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Abstract

In this paper, we prove the generalized Hyers – Ulam – Rassias stability of double
derivations on Banach algebras.
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1 Introduction

A classical question in the theory of functional equations is that “when is it true that a
mapping which approximately satisfies a functional equation E must be somehow close to
an exact solution of E?”. Such a problem was formulated by S.M. Ulam [21] in 1940 and
solved in the next year for the Cauchy functional equation by D.H. Hyers [9]. It gave rise
to the stability theory for functional equations. For the history and various aspects of this
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theory we refer the reader to [1, 2, 7, 8, 10, 11, 14, 16, 17, 18, 19, 20]. Let A be a subalgebra
of an algebra B and let σ : A → B be a linear mapping. A linear mapping θ1 : A → B is
called σ – derivation if

θ1(ab) = θ1(a)σ(b)+σ(a)θ1(b) (1.1)

for all a,b ∈ A .

Clearly, if σ = id, the identity mapping on A , then a σ – derivation is an ordinary
derivation. On the other hand, each homomorphism θ1 is a θ1

2 – derivation. Thus, the
theory of σ – derivations combines the theory of derivations and homomorphisms. If θ2 :
A → A is an ordinary derivation and σ : A → A is a homomorphism, then θ1 = θ2σ is
a σ – derivation. Although, a σ – derivation is not necessarily of the form θ2σ, but it
seems that the generalized Leibniz rule, θ1(ab) = θ1(a)σ(b)+σ(a)θ1(b), comes from this
observation.

M. Mirzavaziri and E. Omidvar Tehrani [13] took ideas from above fact, and considered
two derivations θ2,θ3 to find a similar rule, for θ1 = θ2θ3. In this case, they saw that θ1
satisfies

θ1(ab) = θ1(a)b+aθ1(b)+θ2(a)θ3(b)+θ3(a)θ2(b) (1.2)

for all a,b∈A . They said that a linear mapping θ1 : A →A is a (θ2,θ3) – double derivation
if it satisfies (1.2). Moreover, by a θ1 – double derivation they called a (θ1,θ1) – derivation
and proved that if A is a C∗ – algebra, θ1 : A → A is a ∗ - linear mapping and θ2 : A → A
is a continuous θ1 – double derivation then θ1 is continuous.

During the last decades several stability problems of functional equations have been
investigated by a number of mathematicians; see [3, 4, 5, 6, 15] and references therein for
more detailed information.

H. Khodaei and Th. M. Rassias [12] have found the general n – dimensional additive
functional equation for n ≥ 2 as follows:

n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

...
n

∑
in−k+1=in−k+1

) f (
n

∑
i=1,i6=i1,...,in−k+1

aixi−
n−k+1

∑
r=1

air xir)

+ f (
n

∑
i=1

aixi) = 2n−1a1 f (x1) (1.3)

where a1, ...,an ∈ Z−{0} with a1 6= ±1, and investigated stability of functional equation
(1.3) in random normed spaces, in non-Archimedean spaces and quasi-normed spaces.

In this paper, our main purpose is to prove the generalized Hyers – Ulam – Rassias
stability of (θ2,θ3) – double derivations on A associated with the functional equation (1.3).

Throughout this paper, assume that a1, ...,an are nonzero fixed integers with a1 6= ±1,
and that A is a Banach algebra.
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2 Main Results

Let l = 1,2,3. For given mappings fl : A → A , we define the difference operators Dµ fl :
An → A and C f1, f2, f3(x,y) : A ×A → A by

Dµ fl(x1, ...,xn) :=
n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

...
n

∑
in−k+1=in−k+1

) fl(
n

∑
i=1,i6=i1,...,in−k+1

aiµxi

−
n−k+1

∑
r=1

air µxir)+ fl(
n

∑
i=1

aiµxi)−2n−1a1µ fl(x1)

and

C f1, f2, f3(x,y) := f1(xy)− f1(x)y−x f1(y)− f2(x) f3(y)− f3(x) f2(y)

for all µ∈T1 := {λ : |λ|= 1} and all x,y,xi ∈A (i = 1,2, ...,n). We will use the following
lemma in this paper.

Lemma 2.1. [12] A function f : A → A satisfies the functional equation (1.3) if and only
if f : A → A is additive.

Theorem 2.2. Let r > 1, l = 1,2,3 and let θl : A → A be mappings satisfying θl(rx) =
rθl(x) for all x ∈ A . If there exists a function ϕ : A8 → [0,∞) such that

lim
j→∞

1
r j ϕ(r jx,r jy,r jz,r jt,r ja,r jb,r jc,r jd) = 0, (2.1)

‖θ1(µx+µy+ zt)−µθ1(x)−µθ1(y)−θ1(z)t− zθ1(t)−θ2(z)θ3(t)−θ3(z)θ2(t)
−θ2(µa+µb)−µθ2(a)−µθ2(b)−θ3(µc+µd)−µθ3(c)−µθ3(d)‖
≤ ϕ(x,y,z, t,a,b,c,d) (2.2)

for all µ ∈ C and all x,y,z, t,a,b,c,d ∈ A . Then θ1 is a (θ2,θ3) – double derivation on A .

Proof. θl(0) = 0 since θl(0) = rθl(0). Put z = t = a = b = c = d = 0 in (2.2). Then

‖θ1(µx+µy)−µθ1(x)−µθ1(y)‖=
1
r j ‖θ1(µr jx+µr jy)−µθ1(r jx)−µθ1(r jy)‖

≤ 1
r j ϕ(r jx,r jy,0,0,0,0,0,0)

for all x,y ∈ A and all µ ∈ C. The right hand side tends to zero as j → ∞. So

θ1(µx+µy) = µθ1(x)+µθ1(y)

for all x,y ∈ A and all µ ∈ C. Similarly, one can show that

θ2(µx+µy) = µθ2(x)+µθ2(y),

θ3(µx+µy) = µθ3(x)+µθ3(y)
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for all x,y ∈ A and all µ ∈ C. Let µ = 1 and x = y = a = b = c = d = 0 in (2.2), we get

‖θ1(zt)−θ1(z)t− zθ1(t)−θ2(z)θ3(t)−θ3(z)θ2(t)‖=
1

r2 j ‖θ1(r jzr jt)−θ1(r jz)r jt

− r jzθ1(r jt)−θ2(r jz)θ3(r jt)−θ3(r jz)θ2(r jt)‖ ≤ 1
r2 j ϕ(0,0,r jz,r jt,0,0,0,0)

≤ 1
r j ϕ(0,0,r jz,r jt,0,0,0,0)

for all z, t ∈ A . The right hand side tends to zero as j → ∞. Then

θ1(zt) = θ1(z)t + zθ1(t)+θ2(z)θ3(t)+θ3(z)θ2(t)

for all z, t ∈ A .

Now, we investigate the generalized Hyers – Ulam – Rassias stability of (θ2,θ3) –
double derivations on Banach algebras for functional equation (1.3).

Theorem 2.3. Let l = 1,2,3. If fl : A → A with fl(0) = 0 are mappings for which there
exists a function ϕ : An+2 → [0,∞) such that

ϕ̃(x) :=
∞

∑
j=0

1
|a1| j ϕ(a1

jx,0, ...,0,0,0) < ∞, (2.3)

lim
j→∞

1
|a1| j ϕ(a1

jx1,a1
jx2, ...,a1

jxn,a1
ja,a1

jb) = 0, (2.4)

max
l
{‖Dµ fl(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖} ≤ ϕ(x1,x2, ...,xn,a,b) (2.5)

for all a,b,xi ∈ A (i = 1,2, ...,n) and all µ ∈ T1 := {λ ∈ C; |λ| = 1}. Then there exist
unique C– linear mappings θl : A → A such that

‖ fl(x)−θl(x)‖ ≤
1

2n−1|a1|
ϕ̃(x) (2.6)

for all x ∈ A . Moreover, θ1 : A → A is a (θ2,θ3) – double derivation on A .

Proof. It follows from the inequality (2.5) that

‖Dµ f1(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖ ≤ ϕ(x1,x2, ...,xn,a,b), (2.7)

‖Dµ f2(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖ ≤ ϕ(x1,x2, ...,xn,a,b), (2.8)

‖Dµ f3(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖ ≤ ϕ(x1,x2, ...,xn,a,b) (2.9)

for all a,b,xi ∈ A (i = 1,2, ...,n) and all µ ∈ T1. Let µ = 1. We use the relation

1+
n−1

∑
i=1

(
n−1

i

)
=

n−1

∑
i=0

(
n−1

i

)
= 2n−1 (2.10)

and put x1 = x and a = b = xi = 0 (i = 2, ...,n) in (2.7). Then we obtain

‖2n−1 f1(a1x)−2n−1a1 f1(x)‖ ≤ ϕ(x,0, ...,0,0,0) (2.11)
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for all x ∈ A . So

‖ f1(x)−
1
a1

f1(a1x)‖ ≤ 1
2n−1|a1|

ϕ(x,0, ...,0,0,0) (2.12)

for all x ∈ A . Replacing x by a1x in (2.12) and dividing by a1 and summing the resulting
inequality with (2.12), we get

‖ f1(x)−
1
a2

1
f1(a2

1x)‖ ≤ 1
2n−1|a1|

(ϕ(x,0, ...,0,0,0)+
ϕ(a1x,0, ...,0,0,0)

|a1|
) (2.13)

for all x ∈ A . Hence

‖ 1
al

1
f1(al

1x)− 1
am

1
f1(am

1 x)‖ ≤ 1
2n−1 |a1|

m−1

∑
j=k

1
|a1| j ϕ(a j

1x,0, ...,0,0,0) (2.14)

for all x ∈ A . for all nonnegative integers m and k with m > k and for all x ∈ A . It follows
from (2.3) and (2.14) that the sequence { 1

am
1

f1(am
1 x)} is a Cauchy sequence for all x ∈ A .

Since A is complete, the sequence { 1
am

1
f1(am

1 x)} converges. Therefore, one can define the
function θ1 : A → A by

θ1(x) := lim
m→∞

1
am

1
f1(am

1 x)

for all x ∈ A . In the inequality (2.7), assume that a = b = 0 and µ = 1. Then By (2.4),

‖D1θ1(x1, ...,xn)‖= lim
m→∞

1
|a1|m

‖D1 f1(am
1 x1, ...,am

1 xn)‖

≤ lim
m→∞

1
|a1|m

ϕ(am
1 x1, ...,am

1 xn,0,0) = 0

for all x1, ...,xn ∈ A . So D1θ1(x1, ...,xn) = 0. By Lemma 2.1, the function θ1 : A → A
is additive. Moreover, letting k = 0 and passing the limit m → ∞ in (2.14), we get the
inequality (2.6) for l = 1. Now, let θ′1 : A →A be another additive function satisfying (1.3)
and (2.6). So

‖θ1(x)−θ
′
1(x)‖=

1
|a1|m

‖θ1(am
1 x)−θ

′
1(a

m
1 x)‖ ≤ 1

|a1|m
(‖θ1(am

1 x)− f1(am
1 x)‖

+‖θ
′
1(a

mx)− f1(amx)‖)≤ 2
|a1|m2(n−1)|a1|

ϕ̃(am
1 x)

which tends to zero as m → ∞ for all x ∈ A . So we can conclude that θ1(x) = θ′1(x) for all
x ∈ A . This proves the uniqueness of θ1.
For l = 2 and l = 3, a similar argument shows that there exist unique additive mappings
θ2,θ3 : A → A satisfying (2.6). The additive mappings θ2,θ3 : A → A are defined by

θ2(x) := lim
m→∞

1
am

1
f2(am

1 x) (2.15)
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and

θ3(x) := lim
m→∞

1
am

1
f3(am

1 x) (2.16)

for all x ∈ A . Since θ1 is additive, we have a1θ1(x) = θ1(a1x) = limm→∞
1

a1m f1(a1
m+1x) for

all x ∈ A . Thus θ1(x) = limm→∞
1

a1m+1 f1(a1
m+1x) for all x ∈ A . Let µ ∈ T1. Set x1 = x and

a = b = xi = 0 (i = 2, ...,n) in (2.7). Then by the relation (2.10), we get

‖2n−1 f1(a1µx)−2n−1a1µ f1(x)‖ ≤ ϕ(x,0, ...,0,0,0) (2.17)

for all x ∈ A . So that

‖a−(m+1)
1 (2n−1 f1(am+1

1 µx)−2n−1a1µ f1(am
1 x))‖ ≤ |a1|−(m+1)

ϕ(am
1 x,0, ...,0,0,0),

that is,

‖a−(m+1)
1 f1(am+1

1 µx)−a−m
1 µ f1(am

1 x))‖ ≤
|a1|−m

ϕ(am
1 x,0, ...,0,0,0)
|a1|2n−1 (2.18)

for all x ∈ A . Since the right hand side tends to zero as m → ∞, we have

θ1(µx) = lim
m→∞

1
a1m+1 f1(µa1

m+1x) = lim
m→∞

µ f1(a1
mx)

a1m = µθ1(x)

for all µ ∈ T1 and all x ∈ A . Obviously, θ1(0x) = 0 = 0θ1(x).
Next, let λ = β1 + iβ2 ∈C, where β1,β2 ∈R. Let α1 = β1− [β1],α2 = β2− [β2], in which [r]
denotes the greatest integer less than or equal to the number r. Then 0≤ αi ≤ 1, (1≤ i≤ 2)
and one can represent αi as αi = µi,1+µi,2

2 in which µi, j ∈ T1, (1 ≤ i, j ≤ 2). Since θ1 is
additive we infer that

θ1(λx) = θ1(β1x)+ iθ1(β2x) = [β1]θ1(x)+θ1(α1x)+ i([β2]θ1(x)+θ1(α2x))

= ([β1]θ1(x)+
1
2

θ1(µ1,1x+µ1,2x))+ i([β2]θ1(x)+
1
2

θ1(µ2,1x+µ2,2x))

= β1θ1(x)+ iβ2θ1(x) = λθ1(x)

for all x ∈ A . Hence, θ1 : A → A is a C – linear mapping. A similar argument shows that
θ2,θ3 are C– linear.
Setting x1 = x2 = ... = xn = 0 in the inequality (2.7), we get

|a1|−2m‖C f1, f2, f3(a1
ma,a1

mb)‖= |a1|−2m‖ f1(a1
2mab)− f1(a1

ma)a1
mb−a1

ma f1(a1
mb)

− f2(a1
ma) f3(a1

mb)− f3(a1
ma) f2(a1

mb)‖
≤ |a1|−2m

ϕ(0, ...,0,a1
ma,a1

mb)≤ |a1|−m
ϕ(0, ...,0,a1

ma,a1
mb),

which tends to zero as m → ∞ for all a,b ∈ A by (2.4). Hence

θ1(ab) = θ1(a)b+aθ1(b)+θ2(a)θ3(b)+θ3(a)θ2(b)

for all a,b ∈ A . So the C– linear mapping θ1 : A → A is a (θ2,θ3) – double derivation on
A .
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Corollary 2.4. Let l = 1,2,3. Let fl : A → A be mappings with fl(0) = 0 for which there
exist constants ε ≥ 0 and p < 1 such that

max
l
{‖Dµ fl(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖}

≤ ε(‖a‖p +‖b‖p +
n

∑
i=1
‖xi‖p)

for all a,b,xi ∈ A (i = 1,2, ...,n) and all µ ∈ T1. Then there exist unique C – linear map-
pings θl : A → A such that

‖ fl(x)−θl(x)‖ ≤
ε‖x‖p

2n−1|a1|(1−|a1|p−1)
,

for all x ∈ A . Moreover, θ1 : A → A is a (θ2,θ3) – double derivation on A .

Proof. Define ϕ(x1,x2, ...,xn,a,b) := ε(‖a‖p +‖b‖p + ∑
n
i=1 ‖xi‖p) for all a,b,xi ∈ A (i =

1, ...,n), and apply Theorem 2.3.

Theorem 2.5. Let l = 1,2,3. Let r,s,r1,r2, ..,rn and ε be non-negative real numbers such
that r + s < 2. If fl : A → A are mappings satisfying

max
l
{‖Dµ fl(x1,x2, ...,xn)‖} ≤ ε

n

∏
i=1

‖xi‖ri , (2.19)

‖C f1, f2, f3(a,b)‖ ≤ ε‖a‖r‖b‖s (2.20)

for all µ ∈ T1 and all a,b,x1, ...,xn ∈A , then the mappings fl : A →A are C–linear. More-
over, f1 : A → A is a ( f2, f3) – double derivation. (We put ‖.‖0 = 1).

Proof. It follows from the inequality (2.19) that

‖Dµ f1(x1,x2, ...,xn)‖ ≤ ε

n

∏
i=1

‖xi‖ri , (2.21)

‖Dµ f2(x1,x2, ...,xn)‖ ≤ ε

n

∏
i=1

‖xi‖ri , (2.22)

‖Dµ f3(x1,x2, ...,xn)‖ ≤ ε

n

∏
i=1

‖xi‖ri (2.23)

for all xi ∈ A (i = 1,2, ...,n). Letting xi = 0 (i = 1, ...,n) in (2.21), we get that

Dµ f1(0,0, ...,0) = 0

that is,
n

∑
k=2

(
k

∑
i1=2

k+1

∑
i2=i1+1

...
n

∑
in−k+1=in−k+1

) f1(0)+ f1(0) = 2n−1a1 f1(0)
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that is,

2

∑
i1=2

3

∑
i2=i1+1

...
n

∑
in−1=in−2+1

f1(0)+
3

∑
i1=2

4

∑
i2=i1+1

...
n

∑
in−2=in−3+1

f1(0)+ ...+
n

∑
i1=2

f1(0)

+ f1(0) = 2n−1a1 f1(0)

whence,

(
(

n−1
n−1

)
+

(
n−1
n−2

)
+ ...+

(
n−1

1

)
+1) f1(0) = 2n−1a1 f1(0). (2.24)

It follows from (2.10) and (2.22) that 2n−1(a1−1) f1(0) = 0. Since a1 6=±1, so f1(0) = 0.
By Lemma 2.1 and Theorem 2.3, the mapping f1 : A → A is C – linear. Similarly, f2(0) =
f3(0) = 0 and the mappings f2, f3 are C – linear.
It follows from (2.20) that

‖C f1, f2, f3(a,b)‖=
1

22 j ‖C f1, f2, f3(2
ja,2 jb)‖ ≤ (

2(r+s)

22 ) j
ε‖a‖r‖b‖s

for all a,b ∈ A . Since the right hand side tends to zero as j → ∞, we have

C f1, f2, f3(a,b) = 0

for all a,b ∈ A . Hence f1 is a ( f2, f3) – double derivation on A .

Remark 2.6. We can obtain similar result to Theorem 2.5 for r + s > 2.

Theorem 2.7. Let l = 1,2,3. Suppose that fl : A →A with f2(0) = f3(0) = 0 are mappings
satisfying (2.5). If there exists a function ϕ : An+2 → [0,∞) such that

ϕ̃(x) :=
∞

∑
j=1

|a1| j
ϕ(

x
a1 j ,0, ...,0,0,0) < ∞, (2.25)

lim
j→∞

|a1| j
ϕ(

x1

a1 j , ...,
xn

a1 j ,
a

a1 j ,
b

a1 j ) = 0, (2.26)

for all x1, ...,xn,a,b ∈ A , then there exist unique C – linear mappings θl : A → A such that

‖ fl(x)−θl(x)‖ ≤
1

2n−1 ϕ̃(
x
a1

) (2.27)

for all x ∈ A . Moreover, θ1 : A → A is a (θ2,θ3) – double derivation on A .

Proof. Letting a = b = xi = 0 (i = 1, ...,n) in (2.26), we get lim j→∞ |a1| jϕ(0, ...,0,0,0) = 0.
Hence, ϕ(0, ...,0,0,0) = 0. Now, put a = b = xi = 0 (i = 1, ...,n) in (2.7). Since g(0) =
h(0) = 0, we get Dµ f (0, ...,0,0,0) = 0. Therefore, by Theorem 2.5 we obtain f (0) = 0. It
follows from (2.11) that

‖ f1(x)−a1 f1(
x
a1

)‖ ≤ 1
2n−1 ϕ(

x
a1

,0, ...,0,0,0)
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for all x ∈ A . Hence

‖al
1 f1(

x
al

1
)−am

1 f1(
x

am
1

)‖ ≤ 1
2n−1

m−1

∑
j=k

|a1| j
ϕ(

x

a j+1
1

,0, ...,0,0,0) (2.28)

for all nonnegative integers m and k with m > k and for all x ∈ A . It follows from (2.28)
that the sequence {a1

m f1( x
a1m )} is a Cauchy sequence for all x ∈ A . Since A is complete,

the sequence {a1
m f1( x

a1m )} converges. So one can define the function θ1 : A → A by

θ1(x) := lim
m→∞

am
1 f1(

x
am

1
)

for all x ∈ A .
The rest of the proof is similar to the proof of Theorem 2.3 and we omit it.

Corollary 2.8. Let l = 1,2,3. Suppose fl : A → A are mappings with fl(0) = 0 for which
there exist constants ε ≥ 0 and p > 1 such that

max
l
{‖Dµ fl(x1,x2, ...,xn)−C f1, f2, f3(a,b)‖}

≤ ε(‖a‖p +‖b‖p +(
n

∑
i=1
‖xi‖p)

for all a,b,xi ∈ A (i = 1,2, ...,n) and all µ ∈ T1. Then there exist unique C – linear map-
pings θl : A → A such that

‖ fl(x)−θl(x)‖ ≤
ε‖x‖p

2n−1|a1|(|a1|1−p−1)
,

for all x ∈ A . Moreover, θ1 : A → A is a (θ2,θ3) – double derivation on A .
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