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Abstract

Some new nonlinear dynamic integral inequalities of Gronwall type for retarded func-
tions are established. These inequalities can be used as basic tools in the study of
certain classes of functional dynamic equations as well as dynamic delay equations.
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1 Introduction

Motivated by Agarwal et al. papers [3, 4], our purpose is to obtain time scales versions of
some Gronwall-like inequalities used in the theory of differential and integral equations. It
is well known that Gronwall–like inequalities in continuous and discrete cases play a crucial
rule in studying the qualitative behavior of differential and difference equations. These
inequalities have been used to investigate the global existence, uniqueness, boundedness
and other properties of solutions of various nonlinear differential and difference equations.
For the background and the summary on these particular subjects, we refer the interested
reader to the excellent monographs [9]-[11] by Pachpatte and [1] by Agarwal. Many authors
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have studied some fundamental inequalities used in analysis on time scales, for example,
see [2], [5, 6], [13, 14].

In this paper, we would like to study certain classes of functional dynamic equations as
well as dynamic delay equations, see Section 3. In Section 1, we give a brief introduction
to calculus on time scales as well as some important references. In Section 2, we obtain
certain type of inequalities that are important to prove the main results in this paper.

For completeness, a few hints concerning the background of time scales, which has
recently received a lot of attention, might be in order. In 1988, Stefan Hilger [12] in his
Ph.D. thesis added a new wrinkle to the calculus by introducing the calculus on a time scale,
which is a unification and extension of the theories of continuous and discrete analysis. A
time scale is an arbitrary nonempty closed subset of the real numbers R, and we usually
denote it by the symbol T. The two most popular examples are T = R and T = Z. Some
other interesting time scales exist, and they give rise to plenty of applications such as the
study of population dynamics models (see [7], pages 15 and 71). We define the forward and
backward jump operators σ, ρ : T → T by

σ(t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t}

(supplemented by inf /0 = supT and sup /0 = infT). A point t ∈ T with t > infT is called
right-scattered, right-dense, left-scattered and left-dense if σ(t) > t, σ(t) = t, ρ(t) < t and
ρ(t) = t holds, respectively. Points that are left-dense and right-dense at the same time are
called dense. The set Tκ is derived from T as follows: If T has a left-scattered maximum m,
then Tκ = T−{m}. Otherwise, Tκ = T. The graininess function µ : T → [0,∞) is defined
by

µ(t) := σ(t)− t.

Hence the graininess function is 0 if T = R while it is 1 if T = Z. Let f be a function defined
on T, then we define the delta derivative of f at t ∈ Tκ, denoted by f ∆(t), to be the number
(provided it exists) with the property such that for every ε > 0, there exists a neighborhood
U of t with ∣∣ f (σ(t))− f (s)− f ∆(t) [σ(t)− s]

∣∣≤ ε |σ(t)− s| for all s ∈ U.

Some elementary facts concerning the delta derivative are:

• If f is differentiable at t, then

f σ(t) = f (σ(t)) = f (t)+µ(t) f ∆(t).

• If f and g are differentiable at t, then f g is differentiable at t with

( f g)∆(t) = f σ(t)g∆(t)+ f ∆(t)g(t) = f (t)g∆(t)+ f ∆(t)gσ(t).

• If f and g are differentiable at t and g(t)g(σ(t)) 6= 0, then f
g is differentiable at t with(

f
g

)∆

(t) =
f ∆(t)g(t)− f (t)g∆(t)

g(t)g(σ(t))
.
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We say f : T → R is right-dense continuous ( f ∈ Crd(T,R)) provided f is continuous
at right-dense points in T and its left-sided limit exists (finite) at left-dense points in T.
The importance of rd-continuous functions is that every rd-continuous function possesses
an antiderivative. A function F : Tκ → R is called an antiderivative of f : T → R provided
F∆(t) = f (t) holds for all t ∈ Tκ. In this case we define the integral of f by

tZ
a

f (s)∆s = F(t)−F(a)

for all t ∈ T. Other useful formulas are as follows:

σ(t)Z
t

f (s)∆s = µ(t) f (t),

bZ
a

f (t)∆t =
cZ

a

f (t)∆t +
bZ

c

f (t)∆t,

bZ
a

f (t)g∆(t)∆t = f (b)g(b)− f (a)g(a)−
bZ

a

f ∆(t)gσ(t)∆t.

Let f , g : T → R be rd-continuous and a, b ∈ T. If | f (t)| ≤ g(t) on [a,b), then∣∣∣∣∣∣
bZ

a

f (t)∆t

∣∣∣∣∣∣≤
bZ

a

g(t)∆t.

The following result is a chain rule on T, see [7, Theorem 1.90].

Lemma 1.1. Let f : R 7→ R be continuously differentiable and suppose g : T 7→ R is delta
differentiable. Then f ◦g : T 7→ R is delta differentiable and the formula

( f ◦g)∆(t) =
{Z 1

0
f ′
(
g(t)+hµ(t)g∆(t)

)
dh
}

g∆(t)

holds.

A comprehensive and an excellent treatment of calculus on time scales can be found,
for instance, in [7, 8].

For convenience of notation, we let throughout

t0 ∈ T, Tt0 = [t0,∞)∩T,

and
a,b ∈ T T[a,b] = [a,b]∩T.

We let R0 = [0,∞), R1 = [1,∞), and C1(M,N) be the class of all continuously differentiable
functions defined on the set M to the set N.
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2 Gronwall-Like Inequalities

In this section, we consider Gronwall type inequalities which will be useful to obtain the
global existence of solutions for certain delay dynamic equations.

Theorem 2.1. Let b, fi, gi ∈ Crd (Tt0 ,R0), i = 1,2, . . . , l such that b is nondecreasing and
let α : Tt0 7→ T be nondecreasing such that α(t) ≤ t and −∞ < a = inf{α(s) : s ∈ Tt0}.
Suppose that q ≥ 0 is a constant, ϕ ∈C1 (R0,R0) is an increasing function with ϕ(∞) = ∞

on R0, and ψ is a nondecreasing continuous function for u ∈ R0 with ψ(u) > 0 for u > 0.
If u : Ta 7→ R0 and

ϕ(u(t))≤ b(t)+
l

∑
i=1

tZ
t0

uq(α(s)) [ fi(s)ψ(u(α(s)))+gi(s)]∆s

for t ∈ Tt0 , then

u(t)≤ ϕ
−1

G−1

Ω
−1

Ω

G(b(t)+
tZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

l

∑
i=1

fi(s)∆s

 (2.1)

for t ∈ T[t0,β], where

G(r) =
rZ

r0

ds
(ϕ−1(s))q , r ≥ r0 > 0,

Ω(r) =
rZ

r0

ds
ψ [ϕ−1 (G−1(s))]

, r ≥ r0 > 0,

G−1, and Ω−1 denote the inverse functions of G, Ω, respectively and β ≥ t0 is chosen such
that

Ω

G(b(t))+
tZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

l

∑
i=1

fi(s)∆s ∈ Dom
(
Ω
−1)

holds.

Proof. Let ε > 0 and T ∈ Tt0 . Define a function z : T[t0,T ] → R0 by

z(t) = ε+b(T )+
l

∑
i=1

tZ
t0

uq(α(s)) [ fi(s)ψ(u(α(s)))+gi(s)]∆s. (2.2)

Clearly, z(t) is nondecreasing, u(t) ≤ ϕ−1(z(t)) for t ∈ T[t0,T ] and z(t0) = ε + b(T ). From
(2.2), we obtain

z∆(t) =
l

∑
i=1

uq(α(t)) [ fi(t)ψ(u(α(t)))+gi(t)]

≤
[
ϕ
−1(z(t))

]q l

∑
i=1

[
fi(t)ψ(ϕ−1(z(t)))+gi(t)

]
, (2.3)
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for t ∈ Tκ

[t0,T ]. Here we use the fact that α(t) ≤ t yields z(α(t)) ≤ z(t), ϕ is increasing, and
q > 0 implies that

uq(α(t))≤
[
ϕ
−1(z(α(t)))

]q ≤ [ϕ−1(z(t))
]q

, t ∈ T[t0,T ].

Using the monotonicity of ϕ−1 and z, we obtain[
ϕ
−1(z(t))

]q ≥ [ϕ−1(z(0))
]q

=
[
ϕ
−1(ε+b(T ))

]q
> 0, t ∈ T[t0,T ].

Hence it follows from (2.3) we have that

z∆(t)
[ϕ−1(z(t))]q

≤
l

∑
i=1

[
fi(t)ψ(ϕ−1(z(t)))+gi(t)

]
, t ∈ Tκ

[t0,T ]. (2.4)

On the other hand, taking into account Lemma 1.1 and the definition of G, we have

(G(z(t)))∆ = (G◦ z)∆ (t)

= z∆(t)
1Z

0

G′ (z(t)+µ(t)hz∆(t)
)

dh, (2.5)

for t ∈ Tκ

[t0,T ], where G′(t) = 1
[ϕ−1(t)]q . Since z(t) ≤ z(t) + µ(t)hz∆(t) for 0 ≤ h ≤ 1, and

t ∈ Tκ

[t0,T ], we have

ϕ
−1 (z(t))≤ ϕ

−1 (z(t)+µ(t)hz∆(t)
)
, t ∈ Tκ

[t0,T ].

Hence from (2.5), we get

(G(z(t)))∆ = z∆(t)
1Z

0

G′ ((z(t)+µ(t)hz∆(t)
)

dh

= z∆(t)
1Z

0

1
[ϕ−1 (z(t)+µ(t)hz∆(t))]q

dh

≤ z∆(t)
1Z

0

1
[ϕ−1 (z(t))]q

dh

=
z∆(t)

[ϕ−1 (z(t))]q
, (2.6)

for t ∈ Tκ

[t0,T ]. Combining (2.4) and (2.6), we obtain

(G(z(t)))∆ ≤
l

∑
i=1

[
fi(t)ψ(ϕ−1(z(t)))+gi(t)

]
, t ∈ Tκ

[t0,T ]. (2.7)

Integrating (2.7) from t0 to t and taking into account that gi : T[t0,T ] 7→ R0 for each i, we
deduce

G(z(t))≤ G(ε+b(T ))+
l

∑
i=1

tZ
t0

fi(s)ψ(ϕ−1(z(s)))∆s+
l

∑
i=1

TZ
t0

gi(s)∆s. (2.8)
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for all t ∈ T[t0,T ]. Now define a function v(t) by the right–hand side of (2.8), that is,

0 < v(t) = G(ε+b(T ))+
l

∑
i=1

TZ
t0

gi(s)∆s+
l

∑
i=1

tZ
t0

fi(s)ψ(ϕ−1(z(s)))∆s.

Clearly, v(t) is nondecreasing, z(t)≤ G−1(v(t)) for t ∈ T[t0,T ] and

v(t0) = G(ε+b(T ))+
TZ

t0

l

∑
i=1

gi(s)∆s.

Therefore, for any t ∈ [t0,T ]κT, we have

v∆(t) =
l

∑
i=1

fi(t)ψ(ϕ−1(z(t)))

≤ ψ(ϕ−1(G−1(v(t))))
l

∑
i=1

fi(t).

Using the monotonicity of ψ, ϕ−1, G−1, and v yields

v∆(t)
ψ(ϕ−1(G−1(v(t))))

≤
l

∑
i=1

fi(t), t ∈ Tκ

[t0,T ]. (2.9)

On the other hand, as before, taking into account Lemma 1.1 and the definition of Ω, we
have

(Ω(v(t)))∆ = (Ω◦ v)∆ (t)

= v∆(t)
1Z

0

Ω
′(v(t)+µ(t)hv∆(t))dh, (2.10)

for t ∈ Tκ

[t0,T ], where Ω′(t) = 1
ψ(ϕ−1(G−1(t))) . Since v(t) ≤ v(t)+ µ(t)hv∆(t) for 0 ≤ h ≤ 1,

t ∈ Tκ

[t0,T ], we have

ψ
(
ϕ
−1 (G−1(v(t))

))
≤ ψ

(
ϕ
−1 (G−1(v(t)+µ(t)v∆(t))

))
, t ∈ Tκ

[t0,T ]

and so

1
ψ(ϕ−1 (G−1(v(t)+µ(t)hv∆(t))))

≤ 1
ψ(ϕ−1 (G−1(v(t))))

, t ∈ Tκ

[t0,T ].

Substituting this last inequality into (2.10) and taking into account (2.9) we obtain

(Ω(v(t)))∆ ≤ v∆(t)
ψ(ϕ−1 (G−1(v(t))))

≤
l

∑
i=1

fi(t), t ∈ Tκ

[t0,T ]. (2.11)
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Integrating (2.11) from t0 to t yields

Ω(v(t)) ≤ Ω(v(t0))+
tZ

t0

(
l

∑
i=1

fi(s)

)
∆s

= Ω

G(ε+b(T ))+
TZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

(
l

∑
i=1

fi(s)

)
∆s,

for t ∈ T[t0,T ] and hence we obtain

v(t)≤ Ω
−1

Ω

G(ε+b(T ))+
TZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

(
l

∑
i=1

fi(s)

)
∆s

 ,

for t ∈ T[t0,T ]. Since z(t)≤ G−1 (v(t)) for t ∈ T[t0,T ], we get

z(t)≤ G−1

Ω
−1

Ω

G(ε+b(T ))+
TZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

(
l

∑
i=1

fi(s)

)
∆s


for t ∈ T[t0,T ]. Letting ε → 0 and taking into account that u(t)≤ ϕ−1(z(t)) for t ∈ T[t0,T ] we
obtain

u(t)≤ ϕ
−1

G−1

Ω
−1

Ω

G(b(T ))+
TZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

(
l

∑
i=1

fi(s)

)
∆s


 .

The last inequality produces the required inequality (2.1) for T = t, since T ∈ Tt0 was
arbitrary, which completes the proof.

The following corollary follows from Theorem 2.1 when ϕ(u) = up, G(r) = r
p−q

p , where
p > q ≥ 0 are constants.

Corollary 2.2. Let b, fi, gi, α, and ψ be as defined in Theorem 2.1. Suppose that p > q≥ 0
are constants. If u : Ta 7→ R0 and

up(t)≤ b(t)+
l

∑
i=1

tZ
t0

uq(α(s)) [ fi(s)ψ(u(α(s)))+gi(s)]∆s

for t ∈ Tt0 , then

u(t)≤

Ω
−1

Ω

[b(t)]
p−q

p +
p−q

p

tZ
t0

l

∑
i=1

gi(s)∆s

+
p−q

p

tZ
t0

l

∑
i=1

fi(s)∆s


1

p−q

for t ∈ T[t0,β], where

Ω(r) =
rZ

r0

ds

ψ

[
s

1
p−q

] , r ≥ r0 > 0,
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and Ω−1 denotes the inverse function of Ω and β ≥ t0 is chosen such that

Ω

[b(t)]
p−q

p +
p−q

p

tZ
t0

l

∑
i=1

gi(s)∆s

+
p−q

p

tZ
t0

l

∑
i=1

fi(s)∆s ∈ Dom
(
Ω
−1)

holds.

Proof. The argument of the proof is same as in the proof of Theorem 2.1 with suitable
modification. Hence we omit the details here.

Remark 2.3. Let T = Z. If p = 2, q = 1, b(t) = c2, α(s) = s, i = 1 in Corollary 2.2, then
our results deduces to the Pachpatte inequality in [9].

We finish this section with another useful nonlinear integral inequality without its proof
since it is similar to the proof of Theorem 2.1. The approach is again based on a chain rule
on time scales.

Theorem 2.4. Let b, fi, gi, i = 1, · · · , l, q, and ϕ be as defined in Theorem 2.1. Suppose
that ψ j(u) ( j = 1,2) is a nondecreasing continuous function for u ∈R0 with ψ j (u) > 0 for
u > 0. If u : Ta 7→ R1 and

ϕ(u(t))≤ b(t)+
l

∑
i=1

tZ
t0

uq(α(s)) [ fi(s)ψ1(u(α(s)))+gi(s)ψ2(logu(α(s)))]∆s

for t ∈ Tt0 , then

• for the case ψ1(u)≥ ψ2(log(u)), we have

u(t)≤ ϕ
−1

G−1

Ω
−1
1

Ω1[G(b(t))]+
tZ

t0

l

∑
i=1

[ fi(s)+gi(s)]∆s


for t ∈ T[t0,β1], and

• for the case ψ1(u) < ψ2(log(u)), we have

u(t)≤ ϕ
−1

G−1

Ω
−1
2

Ω2[G(b(t))]+
tZ

t0

l

∑
i=1

[ fi(s)+gi(s)]∆s


for t ∈ T[t0,β2],

where

Ωm(r) =
rZ

r0

ds
ψm−1(ϕ−1(G−1(s)))

, r ≥ r0 > 0,

G−1, and Ω−1
m , m = 1,2 denote the inverse functions of G, Ωm, respectively, G(t) is as

defined in Theorem 2.1 for t ∈ Tt0 , and βm ≥ t0, m = 1,2 is chosen such that

Ωm[G(b(t))]+
tZ

t0

l

∑
i=1

[ fi(s)+gi(s)]∆s ∈ Dom
(
Ω
−1
m
)

holds.
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The following corollary follows from Theorem 2.4 when ϕ(u) = up, G(r) = r
p−q

p , where
p > q ≥ 0 are constants.

Corollary 2.5. Let b, fi, gi for i = 1,2, . . . , l, ψ j, j = 1,2 and α be as defined in Theorem
2.4. Suppose that p > q ≥ 0 are constants. If u : Ta 7→ R1 and

up(t)≤ b(t)+
l

∑
i=1

tZ
t0

uq(α(s)) [ fi(s)ψ1(u(α(s)))+gi(s)ψ2(logu(α(s)))]∆s

for t ∈ Tt0 , then

• for the case ψ1(u)≥ ψ2(log(u)), we have

u(t)≤

Ω
−1
1

Ω1

(
[b(t)]

p−q
p

)
+

p−q
p

tZ
t0

l

∑
i=1

[ fi(s)+gi(s)]∆s


1

p−q

for t ∈ T[t0,β1], and

• for the case ψ1(u) < ψ2(log(u)), we have

u(t)≤

Ω
−1
2

Ω2

(
[b(t)]

p−q
p

)
+

p−q
p

tZ
t0

l

∑
i=1

[ fi(s)+gi(s)]∆s


1

p−q

for t ∈ T[t0,β2],

where

Ωm(r) =
rZ

r0

ds
ψm−1(ϕ−1(G−1(s)))

, r ≥ r0 > 0,

G−1, and Ω−1
m , m = 1,2 denote the inverse functions of G, Ωm, respectively, G(t) is as

defined in Theorem 2.1 for t ∈ Tt0 , and βm ≥ t0, m = 1,2 is chosen such that

Ωm

(
[b(t)]

p−q
p

)
+

p−q
p

tZ
t0

l

∑
i=1

[ fi(s)+gi(s)]∆s ∈ Dom
(
Ω
−1
m
)

holds.

3 Applications

Our results are helpful in proving the global existence of solutions to certain dynamic equa-
tions with time delay. We first consider the functional dynamic equation φ∆ (x(t)) = h(t)+

l
∑

i=1
Fi [t,x(α(t)) ,w(x(α(t)))]

φ(x(t0)) = x0

, (3.1)
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where x0 is a constant, φ ∈ C (R,R0) is an increasing function such that φ(|x|) ≤ |φ(x)|,
h : Tt0 7→ R is nondecreasing, x : Ta 7→ R, α : Tt0 7→ T is nondecreasing such that α(t) ≤
t and −∞ < a = inf{α(s) : s ∈ Tt0}, w ∈ C (R,R) is a nondecreasing function, and Fi ∈
C
(
Tt0 ×R2,R

)
.

The following theorem deals with the bound on the solution of (3.1).

Theorem 3.1. Assume that Fi : Tt0 ×R2 → R for i = 1, . . . , l is a continuous function and
there exist continuous functions fi, gi ∈ Crd(Tt0 ,R0), i = 1, . . . , l such that

|Fi [t,x(α(t)) ,w(x(α(t)))]| ≤ |x(α(t))|q fi(t)ψ(|x(α(t))|)+gi(t), (3.2)

and

|x0|+
tZ

t0

|h(s)|∆s ≤ b(t), (3.3)

where q ≥ 0 is a constant and b(t), ψ are as in Theorem 2.1. If x(t) is any solution of (3.1)
for t ∈ Tt0 , then

|x(t)| ≤ φ
−1

G−1

Ω
−1

Ω

G(b(t)+
tZ

t0

l

∑
i=1

gi(s)∆s

+
tZ

t0

l

∑
i=1

fi(s)∆s

 (3.4)

for t ∈ Tt0 , where G and Ω are defined as in Theorem 2.1.

Proof. Let x(t) be a solution of (3.1) for t ∈ Tt0 . One can show that x(t) satisfies the
equivalent equation

φ(x(t)) = x0 +
tZ

t0

h(s)∆s+
l

∑
i=1

tZ
t0

Fi [s,x(α(s)) ,w(x(α(s)))]∆s, (3.5)

for t ∈ Tt0 . It follows from (3.5) that

|φ(x(t))| ≤ |x0|+
tZ

t0

|h(s)|∆s+
l

∑
i=1

tZ
t0

|Fi [s,x(α(s)) ,w(x(α(s)))]|∆s (3.6)

for t ∈ Tt0 . Using the conditions (3.2), (3.3) on the right hand side of (3.6) we obtain

φ(|x(t)|)≤ b(t)+
l

∑
i=1

tZ
t0

[|x(α(s))|q fi(s)ψ(|x(α(s))|)+gi(s)]∆s

for t ∈ Tt0 . Now an immediate application of the inequality established in Theorem 2.1 to
the inequality (3.4) yields the result.

Remark 3.2. We now consider the functional dynamic equation with the initial condition (xp(t))∆ = h(t)+
l
∑

i=1
Fi [t,x(α(t)) ,w(x(α(t)))] ,

xp(t0) = x1

(3.7)
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where p > 0, x1 are constants. Assume that Fi : Tt0 ×R2 7→R for i = 1, . . . , l is a continuous
function and there exist continuous functions fi, gi : Tt0 7→ R0, i = 1, . . . , l such that the
inequalities (3.2) and (3.3) hold, where q ≥ 0 is a constant such that p > q and b(t), ψ are
defined as in Corollary 2.2. If x(t) is any solution of the problem (3.7) for t ∈ Tt0 , then it
satisfies the equivalent equation

xp(t) = x1 +
tZ

t0

h(s)∆s+
l

∑
i=1

tZ
t0

Fi [s,x(α(s)) ,w(x(α(s)))]∆s, (3.8)

for t ∈ Tt0 . It follows from (3.8) that

|x(t)|p ≤ |x1|+
tZ

t0

|h(s)|∆s+
l

∑
i=1

tZ
t0

|Fi [s,x(α(s)) ,w(x(α(s)))]|∆s (3.9)

for t ∈ Tt0 . Using the conditions (3.2), (3.3) on the right hand side of (3.9) yields

|x(t)|p ≤ b(t)+
l

∑
i=1

tZ
t0

[|x(α(s))|q fi(s)ψ(|x(α(s))|)+gi(t)]∆s, (3.10)

where t ∈ Tt0 . Now an immediate application of the inequality established in Corollary 2.2
to (3.10) yields

|x(t)| ≤

Ω
−1

Ω

[b(t)]
p−q

p +
p−q

p

tZ
t0

l

∑
i=1

gi(s)∆s

+
p−q

p

tZ
t0

l

∑
i=1

fi(s)∆s


1

p−q

for t ∈ Tt0 , where Ω is as in Corollary 2.2.

In the following theorem we give necessary conditions to obtain a unique solution of
(3.7).

Theorem 3.3. Assume that Fi : Tt0 ×R3 → R for i = 1, . . . , l is a continuous function and
there exists a continuous nonnegative function fi(t) for i = 1, . . . , l for t ∈ Tt0 such that

|F (t,x,w(x))−F (t,x,w(x))| ≤ fi(t) |xp− xp| , (3.11)

where p > 1 is a constant, then the problem (3.7) has a unique solution on Tt0 .

Proof. Let x(t) and x(t) be two solutions of (3.7) for t ∈ Tt0 . Then we have

xp(t)− xp(t) =
l

∑
i=1

tZ
t0

[Fi [s,x(α(s)) ,w(x(α(s)))]−Fi [s,x(α(s)) ,w(x(α(s)))]]∆s, (3.12)

for t ∈ Tt0 . From (3.11) and (3.12), we get

|xp(t)− xp(t)| ≤
l

∑
i=1

tZ
t0

fi(s) |xp(α(s))− xp(α(s))|∆s (3.13)
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for t ∈ Tt0 . Rearranging equation (3.13) yields

(
|xp(t)− xp(t)|

1
p

)p
≤

l

∑
i=1

tZ
t0

[
|xp(α(s))− x̄p(α(s))|

1
p

]p−1
fi(s)

[
|xp(α(s))− x̄p(α(s))|

1
p

]
∆s,

(3.14)
where t ∈Tt0 when ψ(u) = u, q = p−1, a suitable application of the inequality in Corollary
2.2 to the function |xp(t)− xp(t)|

1
p and the inequality (3.14) lead us to the inequality

|xp(t)− xp(t)|
1
p ≤ 0

for all t ∈ Tt0 . Hence we obtain x(t) = x(t) for t ∈ Tt0 .
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