)
ε Qδ

x
εc(tk) u(tk).

Let us define the curve

cεk(s) = δ̂x,c(tk)
ε,s yεk, s ∈ [0, tk+1− tk], (10.19)

which is a Q̂x
ε-horizontal curve (by supplementary hypothesis (B)) which joins c(tk) with

the point
zεk = δ̂

x,c(tk)
ε,tk+1−tk yεk. (10.20)
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The point zεk is an approximation of the point

zk = δ̊
x,c(tk)
tk+1−tk yk.

We shall also consider the curve

ck(s) = δ̊x,c(tk)
s yk, s ∈ [0, tk+1− tk]. (10.21)

There is a short curve gεk which joins zεk with c(tk+1), according to condition (Cgen).
Indeed, for ε sufficiently small the points δx

ε zεk and δx
ε c(tk+1) are sufficiently close.

Finally, take gε0 and gεP+1 ”short curves” which join c(0) with c(t0) and c(tP) with c(L)
respectively.

Correspondingly, we can find short curves gk (in the geometry of the dilation structure
(U(x), d̊x, δ̊x, Q̊x)) joining zk with c(tk+1), which are the uniform limit of the short curves gεk
as ε→ 0. Moreover this convergence is uniform with respect to k (and λ). Indeed, these
short curves are made by N curves of the type s 7→ δ̂x,uε

ε,s vε, with Q̂x,uεvε = vε. Also, the
short curves gk are made respectively by N curves of the type s 7→ δ̊x,u

s v, with Q̊x,uv = v.
Therefore we have:

d̄(δ̊x,u
s v, δ̂x,uε

ε,s yεk) =

= d̄(Σx(u, δ̄x
s∆

x(u,v)),Σx
ε(uε, δ̄

δx
εuε

s ∆x
ε(uε,vε))).

By an induction argument on the respective ends of segments forming the short curves,
using the axioms of coherent projections, we get the result.

By concatenation of all these curves we get two new curves:

cελ = gε0

P−1∏
k=0

cεk gεk

 gεP+1,

cλ = g0

P−1∏
k=0

ck gk

 gP+1.

From the previous reasoning we get that as ε→ 0 the curve cελ uniformly converges to cλ,
uniformly with respect to λ.

By theorem 10.9, specifically from relation (10.9) and considerations below, we notice
that for any u = Qxu the length of the curve s 7→ δx

su is:

lx(s ∈ [0,a] 7→ δx
su) = ad̄x(x,u).

From here and relations (10.12), (10.13), (10.14), (10.15) we get that

lx(c) = lim
λ→0

lx(cλ). (10.22)

Condition (B) and the fact that (X, d̄, δ̄) is tempered imply that there is a positive function
ω3(ε) = O(ε) such that

| lx
ε(c
ε
λ)− lx(cλ) |≤

ω3(ε)
λ
. (10.23)
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This is true because if v Q̂x,u
ε v then δx

εv = Qδ
x
εuδx
εv, therefore by condition (B)

lx
ε(s ∈ [0,a] 7→ δ̂x,u

ε,sv)

δx
εd̄(u,v)

=
l̄(s ∈ [0,a] 7→ δ̄δ

x
εu

s δ
x
εv)

d̄(δx
εu, δx

εv)
≤ O(ε)+1.

Since each short curve is made by N segments and the division Aλ is made by 1/λ segments,
the relation (10.23) follows.

We shall choose now ε(λ) such that ω3(ε(λ)) ≤ λ2 and we define:

cλ = cε(λ)λ .

These curves satisfy the properties (i), (ii). Indeed (i) is satisfied by construction and (ii)
follows from the choice of ε(λ), uniform convergence of cελ to cλ, uniformly with respect to
λ, and relations (10.23), and (10.22). �

11 Conclusion

In our opinion, the fact that sub-riemannian geometry may be described by about 12 axioms,
without using any a priori given differential structure, is remarkable and it shows the
power of the dilation structures approach. A geometry is not a simple object, for example
euclidean geometry needs twice this number of axioms. It should be clear that renouncing
to such a basic object as a differential structure is payed by the introduction of a number
of axioms which might seem too high at the first view. It is not so high though; just for an
example, the number of axioms for the euclidean geometry decreases dramatically once we
use as basic objects the algebraic and topological structure of real numbers (or real vector
spaces).

Let us go back to Gromov viewpoint that the only intrinsic object of a sub-riemannian
space is the Carnot-Carathéodory distance. One of the most striking features of a regular
sub-riemannian space is that it has at any point a metric tangent space, which algebraically
is a Carnot group. This has been proved several times, by using the CC distance and lots
of informations coming from the underlying differential structure of the manifold. Let us
compare this with the result of Siebert, which characterizes homogeneous Lie groups as
locally compact groups admitting a contracting and continuous one-parameter group of
automorphisms. Siebert result has not a metric character.

In the work presented in this paper we tried to argue that we need more than only the
CC distance in order to describe regular sub-riemannian manifolds, but less than the under-
lying differential structure: we need only dilation structures. Dilation structures bring forth
the other intrinsic ingredient, namely the dilations, which are generalizations of Siebert’
contracting group of automorphisms.
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[15] M. Gromov, Carnot-Carathéodory spaces seen from within, in the book: Sub-
Riemannian Geometry, A. Bellaı̈che, J.-J. Risler eds., Progress in Mathematics, 144,
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a Carnot-Carathéodory space, Geom. Funct. Analysis 8 (1995), 2, 402–433.

[18] G. A. Margulis and G. D. Mostow, Some remarks on the definition of tangent cones
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