A Perturbation of Double Derivations on Banach Algebras

N. GHOBADIPOUR*
Department of Mathematics, Urmia University, Urmia, Iran
A. Ebadian ${ }^{\dagger}$
Department of Mathematics, Urmia University, Urmia, Iran
Th. M. RASSIAS ${ }^{\ddagger}$
Department of Mathematics, National Technical University of Athens, Zografou, Campus 15780 Athens, Greece

M. Eshaghi Gordji ${ }^{\S}$
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

(Communicated by Toka Diagana)

Abstract

In this paper, we prove the generalized Hyers - Ulam - Rassias stability of double derivations on Banach algebras.

AMS Subject Classification: 39B52, 39B82, 47B48.
Keywords: Generalized Hyers - Ulam - Rassias stability; double derivation.

1 Introduction

A classical question in the theory of functional equations is that "when is it true that a mapping which approximately satisfies a functional equation \mathcal{E} must be somehow close to an exact solution of \mathcal{E} ?". Such a problem was formulated by S.M. Ulam [21] in 1940 and solved in the next year for the Cauchy functional equation by D.H. Hyers [9]. It gave rise to the stability theory for functional equations. For the history and various aspects of this

[^0]theory we refer the reader to $[1,2,7,8,10,11,14,16,17,18,19,20]$. Let \mathcal{A} be a subalgebra of an algebra \mathcal{B} and let $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ be a linear mapping. A linear mapping $\theta_{1}: \mathcal{A} \rightarrow \mathcal{B}$ is called σ - derivation if
\[

$$
\begin{equation*}
\theta_{1}(a b)=\theta_{1}(a) \sigma(b)+\sigma(a) \theta_{1}(b) \tag{1.1}
\end{equation*}
$$

\]

for all $a, b \in \mathcal{A}$.
Clearly, if $\sigma=i d$, the identity mapping on \mathcal{A}, then a σ - derivation is an ordinary derivation. On the other hand, each homomorphism θ_{1} is a $\frac{\theta_{1}}{2}$ - derivation. Thus, the theory of σ - derivations combines the theory of derivations and homomorphisms. If θ_{2} : $\mathcal{A} \rightarrow \mathcal{A}$ is an ordinary derivation and $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ is a homomorphism, then $\theta_{1}=\theta_{2} \sigma$ is a σ - derivation. Although, a σ - derivation is not necessarily of the form $\theta_{2} \sigma$, but it seems that the generalized Leibniz rule, $\theta_{1}(a b)=\theta_{1}(a) \sigma(b)+\sigma(a) \theta_{1}(b)$, comes from this observation.
M. Mirzavaziri and E. Omidvar Tehrani [13] took ideas from above fact, and considered two derivations θ_{2}, θ_{3} to find a similar rule, for $\theta_{1}=\theta_{2} \theta_{3}$. In this case, they saw that θ_{1} satisfies

$$
\begin{equation*}
\theta_{1}(a b)=\theta_{1}(a) b+a \theta_{1}(b)+\theta_{2}(a) \theta_{3}(b)+\theta_{3}(a) \theta_{2}(b) \tag{1.2}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. They said that a linear mapping $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)-$ double derivation if it satisfies (1.2). Moreover, by a θ_{1} - double derivation they called a $\left(\theta_{1}, \theta_{1}\right)$ - derivation and proved that if \mathcal{A} is a C^{*} - algebra, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $*$ - linear mapping and $\theta_{2}: \mathcal{A} \rightarrow \mathcal{A}$ is a continuous θ_{1} - double derivation then θ_{1} is continuous.

During the last decades several stability problems of functional equations have been investigated by a number of mathematicians; see $[3,4,5,6,15]$ and references therein for more detailed information.
H. Khodaei and Th. M. Rassias [12] have found the general n-dimensional additive functional equation for $n \geq 2$ as follows:

$$
\begin{align*}
& \sum_{k=2}^{n}\left(\sum_{i_{1}=2}^{k} \sum_{i_{2}=i_{1}+1}^{k+1} \ldots \sum_{i_{n-k+1}=i_{n-k}+1}^{n}\right) f\left(\sum_{i=1, i \neq i_{1}, \ldots, i_{n-k+1}}^{n} a_{i} x_{i}-\sum_{r=1}^{n-k+1} a_{i_{r}} x_{i_{r}}\right) \\
& \quad+f\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=2^{n-1} a_{1} f\left(x_{1}\right) \tag{1.3}
\end{align*}
$$

where $a_{1}, \ldots, a_{n} \in \mathbb{Z}-\{0\}$ with $a_{1} \neq \pm 1$, and investigated stability of functional equation (1.3) in random normed spaces, in non-Archimedean spaces and quasi-normed spaces.

In this paper, our main purpose is to prove the generalized Hyers - Ulam - Rassias stability of $\left(\theta_{2}, \theta_{3}\right)$ - double derivations on \mathcal{A} associated with the functional equation (1.3).

Throughout this paper, assume that a_{1}, \ldots, a_{n} are nonzero fixed integers with $a_{1} \neq \pm 1$, and that \mathcal{A} is a Banach algebra.

2 Main Results

Let $l=1,2,3$. For given mappings $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$, we define the difference operators $D_{\mu} f_{l}$: $\mathcal{A}^{n} \rightarrow \mathcal{A}$ and $C_{f_{1}, f_{2}, f_{3}}(x, y): \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\begin{aligned}
D_{\mu} f_{l}\left(x_{1}, \ldots, x_{n}\right) & :=\sum_{k=2}^{n}\left(\sum_{i_{1}=2}^{k} \sum_{i_{2}=i_{1}+1}^{k+1} \ldots \sum_{i_{n-k+1}=i_{n-k}+1}^{n}\right) f_{l}\left(\sum_{i=1, i \neq i_{1}, \ldots, i_{n-k+1}}^{n} a_{i} \mu x_{i}\right. \\
& \left.-\sum_{r=1}^{n-k+1} a_{i_{r}} \mu x_{i_{r}}\right)+f_{l}\left(\sum_{i=1}^{n} a_{i} \mu x_{i}\right)-2^{n-1} a_{1} \mu f_{l}\left(x_{1}\right)
\end{aligned}
$$

and
$C_{f_{1}, f_{2}, f_{3}}(x, y):=f_{1}(x y)-f_{1}(x) y-x f_{1}(y)-f_{2}(x) f_{3}(y)-f_{3}(x) f_{2}(y)$
for all $\mu \in \mathbb{T}^{1}:=\{\lambda:|\lambda|=1\}$ and all $x, y, x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$. We will use the following lemma in this paper.

Lemma 2.1. [12] A function $f: \mathcal{A} \rightarrow \mathcal{A}$ satisfies the functional equation (1.3) if and only if $f: \mathcal{A} \rightarrow \mathcal{A}$ is additive.

Theorem 2.2. Let $r>1, l=1,2,3$ and let $\theta_{l}: \mathcal{A} \rightarrow \mathcal{A}$ be mappings satisfying $\theta_{l}(r x)=$ $r \theta_{l}(x)$ for all $x \in \mathcal{A}$. If there exists a function $\varphi: \mathscr{A}^{8} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \lim _{j \rightarrow \infty} \frac{1}{r^{j}} \varphi\left(r^{j} x, r^{j} y, r^{j} z, r^{j} t, r^{j} a, r^{j} b, r^{j} c, r^{j} d\right)=0 \tag{2.1}\\
& \begin{array}{l}
\| \theta_{1}(\mu x+\mu y+z t)-\mu \theta_{1}(x)-\mu \theta_{1}(y)-\theta_{1}(z) t-z \theta_{1}(t)-\theta_{2}(z) \theta_{3}(t)-\theta_{3}(z) \theta_{2}(t) \\
\quad-\theta_{2}(\mu a+\mu b)-\mu \theta_{2}(a)-\mu \theta_{2}(b)-\theta_{3}(\mu c+\mu d)-\mu \theta_{3}(c)-\mu \theta_{3}(d) \| \\
\quad \leq \varphi(x, y, z, t, a, b, c, d)
\end{array}
\end{align*}
$$

for all $\mu \in \mathbb{C}$ and all $x, y, z, t, a, b, c, d \in \mathcal{A}$. Then θ_{1} is $a\left(\theta_{2}, \theta_{3}\right)$ - double derivation on \mathcal{A}.
Proof. $\theta_{l}(0)=0$ since $\theta_{l}(0)=r \theta_{l}(0)$. Put $z=t=a=b=c=d=0$ in (2.2). Then

$$
\begin{aligned}
\left\|\theta_{1}(\mu x+\mu y)-\mu \theta_{1}(x)-\mu \theta_{1}(y)\right\| & =\frac{1}{r^{j}}\left\|\theta_{1}\left(\mu r^{j} x+\mu r^{j} y\right)-\mu \theta_{1}\left(r^{j} x\right)-\mu \theta_{1}\left(r^{j} y\right)\right\| \\
& \leq \frac{1}{r^{j}} \varphi\left(r^{j} x, r^{j} y, 0,0,0,0,0,0\right)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $\mu \in \mathbb{C}$. The right hand side tends to zero as $j \rightarrow \infty$. So

$$
\theta_{1}(\mu x+\mu y)=\mu \theta_{1}(x)+\mu \theta_{1}(y)
$$

for all $x, y \in \mathcal{A}$ and all $\mu \in \mathbb{C}$. Similarly, one can show that

$$
\begin{aligned}
& \theta_{2}(\mu x+\mu y)=\mu \theta_{2}(x)+\mu \theta_{2}(y) \\
& \theta_{3}(\mu x+\mu y)=\mu \theta_{3}(x)+\mu \theta_{3}(y)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $\mu \in \mathbb{C}$. Let $\mu=1$ and $x=y=a=b=c=d=0$ in (2.2), we get

$$
\begin{aligned}
& \left\|\theta_{1}(z t)-\theta_{1}(z) t-z \theta_{1}(t)-\theta_{2}(z) \theta_{3}(t)-\theta_{3}(z) \theta_{2}(t)\right\|=\frac{1}{r^{2 j}} \| \theta_{1}\left(r^{j} z r^{j} t\right)-\theta_{1}\left(r^{j} z\right) r^{j} t \\
& \quad-r^{j} z \theta_{1}\left(r^{j} t\right)-\theta_{2}\left(r^{j} z\right) \theta_{3}\left(r^{j} t\right)-\theta_{3}\left(r^{j} z\right) \theta_{2}\left(r^{j} t\right) \| \leq \frac{1}{r^{2 j}} \varphi\left(0,0, r^{j} z, r^{j} t, 0,0,0,0\right) \\
& \quad \leq \frac{1}{r^{j}} \varphi\left(0,0, r^{j} z, r^{j} t, 0,0,0,0\right)
\end{aligned}
$$

for all $z, t \in \mathcal{A}$. The right hand side tends to zero as $j \rightarrow \infty$. Then

$$
\theta_{1}(z t)=\theta_{1}(z) t+z \theta_{1}(t)+\theta_{2}(z) \theta_{3}(t)+\theta_{3}(z) \theta_{2}(t)
$$

for all $z, t \in \mathcal{A}$.
Now, we investigate the generalized Hyers - Ulam - Rassias stability of $\left(\theta_{2}, \theta_{3}\right)$ double derivations on Banach algebras for functional equation (1.3).

Theorem 2.3. Let $l=1,2,3$. If $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ with $f_{l}(0)=0$ are mappings for which there exists a function $\varphi: \mathfrak{A}^{n+2} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
& \tilde{\varphi}(x):=\sum_{j=0}^{\infty} \frac{1}{\left|a_{1}\right|^{j}} \varphi\left(a_{1}^{j} x, 0, \ldots, 0,0,0\right)<\infty, \tag{2.3}\\
& \lim _{j \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{j}} \varphi\left(a_{1}{ }^{j} x_{1}, a_{1}{ }^{j} x_{2}, \ldots, a_{1}{ }^{j} x_{n}, a_{1}{ }^{j} a, a_{1}{ }^{j} b\right)=0, \tag{2.4}\\
& \max _{l}\left\{\left\|D_{\mu} f_{l}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\|\right\} \leq \varphi\left(x_{1}, x_{2}, \ldots, x_{n}, a, b\right) \tag{2.5}
\end{align*}
$$

for all $a, b, x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$ and all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C} ;|\lambda|=1\}$. Then there exist unique \mathbb{C} - linear mappings $\theta_{l}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\left\|f_{l}(x)-\theta_{l}(x)\right\| \leq \frac{1}{2^{n-1}\left|a_{1}\right|} \tilde{\varphi}(x) \tag{2.6}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Moreover, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)$ - double derivation on \mathcal{A}.
Proof. It follows from the inequality (2.5) that

$$
\begin{array}{r}
\left\|D_{\mu} f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\| \leq \varphi\left(x_{1}, x_{2}, \ldots, x_{n}, a, b\right), \\
\left\|D_{\mu} f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\| \leq \varphi\left(x_{1}, x_{2}, \ldots, x_{n}, a, b\right), \\
\left\|D_{\mu} f_{3}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\| \leq \varphi\left(x_{1}, x_{2}, \ldots, x_{n}, a, b\right) \tag{2.9}
\end{array}
$$

for all $a, b, x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$ and all $\mu \in \mathbb{T}^{1}$. Let $\mu=1$. We use the relation

$$
\begin{equation*}
1+\sum_{i=1}^{n-1}\binom{n-1}{i}=\sum_{i=0}^{n-1}\binom{n-1}{i}=2^{n-1} \tag{2.10}
\end{equation*}
$$

and put $x_{1}=x$ and $a=b=x_{i}=0(i=2, \ldots, n)$ in (2.7). Then we obtain

$$
\begin{equation*}
\left\|2^{n-1} f_{1}\left(a_{1} x\right)-2^{n-1} a_{1} f_{1}(x)\right\| \leq \varphi(x, 0, \ldots, 0,0,0) \tag{2.11}
\end{equation*}
$$

for all $x \in \mathcal{A}$. So

$$
\begin{equation*}
\left\|f_{1}(x)-\frac{1}{a_{1}} f_{1}\left(a_{1} x\right)\right\| \leq \frac{1}{2^{n-1}\left|a_{1}\right|} \varphi(x, 0, \ldots, 0,0,0) \tag{2.12}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Replacing x by $a_{1} x$ in (2.12) and dividing by a_{1} and summing the resulting inequality with (2.12), we get

$$
\begin{equation*}
\left\|f_{1}(x)-\frac{1}{a_{1}^{2}} f_{1}\left(a_{1}^{2} x\right)\right\| \leq \frac{1}{2^{n-1}\left|a_{1}\right|}\left(\varphi(x, 0, \ldots, 0,0,0)+\frac{\varphi\left(a_{1} x, 0, \ldots, 0,0,0\right)}{\left|a_{1}\right|}\right) \tag{2.13}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Hence

$$
\begin{equation*}
\left\|\frac{1}{a_{1}^{l}} f_{1}\left(a_{1}^{l} x\right)-\frac{1}{a_{1}^{m}} f_{1}\left(a_{1}^{m} x\right)\right\| \leq \frac{1}{2^{n-1}\left|a_{1}\right|} \sum_{j=k}^{m-1} \frac{1}{\left|a_{1}\right|^{j}} \varphi\left(a_{1}^{j} x, 0, \ldots, 0,0,0\right) \tag{2.14}
\end{equation*}
$$

for all $x \in \mathcal{A}$. for all nonnegative integers m and k with $m>k$ and for all $x \in \mathcal{A}$. It follows from (2.3) and (2.14) that the sequence $\left\{\frac{1}{a_{1}^{m}} f_{1}\left(a_{1}^{m} x\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{A}$. Since \mathcal{A} is complete, the sequence $\left\{\frac{1}{a_{1}^{m}} f_{1}\left(a_{1}^{m} x\right)\right\}$ converges. Therefore, one can define the function $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\theta_{1}(x):=\lim _{m \rightarrow \infty} \frac{1}{a_{1}^{m}} f_{1}\left(a_{1}^{m} x\right)
$$

for all $x \in \mathcal{A}$. In the inequality (2.7), assume that $a=b=0$ and $\mu=1$. Then By (2.4),

$$
\begin{aligned}
\left\|D_{1} \theta_{1}\left(x_{1}, \ldots, x_{n}\right)\right\| & =\lim _{m \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{m}}\left\|D_{1} f_{1}\left(a_{1}^{m} x_{1}, \ldots, a_{1}^{m} x_{n}\right)\right\| \\
& \leq \lim _{m \rightarrow \infty} \frac{1}{\left|a_{1}\right|^{m}} \varphi\left(a_{1}^{m} x_{1}, \ldots, a_{1}^{m} x_{n}, 0,0\right)=0
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n} \in \mathcal{A}$. So $D_{1} \theta_{1}\left(x_{1}, \ldots, x_{n}\right)=0$. By Lemma 2.1, the function $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is additive. Moreover, letting $k=0$ and passing the limit $m \rightarrow \infty$ in (2.14), we get the inequality (2.6) for $l=1$. Now, let $\theta_{1}^{\prime}: \mathcal{A} \rightarrow \mathcal{A}$ be another additive function satisfying (1.3) and (2.6). So

$$
\begin{aligned}
\| \theta_{1}(x) & -\theta_{1}^{\prime}(x)\left\|=\frac{1}{\left|a_{1}\right|^{m}}\right\| \theta_{1}\left(a_{1}^{m} x\right)-\theta_{1}^{\prime}\left(a_{1}^{m} x\right) \| \leq \frac{1}{\left|a_{1}\right|^{m}}\left(\left\|\theta_{1}\left(a_{1}^{m} x\right)-f_{1}\left(a_{1}^{m} x\right)\right\|\right. \\
& \left.+\left\|\theta_{1}^{\prime}\left(a^{m} x\right)-f_{1}\left(a^{m} x\right)\right\|\right) \leq \frac{2}{\left|a_{1}\right|^{m} 2^{(n-1)}\left|a_{1}\right|} \widetilde{\varphi}\left(a_{1}^{m} x\right)
\end{aligned}
$$

which tends to zero as $m \rightarrow \infty$ for all $x \in \mathcal{A}$. So we can conclude that $\theta_{1}(x)=\theta_{1}^{\prime}(x)$ for all $x \in \mathcal{A}$. This proves the uniqueness of θ_{1}.
For $l=2$ and $l=3$, a similar argument shows that there exist unique additive mappings $\theta_{2}, \theta_{3}: \mathcal{A} \rightarrow \mathcal{A}$ satisfying (2.6). The additive mappings $\theta_{2}, \theta_{3}: \mathcal{A} \rightarrow \mathcal{A}$ are defined by

$$
\begin{equation*}
\theta_{2}(x):=\lim _{m \rightarrow \infty} \frac{1}{a_{1}^{m}} f_{2}\left(a_{1}^{m} x\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{3}(x):=\lim _{m \rightarrow \infty} \frac{1}{a_{1}^{m}} f_{3}\left(a_{1}^{m} x\right) \tag{2.16}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Since θ_{1} is additive, we have $a_{1} \theta_{1}(x)=\theta_{1}\left(a_{1} x\right)=\lim _{m \rightarrow \infty} \frac{1}{a_{1}{ }^{m}} f_{1}\left(a_{1}{ }^{m+1} x\right)$ for all $x \in \mathcal{A}$. Thus $\theta_{1}(x)=\lim _{m \rightarrow \infty} \frac{1}{\left.a_{1}\right)^{m+1}} f_{1}\left(a_{1}{ }^{m+1} x\right)$ for all $x \in \mathcal{A}$. Let $\mu \in \mathbb{T}^{1}$. Set $x_{1}=x$ and $a=b=x_{i}=0(i=2, \ldots, n)$ in (2.7). Then by the relation (2.10), we get

$$
\begin{equation*}
\left\|2^{n-1} f_{1}\left(a_{1} \mu x\right)-2^{n-1} a_{1} \mu f_{1}(x)\right\| \leq \varphi(x, 0, \ldots, 0,0,0) \tag{2.17}
\end{equation*}
$$

for all $x \in \mathcal{A}$. So that

$$
\left\|a_{1}^{-(m+1)}\left(2^{n-1} f_{1}\left(a_{1}^{m+1} \mu x\right)-2^{n-1} a_{1} \mu f_{1}\left(a_{1}^{m} x\right)\right)\right\| \leq\left|a_{1}\right|^{-(m+1)} \varphi\left(a_{1}^{m} x, 0, \ldots, 0,0,0\right),
$$

that is,

$$
\begin{equation*}
\left.\| a_{1}^{-(m+1)} f_{1}\left(a_{1}^{m+1} \mu x\right)-a_{1}^{-m} \mu f_{1}\left(a_{1}^{m} x\right)\right) \| \leq \frac{\left|a_{1}\right|^{-m} \varphi\left(a_{1}^{m} x, 0, \ldots, 0,0,0\right)}{\left|a_{1}\right| 2^{n-1}} \tag{2.18}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Since the right hand side tends to zero as $m \rightarrow \infty$, we have

$$
\theta_{1}(\mu x)=\lim _{m \rightarrow \infty} \frac{1}{a_{1}{ }^{m+1}} f_{1}\left(\mu a_{1}{ }^{m+1} x\right)=\lim _{m \rightarrow \infty} \frac{\mu f_{1}\left(a_{1}{ }^{m} x\right)}{a_{1}{ }^{m}}=\mu \theta_{1}(x)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Obviously, $\theta_{1}(0 x)=0=0 \theta_{1}(x)$.
Next, let $\lambda=\beta_{1}+i \beta_{2} \in \mathbb{C}$, where $\beta_{1}, \beta_{2} \in \mathbb{R}$. Let $\alpha_{1}=\beta_{1}-\left[\beta_{1}\right], \alpha_{2}=\beta_{2}-\left[\beta_{2}\right]$, in which $[r]$ denotes the greatest integer less than or equal to the number r. Then $0 \leq \alpha_{i} \leq 1,(1 \leq i \leq 2)$ and one can represent α_{i} as $\alpha_{i}=\frac{\mu_{i, 1}+\mu_{i, 2}}{2}$ in which $\mu_{i, j} \in \mathbb{T}^{1}, \quad(1 \leq i, j \leq 2)$. Since θ_{1} is additive we infer that

$$
\begin{aligned}
\theta_{1}(\lambda x) & =\theta_{1}\left(\beta_{1} x\right)+i \theta_{1}\left(\beta_{2} x\right)=\left[\beta_{1}\right] \theta_{1}(x)+\theta_{1}\left(\alpha_{1} x\right)+i\left(\left[\beta_{2}\right] \theta_{1}(x)+\theta_{1}\left(\alpha_{2} x\right)\right) \\
& =\left(\left[\beta_{1}\right] \theta_{1}(x)+\frac{1}{2} \theta_{1}\left(\mu_{1,1} x+\mu_{1,2} x\right)\right)+i\left(\left[\beta_{2}\right] \theta_{1}(x)+\frac{1}{2} \theta_{1}\left(\mu_{2,1} x+\mu_{2,2} x\right)\right) \\
& =\beta_{1} \theta_{1}(x)+i \beta_{2} \theta_{1}(x)=\lambda \theta_{1}(x)
\end{aligned}
$$

for all $x \in \mathcal{A}$. Hence, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a \mathbb{C} - linear mapping. A similar argument shows that θ_{2}, θ_{3} are \mathbb{C} - linear.
Setting $x_{1}=x_{2}=\ldots=x_{n}=0$ in the inequality (2.7), we get

$$
\begin{aligned}
& \left|a_{1}\right|^{-2 m}\left\|C_{f_{1}, f_{2}, f_{3}}\left(a_{1}{ }^{m} a, a_{1}{ }^{m} b\right)\right\|=\left|a_{1}\right|^{-2 m} \| f_{1}\left(a_{1}{ }^{2 m} a b\right)-f_{1}\left(a_{1}{ }^{m} a\right) a_{1}{ }^{m} b-a_{1}{ }^{m} a f_{1}\left(a_{1}{ }^{m} b\right) \\
& -f_{2}\left(a_{1}{ }^{m} a\right) f_{3}\left(a_{1}{ }^{m} b\right)-f_{3}\left(a_{1}{ }^{m} a\right) f_{2}\left(a_{1}{ }^{m} b\right) \| \\
& \leq\left|a_{1}\right|^{-2 m} \varphi\left(0, \ldots, 0, a_{1}{ }^{m} a, a_{1}{ }^{m} b\right) \leq\left|a_{1}\right|^{-m} \varphi\left(0, \ldots, 0, a_{1}{ }^{m} a, a_{1}{ }^{m} b\right),
\end{aligned}
$$

which tends to zero as $m \rightarrow \infty$ for all $a, b \in \mathcal{A}$ by (2.4). Hence

$$
\theta_{1}(a b)=\theta_{1}(a) b+a \theta_{1}(b)+\theta_{2}(a) \theta_{3}(b)+\theta_{3}(a) \theta_{2}(b)
$$

for all $a, b \in \mathcal{A}$. So the \mathbb{C} - linear mapping $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)$ - double derivation on \mathcal{A}.

Corollary 2.4. Let $l=1,2,3$. Let $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ be mappings with $f_{l}(0)=0$ for which there exist constants $\varepsilon \geq 0$ and $p<1$ such that

$$
\begin{aligned}
\max _{l} & \left\{\left\|D_{\mu} f_{l}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\|\right\} \\
& \leq \varepsilon\left(\|a\|^{p}+\|b\|^{p}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)
\end{aligned}
$$

for all $a, b, x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$ and all $\mu \in \mathbb{T}^{1}$. Then there exist unique \mathbb{C} - linear mappings $\theta_{l}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left\|f_{l}(x)-\theta_{l}(x)\right\| \leq \frac{\varepsilon\|x\|^{p}}{2^{n-1}\left|a_{1}\right|\left(1-\left|a_{1}\right|^{p-1}\right)}
$$

for all $x \in \mathcal{A}$. Moreover, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)$ - double derivation on \mathcal{A}.
Proof. Define $\varphi\left(x_{1}, x_{2}, \ldots, x_{n}, a, b\right):=\varepsilon\left(\|a\|^{p}+\|b\|^{p}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)$ for all $a, b, x_{i} \in \mathcal{A} \quad(i=$ $1, \ldots, n)$, and apply Theorem 2.3.

Theorem 2.5. Let $l=1,2,3$. Let $r, s, r_{1}, r_{2}, . ., r_{n}$ and ε be non-negative real numbers such that $r+s<2$. If $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ are mappings satisfying

$$
\begin{align*}
& \max _{l}\left\{\left\|D_{\mu} f_{l}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\|\right\} \leq \varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{r_{i}}, \tag{2.19}\\
& \left\|C_{f_{1}, f_{2}, f_{3}}(a, b)\right\| \leq \varepsilon\|a\|^{r}\|b\|^{s} \tag{2.20}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $a, b, x_{1}, \ldots, x_{n} \in \mathcal{A}$, then the mappings $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ are \mathbb{C}-linear. Moreover, $f_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(f_{2}, f_{3}\right)$ - double derivation. (We put $\|\cdot\|^{0}=1$).

Proof. It follows from the inequality (2.19) that

$$
\begin{align*}
& \left\|D_{\mu} f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq \varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{r_{i}}, \tag{2.21}\\
& \left\|D_{\mu} f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq \varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{r_{i}}, \tag{2.22}\\
& \left\|D_{\mu} f_{3}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\| \leq \varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{r_{i}} \tag{2.23}
\end{align*}
$$

for all $x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$. Letting $x_{i}=0(i=1, \ldots, n)$ in (2.21), we get that

$$
D_{\mu} f_{1}(0,0, \ldots, 0)=0
$$

that is,

$$
\sum_{k=2}^{n}\left(\sum_{i_{1}=2}^{k} \sum_{i_{2}=i_{1}+1}^{k+1} \ldots \sum_{i_{n-k+1}=i_{n-k}+1}^{n}\right) f_{1}(0)+f_{1}(0)=2^{n-1} a_{1} f_{1}(0)
$$

that is,

$$
\begin{aligned}
& \sum_{i_{1}=2}^{2} \sum_{i_{2}=i_{1}+1}^{3} \ldots \sum_{i_{n-1}=i_{n-2}+1}^{n} f_{1}(0)+\sum_{i_{1}=2}^{3} \sum_{i_{2}=i_{1}+1}^{4} \ldots \sum_{i_{n-2}=i_{n-3}+1}^{n} f_{1}(0)+\ldots+\sum_{i_{1}=2}^{n} f_{1}(0) \\
& \quad+f_{1}(0)=2^{n-1} a_{1} f_{1}(0)
\end{aligned}
$$

whence,

$$
\begin{equation*}
\left(\binom{n-1}{n-1}+\binom{n-1}{n-2}+\ldots+\binom{n-1}{1}+1\right) f_{1}(0)=2^{n-1} a_{1} f_{1}(0) . \tag{2.24}
\end{equation*}
$$

It follows from (2.10) and (2.22) that $2^{n-1}\left(a_{1}-1\right) f_{1}(0)=0$. Since $a_{1} \neq \pm 1$, so $f_{1}(0)=0$. By Lemma 2.1 and Theorem 2.3, the mapping $f_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is \mathbb{C} - linear. Similarly, $f_{2}(0)=$ $f_{3}(0)=0$ and the mappings f_{2}, f_{3} are \mathbb{C} - linear.
It follows from (2.20) that

$$
\left\|C_{f_{1}, f_{2}, f_{3}}(a, b)\right\|=\frac{1}{2^{2 j}}\left\|C_{f_{1}, f_{2}, f_{3}}\left(2^{j} a, 2^{j} b\right)\right\| \leq\left(\frac{2^{(r+s)}}{2^{2}}\right)^{j} \varepsilon\|a\|^{r}\|b\|^{s}
$$

for all $a, b \in \mathcal{A}$. Since the right hand side tends to zero as $j \rightarrow \infty$, we have

$$
C_{f_{1}, f_{2}, f_{3}}(a, b)=0
$$

for all $a, b \in \mathcal{A}$. Hence f_{1} is a $\left(f_{2}, f_{3}\right)$ - double derivation on \mathcal{A}.
Remark 2.6. We can obtain similar result to Theorem 2.5 for $r+s>2$.
Theorem 2.7. Let $l=1,2,3$. Suppose that $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ with $f_{2}(0)=f_{3}(0)=0$ are mappings satisfying (2.5). If there exists a function $\varphi: \mathcal{A}^{n+2} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\tilde{\varphi}(x):=\sum_{j=1}^{\infty}\left|a_{1}\right|^{j} \varphi\left(\frac{x}{a_{1}^{j}}, 0, \ldots, 0,0,0\right)<\infty, \tag{2.25}\\
\lim _{j \rightarrow \infty}\left|a_{1}\right|^{j} \varphi\left(\frac{x_{1}}{a_{1}^{j}}, \ldots, \frac{x_{n}}{a_{1}^{j}}, \frac{a}{a_{1}^{j}}, \frac{b}{a_{1}^{j}}\right)=0, \tag{2.26}
\end{gather*}
$$

for all $x_{1}, \ldots, x_{n}, a, b \in \mathcal{A}$, then there exist unique \mathbb{C} - linear mappings $\theta_{l}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\left\|f_{l}(x)-\theta_{l}(x)\right\| \leq \frac{1}{2^{n-1}} \tilde{\varphi}\left(\frac{x}{a_{1}}\right) \tag{2.27}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Moreover, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)-$ double derivation on \mathcal{A}.
Proof. Letting $a=b=x_{i}=0(i=1, \ldots, n)$ in (2.26), we get $\lim _{j \rightarrow \infty}\left|a_{1}\right|{ }^{j} \varphi(0, \ldots, 0,0,0)=0$. Hence, $\varphi(0, \ldots, 0,0,0)=0$. Now, put $a=b=x_{i}=0 \quad(i=1, \ldots, n)$ in (2.7). Since $g(0)=$ $h(0)=0$, we get $D_{\mu} f(0, \ldots, 0,0,0)=0$. Therefore, by Theorem 2.5 we obtain $f(0)=0$. It follows from (2.11) that

$$
\left\|f_{1}(x)-a_{1} f_{1}\left(\frac{x}{a_{1}}\right)\right\| \leq \frac{1}{2^{n-1}} \varphi\left(\frac{x}{a_{1}}, 0, \ldots, 0,0,0\right)
$$

for all $x \in \mathcal{A}$. Hence

$$
\begin{equation*}
\left\|a_{1}^{l} f_{1}\left(\frac{x}{a_{1}^{l}}\right)-a_{1}^{m} f_{1}\left(\frac{x}{a_{1}^{m}}\right)\right\| \leq \frac{1}{2^{n-1}} \sum_{j=k}^{m-1}\left|a_{1}\right|^{j} \varphi\left(\frac{x}{a_{1}^{j+1}}, 0, \ldots, 0,0,0\right) \tag{2.28}
\end{equation*}
$$

for all nonnegative integers m and k with $m>k$ and for all $x \in \mathcal{A}$. It follows from (2.28) that the sequence $\left\{a_{1}^{m} f_{1}\left(\frac{x}{a_{1}^{m}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathcal{A}$. Since \mathcal{A} is complete, the sequence $\left\{a_{1}^{m} f_{1}\left(\frac{x}{a_{1}^{m}}\right)\right\}$ converges. So one can define the function $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\theta_{1}(x):=\lim _{m \rightarrow \infty} a_{1}^{m} f_{1}\left(\frac{x}{a_{1}^{m}}\right)
$$

for all $x \in \mathcal{A}$.
The rest of the proof is similar to the proof of Theorem 2.3 and we omit it.
Corollary 2.8. Let $l=1,2,3$. Suppose $f_{l}: \mathcal{A} \rightarrow \mathcal{A}$ are mappings with $f_{l}(0)=0$ for which there exist constants $\varepsilon \geq 0$ and $p>1$ such that

$$
\begin{aligned}
\max _{l} & \left\{\left\|D_{\mu} f_{l}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-C_{f_{1}, f_{2}, f_{3}}(a, b)\right\|\right\} \\
& \leq \varepsilon\left(\|a\|^{p}+\|b\|^{p}+\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)\right.
\end{aligned}
$$

for all $a, b, x_{i} \in \mathcal{A}(i=1,2, \ldots, n)$ and all $\mu \in \mathbb{T}^{1}$. Then there exist unique \mathbb{C} - linear mappings $\theta_{l}: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\left\|f_{l}(x)-\theta_{l}(x)\right\| \leq \frac{\varepsilon\|x\|^{p}}{2^{n-1}\left|a_{1}\right|\left(\left|a_{1}\right|^{1-p}-1\right)}
$$

for all $x \in \mathcal{A}$. Moreover, $\theta_{1}: \mathcal{A} \rightarrow \mathcal{A}$ is a $\left(\theta_{2}, \theta_{3}\right)$ - double derivation on \mathcal{A}.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), pp 64-66.
[2] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), pp 223-237.
[3] H. Y. Chu, S. H. Ku and J. S. Park, partial stabilities and partial derivations of nvariable functions, Nonlinear Anal.. (2009), Article in press.
[4] S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type. Hadronic Press, Palm Harbor, Florida, 2003.
[5] M. Eshaghi Gordji, J. M. Rassias and N. Ghobadipour, Generalized Hyers-Ulam stability of generalized (n,k) - derivations, Abstr. Appl. Anal. (2009), pp 1-8.
[6] M. Eshaghi Gordgi and N. Ghobadipour, Nearly generalized Jordan derivations, To appear in Mathematical Slovaca.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991), pp 431-434.
[8] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), pp 431-436.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), pp 222-224.
[10] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhuser, Boston, 1998.
[11] D.H. Hyers, Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), pp 125-153.
[12] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010) No.1, pp 22-41.
[13] M. Mirzavaziri and E. Omidvar Tehrani, δ - double derivations on C^{*} - algebras, Bull. Iranian Math. Soc. Vol. 35 No. 1 (2009), pp 147-154.
[14] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. vol. 46, no. 1, pp 126-130, 1982.
[15] Th. M. Rassias, Functional equations, Inequalities and applications. Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), pp 297-300.
[17] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000), pp 23-130.
[18] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), pp 264-284.
[19] Th. M. Rassias (Ed.), Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003.
[20] Th. M. Rassias, P. Šemrl, On the behavior of mappings which do not satisfy Hyers Ulam stability, Proc. Amer. Math. Soc. 114 (1992), pp 989-993.
[21] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.

[^0]: *E-mail address: ghobadipour.n@gmail.com
 ${ }^{\dagger}$ E-mail address: a.ebadian@urmia.ac.ir
 *E-mail address: trassias@math.ntua.gr
 §(Corresponding Author) E-mail address: madjid.eshaghi@gmail.com

