The Actions Of Subgroups Of $S L_{2}(\mathbb{R})$ For The Clifford Algebra In EPH Cases

DEBAPRIYA BISWAS*
Department of Mathematics
Indian Institute of Technology - Kharagpur
Kharagpur 721302, West Bengal, INDIA

(Communicated by Palle Jorgensen)

Abstract

We study the action of each subgroup A, N and K of the group $S L_{2}(\mathbb{R})$ for the Clifford algebra $C \ell(a)$ and calculate their vector fields, using the derived representation of the Lie algebra $s l_{2}$.

AMS Subject Classification: Primary 30G35, Secondary 22E46.
Keywords: EPH cases, Möbius transformations, Clifford and Lie algebras, $S L_{2}(\mathbb{R})$ group, Vector fields.

1 Introduction

Geometry brings life to any subject including algebra which supplies tools for any manipulation $[7,8,9,15]$. The idea of classifying the different branches of geometry in accordance with the classes of transformations considered, is addressed in the "Erlangen Program" $[7,12,13,15]$. Further, the classification of conic sections: elliptic, parabolic and hyperbolic, is generally abbreviated as EPH - classification. We lay down foundations for all three (including parabolic!) EPH-types of analytic function theories in the paper [11]. Here, we study the actions of subgroups of $S L_{2}(\mathbb{R})$ for the Clifford algebra in EPH cases.

2 Preliminaries

A Clifford algebra $C \ell(a)$ as a 4-dimensional linear space is spanned by $1, e_{1}, e_{2}, e_{1} e_{2}$ with non-commutative multiplication defined by the identities, in Lounesto [13]:

$$
e_{1}^{2}=-1, \quad e_{2}^{2}=\left\{\begin{array}{cl}
-1, & \text { for } C l(e) \text { —elliptic case } \tag{2.1}\\
0, & \text { for } C l(p) \text {-parabolic case } \\
1, & \text { for } C l(h) \text {-hyperbolic case }
\end{array}, \quad e_{1} e_{2}=-e_{2} e_{1} .\right.
$$

[^0]It contains both the planes \mathbb{E} and the vector plane \mathbb{R}^{a} so that \mathbb{R}^{a} is spanned by e_{1} and e_{2}, \mathbb{E} is spanned by 1 and e_{12}. The projection on axes of coordinates $u, v[4]$ as $E_{1}\left(u e_{1}+v e_{2}\right)=u$ and $E_{2}\left(u e_{1}+v e_{2}\right)=v$. The group $S L_{2}(\mathbb{R})($ Lang [12]) consists of 2×2 matrices whose determinant is one [6]. By the Iwasawa decomposition for semisimple Lie groups [12, p. 39], $S L_{2}(\mathbb{R})$ can be decomposed as a product of certain closed subgroups (not normal) in the form

$$
\begin{equation*}
S L_{2}(\mathbb{R})=A N K \tag{2.2}
\end{equation*}
$$

where A, N, K are defined in $[3,4,6]$. The Möbius transformation T is defined in [2, 4]. Details of a Lie group with mapping and Lie algebra with derivative are in [14]. In our terminology, the derived representation or Lie derivative of a vector field X is given by

$$
\begin{equation*}
d \rho(X)\left(u e_{1}+v e_{2}\right)=\left.\frac{\partial}{\partial t} \rho\left(e^{t X}\left(u e_{1}+v e_{2}\right)\right)\right|_{t=0}, \tag{2.3}
\end{equation*}
$$

where $e^{t X} \in S L_{2}(\mathbb{R}), X \in \mathfrak{s l}_{2}$ (Lie algebra of $S L_{2}(\mathbb{R})$) and $u e_{1}+v e_{2} \in \mathbb{R}^{a}$. Isomorphic realisation of $S L_{2}(\mathbb{R})$ in EPH cases, is included in $[1,4]$ which contains a realisation of the Iwasawa decomposition for semisimple Lie groups (as in Lang [12, § III.1]) as shown in equation (2.2). Geometric and algebraic conditions for circle, parabola and hyperbola are considered in [3,5]. (Non)-Invariance of the upper half plane under Möbius transformations in EPH cases, is in $[1,4]$.

3 Actions of subgroups

In all three EPH cases, the subgroups A and N act through Möbius transformations uniformly:

Lemma 3.1. For any type of the Clifford algebra $C \ell(a)$:
(1) The subgroup N defines shifts $u e_{1}+v e_{2} \mapsto(u+\chi) e_{1}+v e_{2}$ along the "real" axis U by χ. The vector field of the derived representation is $d N_{a}(u, v)=(1,0)$.
(2) The subgroup A defines dilations $u e_{1}+v e_{2} \mapsto \alpha^{-2}\left(u e_{1}+v e_{2}\right)$ by the factor α^{-2} which fixes origin $(0,0)$. The vector field of the derived representation is $d A_{a}(u, v)=$ ($2 u, 2 v$).

Orbits and vector fields corresponding to the derived representation [10, § 6.3], [12, Chap. VI] of the Lie algebra $\mathfrak{s l}_{2}$ for subgroups A and N are shown in [2, Figure 2].
(3) By contrast the actions of the subgroup K is significantly different between the EPH cases and correlates with names chosen for $\mathrm{Cl}(e), \mathrm{Cl}(p), \mathrm{Cl}(h)$ [2, Figure3]: The vector fields of the derived representation are:

$$
\left.\begin{array}{ll}
d K_{e}(u, v) & =\left(1+u^{2}-v^{2},\right. \\
d K_{p}(u, v) & 2 u v) \\
d K_{h}(u, v) & =\left(1+u^{2},\right.
\end{array} \quad 2 u v\right), ~\left(1+u^{2}+v^{2}, \quad 2 u v\right) .
$$

These vector fields can be obtained, by using the formula of the Lie derivative by equation (2.3)(see Section 2). The actions of the subgroup K in three cases are as follows:

Lemma 3.2. (1) For $C \ell(e)$ the orbits of K are circles. A circle with centre at $(0,(v+$ $\left.v^{-1}\right) / 2$) passes through two points $(0, v)$ and $\left(0, v^{-1}\right)$. The vector field of the derived representation is $d K_{e}(u, v)=\left(u^{2}-v^{2}+1,2 u v\right)$.
(2) The curvature of a K-orbit at a point $(0, v)$ in \mathbb{R}^{e} is equal to $\kappa=\frac{2 v}{1-v^{2}}$.

Proof. 1. Suppose for $C \ell(e)$, an orbit of the subgroup K intersects the V-axis at the point $(0, v)$. To find the other point of intersection. An element of the subgroup K looks like $k=\left(\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right)$. To find the action of the subgroup K on an element of the orbit. For the elliptic case $e_{2}^{2}=-1$ and the corresponding Möbius mapping [4, equation (2.5)] is

$$
\left(\begin{array}{cc}
\cos t & e_{1} \sin t \\
e_{1} \sin t & \cos t
\end{array}\right): v e_{2} \longrightarrow \frac{\cos t\left(v e_{2}\right)+e_{1} \sin t}{e_{1} \sin t\left(v e_{2}\right)+\cos t},\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \in S L_{2}(\mathbb{R})
$$

From the previous results [4, equation (3.3)],

$$
\frac{\cos t\left(v e_{2}\right)+e_{1} \sin t}{e_{1} \sin t\left(v e_{2}\right)+\cos t}=\left(\frac{L}{D}\right) e_{1}+\left(\frac{V}{D}\right) e_{2}
$$

where $L=\frac{\left(1-v^{2}\right)}{2} \sin 2 t$ and $D=\left(1-\left(1-v^{2}\right) \sin ^{2} t\right)$ and, the components are

$$
\begin{equation*}
x(t)=\frac{L}{D} \quad \text { and } \quad y(t)=\frac{V}{D} \tag{3.1}
\end{equation*}
$$

From the equation (3.1), we conclude that the image of a point $v e_{2}$ under the K-action belongs to the imaginary axis if and only if $\sin 2 t=0$, that is $t=k \frac{\pi}{2}$ for an integer k. We observe that at time $t=0$, we have $(x(t), y(t))=(0, v)$ and at time $t=\pi / 2$, we get the other point of intersection as $(x(t), y(t))=\left(0, v^{-1}\right)$. Next to show that the K orbit is a circle. For this, we define $v_{0}=\left(v+v^{-1}\right) / 2$. Then the radius vector \vec{r} is $\vec{r}=$ $\left(x(t), y(t)-v_{0}\right)$. Also the vector field $V_{(x, y)}$ at the position $(x(t), y(t))$ is given by $V_{(x, y)}=$ $\left(1+\{x(t)\}^{2}-\{y(t)\}^{2}, 2 x(t) y(t)\right)$. To show that $\vec{r} \perp V_{(x, y)}$, we take the dot product [5, equation (8)],

$$
\vec{r} \cdot V_{(x, y)}=\frac{L}{D}\left(1+\frac{L^{2}}{D^{2}}-\frac{v^{2}}{D^{2}}\right)+2 v \frac{L}{D^{2}}\left(\frac{v}{D}-v_{0}\right)
$$

Therefore,

$$
\vec{r} \cdot V_{(x, y)}=\frac{2 L}{D^{3}}\left[\frac{\left(1-v^{2}\right)^{2}}{8} \sin ^{2} 2 t-\frac{\left(1-v^{2}\right)^{2} \sin ^{2} t \cos ^{2} t}{2}\right]=0
$$

Hence $\vec{r} \perp V_{(x, y)}$. In other words the radius vector is perpendicular to the vector field at any arbitrary point $(x(t), y(t))$ on the K-orbit. As a result the K-orbits on $C \ell(e)$ are circles which pass through two points $(0, v)$ and $\left(0, v^{-1}\right)$, having centre as $v_{0}=\left(v+v^{-1}\right) / 2$, see Figures $3\left(K_{e}\right)$ in $[2,4]$ and 1.
2. Differentiating $x(t)$ and $y(t)$ in equation (3.1) twice with respect to t, we get at $t=0$,

$$
\dot{x}(0)=1-v^{2}, \quad \dot{y}(0)=0, \quad \ddot{x}(0)=0 \quad \text { and } \quad \ddot{y}(0)=2 v\left(1-v^{2}\right) .
$$

Therefore the curvature (κ) at time $t=0$ is given by

$$
\left.\kappa\right|_{t=0}=\left.\frac{|\dddot{x} \dot{y}-\ddot{y} \dot{x}|}{\left(\dot{x}^{2}+\dot{y}^{2}\right)^{3 / 2}}\right|_{t=0}=\frac{2 v}{\left(1-v^{2}\right)}
$$

Hence the radius of curvature (ρ) at time $t=0$, is given by

$$
\rho=\frac{1}{\kappa}=\frac{\left(1-v^{2}\right)}{2 v}
$$

In case of a circle, we know that the radius $p=\rho$ (radius of curvature). Therefore, $p=\frac{\left(1-v^{2}\right)}{2 v}$ is the radius of the circle passing through the points $(0, v)$ and $\left(0, v^{-1}\right)$ whose diameter is given by $\frac{\left(1-v^{2}\right)}{v}$.

Lemma 3.3. (1) For $C \ell(p)$ the orbits of K are parabolas with the vertical axis V. A parabola passing through $(0, v / 2)$ has its horizontal directrix passing through $(0,(v-$ $\left.\left.v^{-1}\right) / 2\right)$ and focus at $\left(0,\left(v+v^{-1}\right) / 2\right)$. The vector field of the derived representation is $d K_{p}(u, v)=\left(u^{2}+1,2 u v\right)$.
(2) The curvature of a K-orbit at a point $(0, v / 2)$ in \mathbb{R}^{p} is equal to $\kappa=v$.

Proof. 1. We suppose for $C \ell(p)$, an orbit of the subgroup K intersects the V-axis at the point $(0, v / 2)$. For the parabolic case $e_{2}^{2}=0$ and as earlier, the Möbius mapping is

$$
\left(\begin{array}{cc}
\cos t & e_{1} \sin t \\
e_{1} \sin t & \cos t
\end{array}\right): \frac{v}{2} e_{2} \longrightarrow \frac{\cos t\left(\frac{v}{2} e_{2}\right)+e_{1} \sin t}{e_{1} \sin t\left(\frac{v}{2} e_{2}\right)+\cos t},\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \in S L_{2}(\mathbb{R})
$$

Therefore the components of the vector field at time t (see equation (3.4), [4]) are

$$
\begin{equation*}
x(t)=\tan t \quad \text { and } \quad y(t)=\frac{v}{2} \sec ^{2} t \tag{3.2}
\end{equation*}
$$

and at time $t=0,(x(t), y(t))=(0, v / 2)$. Next to show that the K-orbit is a parabola, we take $v_{0}=\left(v+v^{-1}\right) / 2$. Then the radius vector $\vec{r}=\left(x(t), y(t)-v_{0}\right)$ and the vector field $V_{(x, y)}$ at the position $(x(t), y(t))$ is $V_{(x, y)}=\left(1+\{x(t)\}^{2}, 2 x(t) y(t)\right)$. Here, $(u, v)=$ $\left(\tan t,\left(\frac{v}{2} \sec ^{2} t-v_{0}\right)\right)$ and $\left(u^{\prime}, v^{\prime}\right)=\left(\sec ^{2} t, v \tan t \sec ^{2} t\right)$, we have

$$
\begin{aligned}
u^{\prime} u-v^{\prime}\left(\sqrt{u^{2}+v^{2}}-v\right) & =\tan t \sec ^{2} t\left[1-v\left\{\sqrt{\left(\frac{v}{2} \tan ^{2} t+\frac{v^{-1}}{2}\right)^{2}}-\left(\frac{v}{2} \tan ^{2} t-\frac{v^{-1}}{2}\right)\right\}\right. \\
& =0
\end{aligned}
$$

that is, condition being satisfied (Lemma 3.1, [5]), the K-orbits on $C l(p)$ are parabolas. Therefore $v_{0}=\left(v+v^{-1}\right) / 2$ is the focus of the parabola passing through the point $(0, v / 2)$. The horizontal directrix then passes through the point $\left(0,\left(v-v^{-1}\right) / 2\right)$, see Figure $3\left(K_{p}\right)$ in [2].
2. On differentiating $x(t)$ and $y(t)$ in equation (3.2) twice and computing their values at $t=0$, as in the earlier case, the curvature at time $t=0$, is $\left.\kappa\right|_{t=0}=v$ and the radius of curvature at $t=0$ is $\rho=\frac{1}{v}$. In case of a parabola, the focal length (distance between the focus and the vertex) being $p=\frac{1}{2} \rho$, therefore

$$
p=\frac{1}{2}\left(\frac{1}{v}\right)=\frac{1}{2 v}=\frac{1}{4(v / 2)}
$$

is the focal length of the parabola which passes through the point $(0, v / 2)$, see Figure 1.

Lemma 3.4. (1) For $C \ell(h)$ the orbits of K are hyperbolas with asymptotes parallel to lines $u= \pm v$. The vector field of the derived representation is $d K_{h}(u, v)=\left(u^{2}+v^{2}+\right.$ $1,2 u v)$.
(2) Also for $C \ell(h)$ the orbits of K are rectangular hyperbolas. In other words, the angle between the asymptotes of the hyperbolas is a right angle.
(3) The curvature of a K-orbit at a point $(0, v)$ in \mathbb{R}^{h} is equal to $\kappa=\frac{2 v}{1+v^{2}}$. A hyperbola passing through the point $(0, v)$ has the focal distance between foci $2 p$, where $p=$ $\frac{v^{2}+1}{\sqrt{2} v}$ and the upper focus is located at $(0, f)$ with:

$$
f= \begin{cases}p-\sqrt{\frac{p^{2}}{2}-1}, & \text { for } 0<v<1 ; \text { and } \\ p+\sqrt{\frac{p^{2}}{2}-1}, & \text { for } v \geq 1\end{cases}
$$

Proof. 1. We consider for $C \ell(h)$, an orbit of the subgroup K intersects the V-axis at the point $(0, v)$. To find the other point in which it intersects the V-axis, we proceed as Lemma 3.2 above, with the exception that $e_{2}^{2}=1$ for the hyperbolic case. From the previous results (see equation (3.5), [4]),

$$
\frac{\cos t\left(v e_{2}\right)+e_{1} \sin t}{e_{1} \sin t\left(v e_{2}\right)+\cos t}=\left(\frac{M}{D^{\prime}}\right) e_{1}+\left(\frac{v}{D^{\prime}}\right) e_{2}
$$

The components of the vector field at time t are

$$
\begin{equation*}
x(t)=\frac{M}{D^{\prime}} \quad \text { and } \quad y(t)=\frac{v}{D^{\prime}} \tag{3.3}
\end{equation*}
$$

where, $M=\frac{\left(1+v^{2}\right)}{2} \sin 2 t$ and $D^{\prime}=\left(1-\left(1+v^{2}\right) \sin ^{2} t\right)$. As before at time $t=0,(x(t), y(t))=$ $(0, v)$ and at time $t=\pi / 2,(x(t), y(t))=\left(0,-v^{-1}\right)$. To show that the K-orbit is a hyperbola, we define $v_{0}=\left(v-v^{-1}\right) / 2$. The radius vector \vec{r} and the vector field $V_{(x, y)}$ at the position $(x(t), y(t))$ as earlier are

$$
\vec{r}=\left(x(t), y(t)-v_{0}\right)=\left(\frac{M}{D^{\prime}}, \frac{v}{D^{\prime}}-v_{0}\right) \text { and } V_{(x, y)}=\left(1+\frac{\left(M^{2}+v^{2}\right)}{D^{\prime 2}}, \frac{2 v M}{D^{\prime 2}}\right)
$$

To show that the condition $u^{\prime} u-v^{\prime} v=0$ is satisfied (see Lemma 3.2, [5]) for it to be a hyperbola. Here, $(u, v)=\vec{r}$ and $\left(u^{\prime}, v^{\prime}\right)=V_{(x, y)}$. We have

$$
u^{\prime} u-v^{\prime} v=\frac{2 M}{D^{\prime 3}}\left[\frac{\left(1+v^{2}\right)^{2}}{8} \sin ^{2} 2 t-\frac{\left(1+v^{2}\right)^{2} \sin ^{2} t \cos ^{2} t}{2}\right]=0
$$

As a result, the K-orbits on $C \ell(h)$ are hyperbolas. Hence $v_{0}=\left(v-v^{-1}\right) / 2$ is the centre of the hyperbola. The equation of the hyperbola is given by

$$
u^{2}-\left(v-v_{0}\right)^{2}=-\frac{\left(v+v^{-1}\right)^{2}}{4}
$$

The equations of the asymptotes are given by

$$
u^{2}-\left(v-v_{0}\right)^{2}=0 \quad \Rightarrow u= \pm\left(v-v_{0}\right)
$$

which are parallel to the lines $u= \pm v$, see Figure $3\left(K_{h}\right)$ in [2].
2. The components of the vector field (Lemma 3.1) for $C \ell(h)$ are

$$
u_{1}=1+u^{2}+v^{2} \quad \text { and } \quad v_{1}=2 u v
$$

where (u, v) is any point on the hyperbola. As $(u, v) \rightarrow+\infty$, the asymptote (given by the equation $u=v$) approaches the tangent at that point, see Figure 2. Therefore the slope of the tangent as given by

$$
\tan \theta_{1}=\lim _{(u, v) \rightarrow+\infty} \frac{v_{1}}{u_{1}}=\lim _{(u, v) \rightarrow+\infty} \frac{2 u v}{\left(1+u^{2}+v^{2}\right)}
$$

is on the line $u=v$,

$$
\tan \theta_{1}=\lim _{u \rightarrow+\infty} \frac{2 u^{2}}{\left(1+2 u^{2}\right)}\left(\text { of } \frac{\infty}{\infty} \text { form }\right)
$$

Using L' Hôpital's rule, we get

$$
\tan \theta_{1}=1 \Rightarrow \theta_{1}=\pi / 4
$$

Similarly as ($u, v) \rightarrow-\infty$, the asymptote (given by the equation $u=-v$) tends to the tangent at that point and as before,

$$
\tan \theta_{2}=-1 \Rightarrow \theta_{2}=-\pi / 4
$$

Hence the angle between the asymptotes $u= \pm v$ is given by

$$
\theta=\left|\theta_{1}\right|+\left|\theta_{2}\right|=|\pi / 4|+|-\pi / 4|=\pi / 2
$$

which is a right angle. As a result the K-orbits are rectangular hyperbolas.
3. Differentiating the components $(x(t), y(t))$ in equation (3.3) twice with respect to t and obtaining their values at $t=0$ as before, the curvature (κ) at time $t=0$ is $\left.\kappa\right|_{t=0}=$ $\frac{2 v}{\left(1+v^{2}\right)}$ and the radius of curvature (ρ) is $\rho=\frac{\left(1+v^{2}\right)}{2 v}$.

In case of a hyperbola, the focal length (distance between the focus and the centre) $p=\sqrt{2} \rho$ where ρ is the radius of curvature. Therefore

$$
\begin{equation*}
p=\frac{\left(v^{2}+1\right)}{\sqrt{2} v} \tag{3.4}
\end{equation*}
$$

where $2 p$ is the focal distance between foci of the hyperbola passing through the point $(0, v)$.

At $v=1, f=p=\sqrt{2}$, as it is a rectangular hyperbola. Here the hyperbola passes through the point $(0, v), 2 p$ is the focal distance between foci and the upper focus is located at $(0, f)$, see Figure 3 .

At $v>1, f=p+x, x>0$, and at $v<1, f=p-x, x>0$, see Figure 4. The focal distance between foci $2 p$ is from equation (3.4)

$$
\begin{aligned}
v^{2}-\sqrt{2} v p+1 & =0 \\
\text { Therefore } v & =\left(\frac{p}{\sqrt{2}}+\sqrt{\frac{p^{2}}{2}-1}\right),\left(\frac{p}{\sqrt{2}}-\sqrt{\frac{p^{2}}{2}-1}\right)
\end{aligned}
$$

For the case $v>1$, we know from the property of a rectangular hyperbola (Figure 4) that

$$
p=\sqrt{2}(v-x) \Rightarrow x=\frac{1}{\sqrt{2}}(\sqrt{2} v-p)=\sqrt{\frac{p^{2}}{2}-1}
$$

(rejecting the other value of v as $x>0$). Therefore

$$
f=p+x=p+\sqrt{\frac{p^{2}}{2}-1}
$$

Similarly, for the case $v<1$, we get

$$
p=\sqrt{2}(v+x) \Rightarrow x=\frac{1}{\sqrt{2}}(p-\sqrt{2} v)=\sqrt{\frac{p^{2}}{2}-1}
$$

Hence,

$$
f=p-x=p-\sqrt{\frac{p^{2}}{2}-1}
$$

Thus the upper focus located at $(0, f)$ is given by

$$
f= \begin{cases}p-\sqrt{\frac{p^{2}}{2}-1} & \text { for } 0<v<1 ; \text { and } \\ p+\sqrt{\frac{p^{2}}{2}-1} & \text { for } v \geq 1\end{cases}
$$

Remark 3.5. 1. The values of all three vector fields $d K_{e}, d K_{p}$ and $d K_{h}$ coincide on the "real" U-axis $(v=0)$, i.e. they are three different extensions into the domain of the same boundary condition.
2. The hyperbola passing through the point $(0,1)$ has the shortest focal length $\sqrt{2}$ among all other hyperbolic orbits; two hyperbolas passing through $(0, v)$ and $\left(0,-v^{-1}\right)$ have the same focal length as

$$
p \equiv \frac{\left(-v^{-1}\right)^{2}+1}{\sqrt{2}\left(-v^{-1}\right)}=\frac{-\left(v^{2}+1\right)}{\sqrt{2} v}
$$

which has the same expression as in equation (3.4) except for a negative sign. These hyperbolas are related to each other as explained in Remark [11].
3. An alternative proof of Lemma 3.4(2) can be presented by the parametric representation (equation (3.3)).

4 Conclusion

Here, we have calculated the vector fields for the three subgroups A, N and K, using the formula for the derived representation. Then we study the actions of the subgroups of $S L_{2}(\mathbb{R})$. We took an isomorphic realisation of $S L_{2}(\mathbb{R})$ for studying the actions of the subgroups A, N and K. In drawing the figures, we have employed MetaPost software package.

Acknowledgements

The author is thankful to the Referees for extending the valuable suggestions. The author is also thankful to the supervisor Dr. Vladimir V Kisil of the Department of Pure Mathematics, University of Leeds, UK for introducing her to this field.

References

[1] D. Biswas, (Non)-invariance of the upper half plane under Möbius transformation in EPH cases. Bull. Calcutta Math. Soc., 101(4) (2009), pp 411-418.
[2] D. Biswas, The Cayley transform and the unit cycle in the parabolic case. J. Indian Acad. Math., 31(1) (2009), pp 37-48.
[3] D. Biswas, The concept of "lengths" and "orthogonality" for the elliptic, parabolic and hyperbolic cases. International Journal of Mathematics and Applications, 2(1-2) (2009), pp 59-69.
[4] D. Biswas, Geometry of EPH homogeneous spaces using Clifford algebras and the isotropy subgroups. Far East J. Math. Sci., 27(3) (2007), pp 741-758.
[5] D. Biswas, EPH-classification. J. Rajasthan Acad. Phys. Sci., 6(4) (2007), pp 371-378.
[6] D. Biswas, The Cayley transform and the unit cycle in elliptic and hyperbolic cases. Ultra Sci. Phys. Sci., 19(3M) (2007), pp 559-570.
[7] R. Courant and H. Robbins, revised by I. Stewart, What is Mathematics? An Elementary Approach To Ideas And Methods (2nd Edition). Oxford University Press Inc. Oxford, New York (1996).
[8] H. Eves, College Geometry. Narosa Publishing House, New Delhi (1998).
[9] T. Gowers, Mathematics: A Very Short Introduction. Oxford University Press Inc. New York, USA (2002).
[10] A. A. Kirillov, Elements of the theory of representations. Springer-Verlag, Berlin, (1976).
[11] V. V. Kisil and D. Biswas, Elliptic, parabolic and hyperbolic analytic function theory0: Geometry of domains. In Complex Analysis and Free Boundary Flows, Trans. Inst. Math. of the NAS of Ukraine, 1 (2004), pp 100-118.
[12] S. Lang, $S L_{2}(\mathbb{R})$. Volume 105 of Graduate Text in Mathematics. Springer-Verlag, New York (1985).
[13] P. Lounesto, Clifford algebras and spinors. London Mathematical Society Lecture Note Series, vol. 239. Cambridge University Press Cambridge (1997).
[14] W. Rossmann, Lie groups. Oxford Graduate Texts in Mathematics, vol. 5, Oxford University Press, Oxford, (2002), An introduction through linear groups.
[15] J. Stillwell, Mathematics And Its History. Springer-Verlag, New York Berlin Heidelberg (1999).

[^0]: *E-mail address: d_priya05@yahoo.co.in

