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Abstract

Using families of curves to generalize vector fields, the Lie bracket is defined on a

metric space, M. For M complete, versions of the local and global Frobenius theorems

hold, and flows are shown to commute if and only if their bracket is zero.

An example is given showing L2 (R) is controllable by two elementary flows.
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1 Introduction

The main goal of this paper is to further the point of view that many beautiful geometrical

and analytical results valid on differentiable manifolds hold on general metric spaces. The

main result of this paper is the generalization of Frobenius’ Foliation Theorem, Theorem

5.4. Besides the wider relevance gained by generalization, the foundations of the subject

are clarified when the limits of applicability are explored. This effort has a long and often

disjointed history, only one sliver of which is directly relevant here. The approach in this

paper, which has been used by several others, is to use the well-known characterization of a

vector in a tangent space as an equivalence class of curves which are tangent to each other.

A curve c on a metric space (M,d) is a continuous map c : (α,β) → M where (α,β) ⊂ R.

Two curves ci : (αi,βi)→ M for i = 1,2 are tangent at t ∈ (α1,β1)∩ (α2,β2) if

lim
h→0

d (c1 (t +h) ,c2 (t +h))

h
= 0.

In this way we may generalize a vector field (a family of vectors) on a manifold as an arc

field (a family of curves) on a metric space—Definition 2.1, below.

∗E-mail address: Craig.Calcaterra@metrostate.edu



2 C. Calcaterra

It has been said the three pillars of differential geometry are: (I) the Inverse Function

Theorem, (II) the Existence Theorem for ordinary differential equations (ODEs) and (III)

Frobenius’ Theorem. All of these classical theorems may be written with vector fields on

manifolds and so may also be written with arc fields on metric spaces. We expect any result

on manifolds which has a sufficiently geometrically realized proof can be generalized to

metric spaces using curves in place of vectors. A metric space version of (I) is contained

in [2], e.g.; and versions of (II) have been proven several times independently in e.g., [12],

[2], and [5]—see Theorem 2.2 below. A version of (III) is the main result of this paper,

Theorem 5.4: an involutive distribution on a complete metric space is integrable. Since the

result is for complete metric spaces, it generalizes the classical result on Banach manifolds

(proven, e.g., in [1]). Theorem 5.4 further generalizes the classical result by assuming only

Lipschitz-type regularity instead of smoothness, which is of interest in, for example, control

theory.

The simplest nontrivial foliations are the 1-dimensional foliations. A local flow gives

a local foliation with 1-dimensional leaves—the integral curves’ paths. In this sense (III)
generalizes (II). A flow without equilibria gives a (global) foliation. The existence of a

nontrivial foliation is not guaranteed by Frobenius’ classical theorem on general manifolds

M and depends on the global topology of M. For example, there is no 1-dimensional folia-

tion of Sn for even numbers n, nor for any compact surface except the torus and the Klein

bottle. Co-dimension 1 foliations are just as rare on finite dimensional compact manifolds,

as Thurston proved for the C∞ case. Similarly, most metric spaces do not support any non-

trivial foliations. Most obviously, any discrete metric space can only support the trivial

foliation of dimension 0. We give some examples of nontrivial foliations on metric spaces

in Section 8, and show that new foliations of classical linear spaces are possible with the

metric space generalization.

As far as I have been able to determine, this particular approach to the proof of Frobe-

nius’ classical theorem has not been vetted in the literature—though it uses basic, well-

known ideas. We outline the approach in this paragraph, simplified to vector fields on a

manifold. The terminology (and assumptions) will be clarified in the main body of the pa-

per, and Figures 2 and 3 from Section 5 may aid intuition. The crux of the local Frobenius

result in two dimensions is as follows: Given two transverse vector fields f ,g : M → T M

there exists an integral surface (tangent to linear combinations of f and g) through any

point x0 ∈ M when the Lie bracket satisfies [ f ,g] = a f + bg for some choice of functions

a,b : M → R (involutivity of f and g). To prove this, define

S := {FtGs (x0) ∈ M : |s| , |t|< δ}

where F and G are the local flows of f and g guaranteed to exist by (II). Since f and g

are transverse, we may choose δ > 0 small enough for S to be a well-defined surface. S

will be shown to be the desired integral surface through x0. Notice S is tangent to f by

construction, but it is not immediately clear S is tangent to a′ f + b′g for arbitrarily chosen

a′,b′ ∈ R. Notice, though, that by construction S is tangent to g at any point x = Gs (x0),

and also S is tangent to a′′ f +b′′g at x for functions a′′ and b′′. Therefore establishing

(Ft)
∗ (

a′ f +b′g
)
= a′′ f +b′′g at x = Gs (x0) (1.1)
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for some functions a′′ and b′′, proves S is tangent to a′F + b′G at an arbitrary point z =
FtGs (x0) ∈ S, since the push-forward (Ft)∗ and the pull-back (Ft)

∗
are inverse to each other

and preserve tangency since they are local bi-Lipschitz maps. Next, since the Lie bracket

equals the Lie derivative,

lim
h→0

F∗
h (g)−g

h
= [ f ,g] = a f +bg

by involutivity so

F∗
h (g) = g+h(a f +bg)+o(h) = ã f + b̃g+o(h) .

Using the fact that F∗
h ( f ) = f for any h, and the linearity of pullback for fixed t, we have

for functions ai and bi : M → R

F∗
t/n (ai f +big) = (ai+1 f +bi+1g)+o(1/n)

for some functions ai+1 and bi+1. Then since

F∗
t = F∗

t/nF∗
t/n...F

∗
t/n︸ ︷︷ ︸

n times

=
(

F∗
t/n

)(n)

(where the superscript in round brackets denotes composition n times) we get (1.1) as fol-

lows:

F∗
t (a0 f +b0g) = lim

n→∞

(
F∗

t/n

)(n)
(a0 f +b0g)

= lim
n→∞

an f +bng+no(1/n) = a∞ f +b∞g+0

completing the sketch for manifolds. Convergence is carefully demonstrated in the proof of

the metric space version, Theorem 5.4.

A pivotal fact on which the metric space version relies is that arc fields which satisfy

certain Lipschitz-type conditions generate unique local flows (proven in [5] and reviewed in

Section 2). Also a natural linear structure may be associated with a metric space (though it

has no a priori linear structure) using compositions of flows which faithfully generalizes the

linearity of vector fields; this was introduced in [7]. We present this in Section 3 along with

the generalization of the Lie bracket for vector fields which uses the well-known asymptotic

characterization of the Lie bracket; i.e., successively follow the flows forward and backward

for time
√

t. This investigation further clarifies for us the surprising fact noted in [13]:

smoothness is not necessary to define a geometrically meaningful Lie bracket. In Section

4, the pull-back along a flow is shown to behave naturally with linearity and the bracket,

which mimics properties of the Lie derivative on manifolds. Many more such algebraic

properties are valid than are contained in these sections, but in this monograph we present

only the minimum machinery directly relevant to proving Frobenius’ Theorem in Section

5.

Section 6 applies this local Frobenius theorem in the attempt to construct foliations on

spaces which support them, yielding a global theorem on metric spaces. A metric space
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generalization of the Nagumo-Brézis Invariance Theorem is proven, which is used to show

integrable distributions are involutive. Another facet of the classical Global Frobenius The-

orem guarantees local coordinates on which there exist coordinate vector fields tangent or

perpendicular to an involutive distribution. In a general metric space, lacking an inner prod-

uct, we need to substitute “transverse” for “perpendicular”. We cannot coordinatize general

metric spaces, but we can coordinatize the n-dimensional leaves of a foliation of a general

metric space.

Section 7 proves a well-known result from Hamiltonian dynamics is also valid for met-

ric spaces: two flows commute if and only if the bracket is 0. This is not exactly a corollary

of the metric space Frobenius Theorem, but the proof is a mere simplification of that from

Theorem 5.4.

Finally in Section 8 an almost trivial example applying these ideas has a result which

astounded me: Any Lebesgue square-integrable function may be approximated using suc-

cessive compositions of two elementary flows, starting from the constant zero function. In

other words, L2 (R) is controllable by two flows—domain translation and the continuous

addition of a single Gaussian. This result has interesting consequences for function approx-

imation. You may skip straight to this Example 8.3 after perusing the following review and

the definitions in Section 3. [15] is an accessible text introducing the terminology of control

theory with remarks and references on infinite dimensional controllability.

We cannot in good conscience conclude without repeating the well-known history that

the classical “Frobenius Theorem” was originally proven by Deahna and Clebsch before

Frobenius put the result in print—a fact Frobenius readily acknowledged.

2 Review of terminology and basic results

The proofs of all of the results from this section are contained in [5] for forward flows,

also called semi-flows. Minimal changes, stated here, give us the corresponding results

for (bidirectional) flows. The trivial changes to the proofs are detailed in the forthcoming

monograph, [4].

A metric space (M,d) is a set of points M with a function d : M×M → R called the

metric which has the following properties:

(i) d(x,y) ≥ 0 positivity

(ii) d(x,y) = 0 iff x = y nondegeneracy

(iii) d(x,y) = d(y,x) symmetry

(iv) d(x,y) ≤ d(x, z)+d(z,y) triangle inequality

for all x,y, z∈M. The open ball of radius r about x∈M is denoted by B(x, r) := {y : d (x,y) < r}.

We assume throughout this paper that (M,d) is a locally complete metric space, i.e., there

exists a complete neighborhood of each point in M. Denote the open ball in M about x0 ∈ M

with radius r by

B(x0, r) := {x ∈ M : d (x,x0) < r} .

A map f : (M,dM)→ (N,dN) between metric spaces is Lipschitz continuous if there exists

K f ≥ 0 such that

dN ( f (x1) , f (x2)) ≤ K f dM (x1,x2)
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for all x1,x2 ∈ M. A bi-Lipschitz map is an invertible Lipschitz map whose inverse is

also Lipschitz (sometimes called a lipeomorphism, i.e., stronger than a homeomorphism,

weaker than a diffeomorphism).

The following definition is made in analogy with vector fields on manifolds, where

vectors are represented as curves on the manifold.

Definition 2.1. An arc field on a metric space M is a continuous map X : M× [−1,1]→ M

with locally uniformly bounded speed, such that for all x ∈ M, X (x,0) = x.

Saying X has locally uniformly bounded speed means X (x, ·) : [−1,1] → M is Lips-

chitz, locally uniformly in x. Specifically we have

ρ(x) := sup
s 6=t

d (X (x, s) ,X (x, t))

|s− t| < ∞,

i.e., X (x, ·) is Lipschitz, and the function ρ(x) is locally bounded, meaning there exists

r > 0 such that

ρ(x, r) := sup{ρ(y) |y ∈ B(x, r)} < ∞.

An integral curve to X is a curve σ which is tangent to X throughout its domain, i.e.,

σ : (α,β)→ M for some open interval (α,β)⊂ R such that for each t ∈ (α,β)

lim
h→0

d (σ(t +h) ,X (σ(t) ,h))

h
= 0, (2.1)

i.e.,

d (σ(t +h) ,X (σ(t) ,h)) = o(h) .

The two variables for arc fields and flows which are usually denoted by x and t are

often thought of as representing space and time. In this paper x,y, and z are used for space

variables, while r, s, t, and h may fill the time variable slot. An arc field X will often have

its variables migrate liberally between parentheses and subscripts

X (x, t) = Xx (t) = Xt (x)

depending on which variable we wish to emphasize in a calculation. We also use this

convention for flows F defined below.

The following conditions guarantee existence and uniqueness of integral curves.

Condition E1: For each x0 ∈ M, there are positive constants r,δ and ΛX such that for all

x,y ∈ B(x0, r) and t ∈ (−δ,δ)

d (Xt (x) ,Xt (y)) ≤ d (x,y) (1+ |t|ΛX ) .

Condition E2:

d (Xs+t (x) ,Xt (Xs (x))) = O(st)

as st → 0 locally uniformly in x; in other words, for each x0 ∈ M, there are positive constants

r,δ and ΩX such that for all x ∈ B(x0, r) and s, t ∈ (−δ,δ)

d (Xs+t (x) ,Xt (Xs (x))) ≤ |st|ΩX .



6 C. Calcaterra

Figure 1. Conditions E1 and E2

Theorem 2.2. Let X be an arc field satisfying E1 and E2 on a locally complete metric space

M. Then given any point x ∈ M, there exists a unique integral curve σx : (αx,βx) → M with

σx (0) = x.

Several remarks are in order. Here, x is called the initial condition for the integral

curve σx in the above theorem. Uniqueness of integral curves means that for any x ∈ M, the

curve σx : (αx,βx)→ M has maximal domain (αx,βx) in the sense that for any other integral

curve σ̂x :
(

α̂x, β̂x

)
→ M also having initial condition x, we have

(
α̂x, β̂x

)
⊂ (αx,βx) and

σ̂x = σx|(α̂x,β̂x

) (i.e., σx is the maximal integral curve).

The proof of Theorem 2.2 is constructive and shows the Euler curves X
(n)
t/n

(x) converge

to the integral curve. Here we are using f (n) to denote the composition of a map f : M → M

with itself n times so

X
(n)
t
n

(x) = X t
n
◦X t

n
◦ ...◦X t

n︸ ︷︷ ︸
n times

(x)

and we have

lim
n→∞

X
(n)
t
n

(x) = σx (t) .

for suitably small |t|. Other, slightly different formulations of Euler curves also lead to the

same result, σ, under Conditions E1 and E2, e.g.,

ξn (t) := Xt−i·2−n X
(i)
2−n (x) for i ·2−n ≤ t ≤ (i+1)2−n

also has

lim
n→∞

ξn (t) = σx (t)

for suitably small |t|.
Theorem 2.2 and those that follow are true under more general conditions outlined in

[5], [12], and [8]; see also [2]. But throughout this paper, E1 and E2 are satisfied and are

easier to use.
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Example 2.3. A Banach space (M,‖·‖) is a normed vector space, complete in its norm

(e.g., R
n with Euclidean norm). A Banach space is an example of a metric space with

d (u,v) := ‖u−v‖. A vector field on a Banach space M is a map f : M → M. An integral

curve to a vector field f with initial condition x is a curve σx : (α,β) → M defined on

an open interval (α,β)⊂ R containing 0 such that σx (0) = x and σ′
x (t) = f (σx (t)) for all

t ∈ (α,β). The classical Picard-Lindelöf Theorem guarantees unique integral curves for

any locally Lipschitz f . With a few tricks, most differential equations can be represented as

vector fields on a suitably abstract space.

Every Lipschitz vector field f : M →M gives rise to an arc field X (x, t) := x+t f (x) and

it is easy to check X satisfies E1 and E2 (cf. [5]). Further the integral curves to the arc field

are exactly the integral curves to the vector field. Therefore Theorem 2.2 is a generalization

of the classical Picard-Lindelöf Theorem.

Remark 2.4. Of prime import for this paper, the proof of Theorem 2.2 actually shows inte-

gral curves are locally uniformly tangent to X :

d (Xx (t) ,σx (t)) = o(t)

locally uniformly for x ∈ M, i.e., for each x0 ∈ M there exists a constant r > 0 such that for

any ε > 0 there exists a δ > 0 such that for all x ∈ B(x0, r)

d (Xx (t) ,σx (t))

|t| < ε

whenever 0 < |t|< δ.

More than this, the proof also shows integral curves are tangent uniformly for all arc

fields X which satisfy E1 and E2 for specified Λ and Ω—though this result is not used in

this paper.

Similarly, two arc fields X and Y are locally uniformly tangent, denoted X ∼ Y , if

d (Xx (t) ,Yx (t)) = o(t)

locally uniformly for x∈M. It is easy to check ∼ is an equivalence relation. E.g., transitivity

follows from the triangle inequality:

d (Xt (x) ,Zt (x))

|t| ≤ d (Xt (x) ,Yt (x))

|t| +
d (Yt (x) ,Zt (x))

|t| .

We use the symbol ∼ in many contexts in this paper (particularly Section 6), but there is

always a local-uniform-tangency property associated with it.

Corollary 2.5. Assume the conditions of Theorem 2.2 and let s ∈ (αx,βx) and y = σx(s).

Then αy = αx − s and βy = βx − s so

(αy,βy) =
(
ασx(s),βσx(s)

)
= {t : αx − s < t < βx − s}.

Thus t ∈ (αy,βy) if and only if t + s ∈ (αx,βx) , and then we have

σσx(s)(t) = σx(s+ t).
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Defining W ⊂ M×R by

W := {(x, t) ∈ M×R : t ∈ (αx,βx)}
and F : W → M by F(x, t) := σx(t) we have:

(i) M×{0} ⊂ W and F(x,0) = x for all x ∈ M.

(ii) For each (fixed) x ∈ M, F(x, ·) : (αx,βx) → M is the maximal integral curve σx to X.

(iii) F (F (x, s) , t) = F (x, s+ t).

F is called the local flow generated by the arc field X . Compare Condition E2 with

property (iii) above to see why an arc field might be thought of as a “pre-flow”.

Theorem 2.6. Let σx : (αx,βx) → M and σy : (αy,βy) → M be two integral curves to an

arc field X. Assume (αx,βx)∩ (αy,βy)⊃ I for some interval I, and assume the inequality of

Condition E1 holds for a single value ΛX on a set containing

{σx (t) : t ∈ I}∪{σy (t) : t ∈ I} .

Then

d (σx (t) ,σy (t)) ≤ eΛX |t|d (x,y) for all t ∈ I,

i.e.,

d (Ft (x) ,Ft (y)) ≤ eΛX |t|d (x,y) . (2.2)

Theorem 2.7. For F and W as above, W is open in M×R and F is continuous on W.

For fixed t it is clear Ft is a local bi-Lipschitz map, when defined, by Theorem 2.6.

Compare Condition E1 with line (2.2) to see why E1 may be thought of as a local linearity

property for X , needed for the continuity of F.

Definition 2.8. An arc field X on a metric space M is said to have linear speed growth if

there is a point x ∈ M and positive constants c1 and c2 such that for all r > 0

ρ(x, r) ≤ c1r +c2, (2.3)

where ρ(x, r) is the local bound on speed given in Definition 2.1.

Theorem 2.9. Let X be an arc field on a complete metric space M, which satisfies E1 and

E2 and has linear speed growth. Then F is a (full) flow with domain W = M×R.

Example 2.10. Every local flow on a metric space is generated by an arc field. Any local

flow F gives rise to an arc field F : M× [−1,1]→ M defined by

F (x, t) :=





F (x, t) if t ∈
(

αx

2
, βx

2

)

F
(
x, αx

2

)
if t ∈

[
−1, αx

2

]

F
(

x, βx

2

)
if t ∈

[
βx

2
,1
]

.

(The issue here is that F , being a local flow, may have αx or βx < 1.) Clearly the local flow

generated by F is F . Since all our concerns with arc fields are local, we will never focus

on t /∈
(

αx

2 , βx

2

)
and henceforth we will not notationally distinguish between F and F as arc

fields.

With this identification of flows being arc fields (but not necessarily vice-versa) we may

simplify Remark 2.4 to: X ∼ F if X satisfies E1 and E2.
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3 The bracket and linearity

To simplify notation we drop parentheses for expressions such as Yt ◦Xs (x) = Yt (Xs (x)) and

write YtXs (x) since the composition of arbitrary maps is associative.

Definition 3.1. The bracket of two arc fields X and Y is the map [X ,Y ] : M× [−1,1]→ M

with

[X ,Y ] (x, t) :=

{
Y−

√
tX−

√
tY

√
tX

√
t (x)

X−
√

|t|Y−
√

|t|X
√

|t|Y
√

|t| (x)
for t ≥ 0

for t < 0.
(3.1)

There are many different equivalent characterizations of the Lie bracket on a manifold.

(3.1) uses the obvious choice of the asymptotic characterization to generalize the concept

to metric spaces. [X ,Y ] (x, t) traces out a small “parallelogram” in M starting at x, which

hopefully almost returns to x. The bracket measures the failure of X and Y to commute as

will be made clear in Theorems 7.1 and 5.4.

Definition 3.2. We say X & Y verge if

d (YsXt (x) ,XtYs (x)) = O(|st|)

locally uniformly in x, i.e., for each x0 ∈ M there exists a ball B(x0, r) for some r > 0 for

which there exist positive constants CXY and δ such that

d (YsXt (x) ,XtYs (x)) ≤ CXY |st|

for all |s| , |t| < δ for all x ∈ B(x0, r).

Lemma 3.3. If X & Y verge and satisfy E1 and E2 then

d (Y−tX−tYtXt (x) ,x) = O
(
t2
)

locally uniformly for x ∈ M.

Proof.

d (Y−sX−tYsXt (x) ,x)

≤ d (Y−sX−tYsXt (x) ,Y−sX−tXtYs (x))+d (Y−sX−tXtYs (x) ,Y−sYs (x))+d (Y−sYs (x) ,x)

≤ d (YsXt (x) ,XtYs (x)) (1+ |s|ΛY ) (1+ |t|ΛX )+ t2ΩX (1+ |s|ΛY )+ s2ΩY

≤CXY |st|(1+ |s|ΛY ) (1+ |t|ΛX )+ t2ΩX (1+ |s|ΛY )+ s2ΩY ≤C
(
|st|+ t2 + s2

)

where

C := max{CXY (1+ΛY )(1+ΛX ) ,ΩX (1+ΛY ) ,ΩY} .

Letting s = t gives the result.

Proposition 3.4. If X & Y verge and satisfy E1 and E2 then [X ,Y ] is an arc field.
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Proof. We establish the local bound on speed. The purpose of Lemma 3.3 is to give

d ([X ,Y ](x, t) ,x) = O(t) for t ≥ 0. Similarly, for t < 0

d (XtYtX−tY−t (x) ,x)

≤ d (XtYtX−tY−t (x) ,XtX−t (x))+d (XtX−t (x) ,x)

≤ d (YtX−tY−t (x) ,X−t (x)) (1+ |t|ΛX )+ t2ΩX

which, using this trick again, gives

≤ d (X−tY−t (x) ,Y−tX−t (x)) (1+ |t|ΛX ) (1+ |t|ΛY )

+ t2ΩY (1+ |t|ΛY )+ t2ΩX = O
(
t2
)

since X & Y verge.

Therefore

d ([X ,Y ]t (x) ,x) = O(t)

for both positive and negative t. Then since
√

|t| is Lipschitz except at t = 0 we see [X ,Y ]
has bounded speed.

Example 3.5. As in Example 2.3 let f ,g : B → B be Lipschitz vector fields on a Banach

space B, and let X and Y be their corresponding arc fields

X (x, t) := x+ t f (x)

Y (x, t) := x+ tg(x)

It is easy to check X & Y verge:

d (YsXt (x) ,XtYs (x))

= ‖x+ t f (x)+ sg(x+ t f (x))− [x+ sg(x)+ t f (x+ sg(x))]‖
≤ |t| ‖ f (x)− f (x+ sg(x))‖+ |s|‖g(x+ t f (x))−g(x)‖
≤ |t|K f ‖x− (x+ sg(x))‖+ |s|Kg ‖x+ t f (x)−x‖
≤ |st|(K f ‖g(x)‖+Kg ‖ f (x)‖)

so CXY := (K f ‖g(x)‖+Kg ‖ f (x)‖).

Therefore, even though the vector fields may not be smooth, so their Lie bracket is

undefined, their metric space bracket is meaningful and will give us geometric information

as we shall see in Theorem 5.4.

Definition 3.6. If X and Y are arc fields on M then define X +Y to be the arc field on M

given by

(X +Y )t (x) := YtXt (x) .

For any function a : M → R define the arc field aX by

aX (x, t) := X (x,a(x) t) . (3.2)

If a is Lipschitz, then aX is an arc field.
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To be fastidiously precise we need to define aXx (t) for all t ∈ [−1,1] so technically we

must specify

aX (x, t) :=





X (x,a(x) t)

X (x,1)
X (x,−1)

x

− 1
|a(x)| ≤ t ≤ 1

|a(x)|
t > 1/ |a(x)|

t < −1/ |a(x)|
for −1 ≤ t ≤ 1



 when a(x) 6= 0

if a(x) = 0

(3.3)

using the trick from Example 2.10. Again, we will not burden ourselves with this detail; in

all cases our concern with the properties of an arc field Xx (t) is only near t = 0.

It is a simple definition check to prove aX is an arc field when a is Lipschitz, since

aXx (t) = Xx (a(x) t) is Lipschitz in t if Xx (t) is: assuming a(x) 6= 0,

ρaX (x) := sup
s 6=t

d (Xx (a(x) s) ,Xx (a(x) t))

|s− t| = sup
s 6=t

d (Xx (s) ,Xx (t))∣∣∣ s
a(x) − t

a(x)

∣∣∣

= a(x) sup
s 6=t

d (Xx (s) ,Xx (t))

|s− t| = a(x)ρX (x)

so

ρaX (x, r) := sup
y∈B(x,r)

{ρaX (y)}= sup
y∈B(x,r)

{a(y)ρ(y)}

≤ (a(x)+ rKa)ρX (x, r) < ∞.

Now we have the beginnings of a linear structure associated with M. For instance,

expressions such as X −Y make sense:

X −Y := X +(−1)Y

where −1 is a constant function on M. Further, 0 is an arc field defined as the constant map

0(x, t) := x

and satisfies 0 + X = X = X + 0 for any X . Notice from the definition, we have [X ,Y ] =
− [Y,X ]. Another trivial definition check shows this multiplication is associative and com-

mutative:

(a ·b)X = a(bX) and (a ·b)X = (b ·a)X

where · denotes multiplication of functions.

Proposition 3.7. Assume X & Y verge and satisfy E1 and E2. Then their sum X +Y satisfies

E1 and E2.

Proof. Checking Condition E1:

d ((X +Y )t (x) , (X +Y )t (y))

= d (YtXt (x) ,YtXt (y)) ≤ d (Xt (x) ,Xt (y))(1+ |t|ΛY )

≤ d (x,y) (1+ |t|ΛX) (1+ |t|ΛY ) ≤ d (x,y)
(
1+ |t|(ΛX +ΛY )+ t2ΛX ΛY

)

≤ d (x,y) (1+ |t|ΛX+Y )
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where ΛX+Y := ΛX +ΛY +ΛX ΛY < ∞.

Condition E2:

d
(
(X +Y )s+t (x) , (X +Y )t (X +Y )s (x)

)

= d (Ys+tXs+t (x) ,YtXtYsXs (x))

≤ d (Ys+tXs+t (x) ,YtYsXs+t (x))+d (YtYsXs+t (x) ,YtXtYsXs (x))

≤ |st|ΩY +d (YsXs+t (x) ,XtYsXs (x))(1+ |t|ΛY )

≤ |st|ΩX +[d (YsXs+t (x) ,YsXtXs (x))+d (YsXt (y) ,XtYs (y))](1+ tΛX ) (3.4)

where y := Xs (x). Notice

d (YsXs+t (x) ,YsXtXs (x))≤ d (Xs+t (x) ,XtXs (x))(1+ |s|ΛY )

≤ |st|ΩX (1+ |s|ΛY ) = O(|st|)

and the last summand of (3.4)is also O(|st|) since X & Y verge, so E2 is satisfied.

So in this case, the flow H generated by X +Y is computable with Euler curves as

H (x, t) = lim
n→∞

(X +Y )
(n)
t/n

(x) = lim
n→∞

(
Yt/nXt/n

)(n)
(x) . (3.5)

Therefore, this definition of X +Y using compositions is a direct generalization of the con-

cept of adding vector fields on a differentiable manifold (see [1, Section 4.1A]). One of the

inspirations for this paper, [7] introduced the sum of semigroups on a metric space in the

same spirit as defined here, with commensurable conditions.

When X & Y verge and satisfy E1 and E2, we also have (X +Y )∼ (Y +X) since

(
Yt/nXt/n

)(n)
= Yt/n

(
Xt/nYt/n

)(n−1)
Xt/n

whence both arc fields X +Y and Y +X are (locally uniformly) tangent to the flow H using

(3.5).

Proposition 3.8. If X satisfies E1 and E2 and a : M → R is a Lipschitz function, then aX

satisfies E1 and E2.

Proof. E1:

d (aXx (t) ,aXy (t))

= d (Xx (a(x) t) ,Xy (a(y) t))

≤ d (Xx (a(x) t) ,Xx (a(y) t))+d (Xx (a(y) t) ,Xy (a(y) t))

≤ |a(x) t −a(y) t|ρ(x)+d (x,y) (1+a(y) |t|ΛX )

≤ d (x,y)(Ka |t|ρ(x)+1+a(y) |t|ΛX ) = d (x,y) (1+ |t|ΛaX)

where ΛaX := Kaρ(x)+a(y)ΛX < ∞.
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E2: For all x0 ∈ M and δ > 0 we know a is bounded by some A > 0 on B(x0,δ) since a

is Lipschitz.

d
(
aXx (s+ t) ,aXaXx(s) (t)

)

= d
(
Xx (a(x) (s+ t)) ,XXx(a(x)s) (a(Xx (a(x) s)) t)

)

≤ d
(
Xx (a(x) (s+ t)) ,XXx(a(x)s) (a(x) t)

)

+d
(
XXx(a(x)s) (a(x) t) ,XXx(a(x)s) (a(Xx (a(x) s)) t)

)

≤ a(x) |s| ·a(x) |t|ΩX +ρ · |a(x) t −a(Xx (a(x) s)) t|
≤ |st| [a(x)]2 ΩX + |t|ρKad (x,Xx (a(x) s))

≤ |st| [a(x)]2 ΩX + |st|ρ2Kaa(x) ≤ |st|ΩaX

where ΩaX := A2ΩX +ρ2KaA.

Combining these results gives

Theorem 3.9. If a and b are locally Lipschitz functions and X & Y verge and satisfy E1

and E2, then aX + bY is an arc field which satisfies E1 and E2 and so has a unique local

flow.

If in addition a and b are globally Lipschitz and X and Y have linear speed growth, then

aX +bY generates a unique flow.

Proof. We haven’t proven aX and bY verge, but this is a straightforward definition check,

as is the fact that aX +bY has linear speed growth.

Local flows have the following useful linearity property:

Proposition 3.10. If F is a local flow then interpreting F as an arc field we can perform

the following operations:

1. if a and b are constant then aF +bF = (a+b)F

2. if a and b are real functions then (aF +bF)t (x) = (a+b◦ (aF)t)Ft (x).

Proof. This is another obvious definition check:

2. (aF +bF)t (x) = (bF)t (aF)t (x) = Fb((aF)t (x))t
Fa(x)t (x)

= F(a(x)+(b◦(aF)t )(x))t
(x) = (a+b◦ (aF)t)Ft (x)

and 1. follows from 2.

4 Contravariance

If φ : M1 → M2 is a bi-Lipschitz map, then the pull-back of an arc field X on M2 is the arc

field φ∗X on M1 given by

φ∗X (x, t) := φ−1 (X (φ (x) , t))

or in other notation,

(φ∗X)t (x) = φ−1Xtφ (x)
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which is a direct analog of the pull-back of a vector field on a manifold using curves to

represent vectors. The definition for flows is identical, replacing X with F. The pull-back

to M1 of an integral curve σ to an arc field on M2 is analogous:

(φ∗σ)x (t) := φ−1
(
σφ(x) (t)

)
.

The pull-back of a function a : M2 → R is the function φ∗a : M1 → R defined as φ∗a(x) :=

a(φ (x)).

Proposition 4.1. If φ : M1 → M2 is a bi-Lipschitz map and the arc field X on M2 has unique

integral curves then φ∗X has unique integral curves. The integral curves to φ∗X are the

pull-backs of integral curves to X.

Proof. This is obvious: if F is a local flow for X then

d (φ∗X (φ∗F (x, t) , s) ,φ∗F (x, t + s))

= d
(
φ−1X

[
φφ−1F (φ (x) , t) , s

]
,φ−1F (φ (x) , t + s)

)

= d
(
φ−1X [F (φ (x) , t) , s] ,φ−1F (φ (x) , t + s)

)

≤ Kφd (X [F (φ (x) , t) , s] ,F (φ (x) , t + s)) = Kφo(s) = o(s)

so φ∗F is a local flow for φ∗X .

Similarly if σ is an integral curve to φ∗X then
(
φ−1
)∗

σ is an integral curve to X so by

uniqueness there can be only one such σ.

The push-forward of any function, curve or flow is defined similarly, e.g.,

φ∗F (x, t) := φ
(
F
(
φ−1 (x) , t

))
.

It is easy to check push-forward is covariant (i.e., (φ◦ψ)∗ = φ∗ ◦ψ∗) and pull-back is

contravariant (i.e., (φ◦ψ)∗ = ψ∗ ◦ φ∗). It is also clear that push-forward and pull-back are

inverse operations and Proposition 4.1 holds mutatis mutandis for push-forward in place of

pull-back.

Proposition 4.2 (Linearity of Pull-back). If X and Y are arc fields on M and φ : M1 → M2

is a bi-Lipschitz map, then

(i) φ∗ (X +Y ) = φ∗ (X)+φ∗ (Y)

(ii) φ∗ (aX) = (a◦φ)φ∗ (X) = φ∗ (a)φ∗ (X).

Proof. Trivial definition check.

Since the pull-back and linearity are established for arc fields, we can now explore

another characterization of the bracket. In the context of M being a smooth manifold, let

F and G be local flows generated by smooth vector fields f and g. There it is well known

the following “dynamic” characterization of the Lie bracket is equivalent to the asymptotic

characterization

[ f ,g] =
d

dt
(Ft)

∗
g

∣∣∣∣
t=0

. (4.1)
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Using
d

dt
(Ft)

∗
g

∣∣∣∣
t=0

= lim
t→0

(Ft)
∗

g−g

t
= [ f ,g]

for inspiration, we return to the context of metric spaces where, with F and G viewed as arc

fields, their bracket [F,G] is defined. Formally we have

F∗
t Gt (x) = (t [F,G]+G)t (x) for t ≥ 0 and (4.2)

F∗
s Gs (x) = (−s [−F,−G]−G)−s (x) for s < 0 (4.3)

which hold because

(t [F,G]+G)t (x) = Gt [F,G]t2 (x)

= GtG−tF−tGtFt (x) = F−tGtFt (x) = F∗
t Gt (x)

and

(−s [−F,−G]−G)−s (x)

= Gs [−F,−G]s2 (x) = Gs (−G)−|s| (−F)−|s| (−G)|s| (−F)|s| (x)

= GsG|s|F|s|G−|s|F−|s| (x) = F−sGsFs (x) = F∗
s Gs (x) .

These facts will be used in the heart of the proof of our main result, Theorem 5.4, as will

the following

Proposition 4.3. (Fs)
∗

X ∼ X.

Proof. Using the properties of flows Ft = F−s+t+s = F−sFtFs and F−1
t = Ft we get

d
((

(Fs)
∗

X
)

t
(x) ,Xt (x)

)

≤ d (F−sXtFs (x) ,F−sFtFs (x))+d (Ft (x) ,Xt (x))

≤ esΛX d (Xt (y) ,Ft (y))+o(t) = o(t)

where y := Fs (x) and the exponential comes from Theorem 2.6.

5 Local Frobenius Theorem

Definition 5.1. Two arc fields X and Y are (locally uniformly) transverse if for each x0 ∈M

there exists a δ > 0 such that

d (Xs (x) ,Yt (x)) ≥ δ(|s|+ |t|)

for |t|< δ for all x ∈ B(x0,δ).

Example 5.2. On the plane R
2 with Euclidean norm ‖·‖ any two linearly independent

vectors u,v ∈ R
2 give us the transverse arc fields

Xt (x) := x+ tu and Yt (x) := x+ tv.
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To check this, it is easiest to define a new norm on R
2 by

‖x‖uv := |x1|+ |x2|

where x = x1u + x2v and x1,x2 ∈ R. Since all norms on R
2 are metrically equivalent there

must exist a constant C > 0 such that ‖x‖uv ≤C‖x‖ for all x ∈ R
2. Then taking δ := 1

C

d (Xs (x) ,Yt (x)) = ‖su− tv‖ ≥ δ‖su− tv‖uv = δ(|s|+ |t|) .

A localization argument shows any pair of continuous vector fields f and g on a differ-

entiable manifold give transverse arc fields if f and g are non-colinear at each point.

A (2-dimensional) surface is a 2-dimensional topological manifold, i.e., locally home-

omorphic to R
2.

For any subset N ⊂ M and element x ∈ M the distance from x to N is defined as

d (x,N) := inf{d (x,y) : y ∈ N} .

This function d is not a metric, obviously, but it does satisfy a sort of triangle inequality:

d (x,N) ≤ d (x,y)+d (y,N)

for all x,y ∈ M.

Definition 5.3. A surface S ⊂ M is an integral surface of two arc fields X and Y if for any

Lipschitz functions a,b : M → R then S is locally uniformly tangent to aX +bY for x ∈ S,

i.e.,

d ((aX +bY )t (x) ,S) = o(t)

locally uniformly in x. Locally uniform tangency is denoted S ∼ aX +bY .

Theorem 5.4. Assume X & Y verge, are transverse, and satisfy E1 and E2 on a locally

complete metric space M. Let F and G be the local flows of X and Y . If [F,G] ∼ aX + bY

(locally uniform tangency) for some Lipschitz functions a,b : M → R, then for each x0 ∈ M

there exists an integral surface S through x0.

Proof. It may be beneficial to review the outline of this proof from the third paragraph of

the introduction. The metric space constructs of the previous sections will now be inserted

into the manifold outline. A rigorous verification of the analytic estimates requires some

tedious, but straightforward, calculations detailed here.

Define

S := {FtGs (x0) : |s| , |t|< δ}
where δ > 0 is chosen small enough for S to be a well-defined surface (Figure 2). I.e.,

Ft1 Gs1
(x0) = Ft2 Gs2

(x0) implies t1 = t2 and s1 = s2 so

φ : (−δ,δ)× (−δ,δ) ⊂ R
2 → S ⊂ M

defined by φ (s, t) := FtGs (x0) is a homeomorphism. Finding such a δ is possible since X

and Y are transverse. To see this, assume the contrary. Then there are different choices of si
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Figure 2. integral surface S

and ti which give Ft1 Gs1
(x0) = Ft2 Gs2

(x0) which implies Gs1
(x0) = Ft3 Gs2

(x0) and letting

y := Gs2
(x0) we must also then have

Ft (y) = Gs (y) . (5.1)

If this contrary assumption were true, then for all ε > 0 there would exist s and t with

|s| , |t|< ε such that (5.1) holds. Since X and Y are transverse, this cannot be so.

We will show S is the desired integral surface through x0. Assume δ is also chosen small

enough so throughout S the functions |a| and |b| are bounded, while the constants Λ, Ω, and

ρ for X and Y hold uniformly, and that the closure of B(x,2δ(ρ+1)) is complete. This is

possible because F and G have locally bounded speeds, since X and Y do.

Notice S∼X by construction, but it is not immediately clear S∼ a′X +b′Y for arbitrarily

chosen a′,b′ ∈ R. Notice we can use

a′X +b′Y ∼ a′F +b′G ∼ b′G+a′F ∼ b′Y +a′X

and so we will show S ∼ a′F + b′G. We need to show this is true for an arbitrary point

z ∈ S, so assume z := FtGs (x0) for some s and t ∈ R. Notice by the construction of S we

have S ∼ a′′F +b′′G at x := Gs (x0) for an arbitrary choice of Lipschitz functions a′′ and b′′

since a′′F +b′′G ∼ b′′G+a′′F and

(
b′′G+a′′F

)
h
(x)

= F
a′′(Gb′′(x)h(x))h

Gb′′(x)h (x) = F
a′′(Gb′′(x)h(x))h

Gb′′(x)h (x)

= F
a′′(Gb′′(x)h(x))h

Gb′′(x)hGs (x0) ∈ S

when h is small.

(x0,x, z, s and t are now fixed for the remainder of the proof; however, we only explicitly

check the case t > 0, indicating the changes where needed to check the t < 0 case.)

If we prove

(Ft)
∗ (

a′F +b′G
)
∼ S at x = Gs (x0) (5.2)

this will prove S ∼ a′F + b′G at z, since the push-forward (Ft)∗ and the pull-back (Ft)
∗

are

inverse and local bi-Lipschitz maps and so preserve tangency. (See Figure 3.)
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Figure 3. pull-back to Gs (x0)

Restating (4.2):

F∗
t Gt (x) = (t [F,G]+G)t (x)

so

F∗
t/nGt/n (x) =

(
t
n
[F,G]+G

)
t/n

(x) (5.3)

for our previously fixed small t ≥ 0 and arbitrary positive integer n∈N. (For t < 0 use (4.3)
instead.) For any arc fields Z and Z clearly

d
(
Zt (x) ,Zt (x)

)
= o(t) implies

d
(
(tZ)t (x) ,

(
tZ
)

t
(x)
)

= d
(
(Z)t2 (x) ,

(
Z
)

t2 (x)
)

= o
(
t2
)

(5.4)

and so

[F,G] ∼ aF +bG implies

d
((

t
n
[F,G]

)
t/n

(x) ,
((

t
n
(aF +bG)

))
t/n

(x)
)

= o
(

1
n2

)
(5.5)

since t is fixed.

We use these facts to establish (5.2), first checking

d

((
F∗

t

(
a′F +b′G

))
t/n

(x) ,S

)
= o

(
1
n

)

as n→ ∞. At the end of the proof we will replace t/n by arbitrary r → 0. Using the linearity

of pull-back (Proposition 4.2) we get

d
((

F∗
t

(
a′F +b′G

))
t/n

(x) ,S
)

= d

(((
a′ ◦Ft

)
F∗

t (F)+
(
b′ ◦Ft

)
F
∗(n)

t/n
(G)
)

t/n
(x) ,S

)

= d

((
a0F +b0F

∗(n)
t/n

(G)
)

t/n
(x) ,S

)
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where a0 := a′ ◦Ft and b0 := b′ ◦Ft . Using (5.3) means this last estimate is

= d

((
a0F +b0F

∗(n−1)
t/n

(
t
n
[F,G]+G

))
t/n

(x) ,S

)

≤ d

((
a0F +b0F

∗(n−1)
t/n

(
t
n
[F,G]+G

))
t/n

(x) ,
(

a0F +b0F
∗(n−1)

t/n

(
t
n
(aF +bG)+G

))
t/n

(x)

)

+d

((
a0F +b0F

∗(n−1)
t/n

(
t
n
(aF +bG)+G

))
t/n

(x) ,S

)
. (5.6)

We estimate the first term as

d

((
a0F +b0F

∗(n−1)
t/n

(
t
n
[F,G]+G

))
t/n

(x) ,
(

a0F +b0F
∗(n−1)

t/n

(
t
n
(aF +bG)+G

))
t/n

(x)

)

= d

((
b0F∗

(n−1)t/n

(
t
n
[F,G]+G

))
t/n

(y) ,
(

b0F∗
(n−1)t/n

(
t
n
(aF +bG)+G

))
t/n

(y)

)

where y := a0Ft/n (x)

= d

((
F∗

(n−1)t/n

(
t
n
[F,G]+G

))
b0(y)t/n

(y) ,
(

F∗
(n−1)t/n

(
t
n
(aF +bG)+G

))
b0(y)t/n

(y)

)

= d

( (
F−(n−1)t/n

(
t
n
[F,G]+G

))
b0(y)t/n

(
F(n−1)t/n (y)

)

,
(
F−(n−1)t/n

(
t
n
(aF +bG)+G

))
b0(y)t/n

(
F(n−1)t/n (y)

)
)

= d

( (
F−(n−1)t/n

(
t
n
[F,G]+G

))
b0(y)t/n

(z)

,
(
F−(n−1)t/n

(
t
n
(aF +bG)+G

))
b0(y)t/n

(z)

)
(5.7)

where z := F(n−1)t/n (y). Then by Theorem 2.6, (5.7) is

≤ d

((
t
n
[F,G]+G

)
b0(y)t/n

(z) ,
(

t
n
(aF +bG)+G

)
b0(y)t/n

(z)
)

eΛX (n−1)t/n

= d
(

Gb0(y)t/n

(
t
n
[F,G]

)
b0(y)t/n

(z) ,Gb0(y)t/n

(
t
n
(aF +bG)

)
b0(y)t/n

(z)
)

eΛX(n−1)t/n

≤ d
((

t
n
[F,G]

)
b0(y)t/n

(z) ,
(

t
n
(aF +bG)

)
b0(y)t/n

(z)
)

eΛX(n−1)t/neΛY b0(y)t/n

≤ r

(
b0 (y)

(
t
n

)2
)

eΛX(n−1)t/n+ΛY b0(y)t/n =: o1

(
1
n2

)
(5.8)

where we define

r (s) := d ([F,G]s (z) , (aF +bG)s (z)) .

By the main assumption of the theorem, r (s) = o(s) so notice we have o1

(
1
n2

)
= o

(
1
n2

)
but

we need to keep a careful record of this estimate as we will be summing n terms like it; the

subscript distinguishes o1 as a specific function.
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Substituting (5.8) into (5.6) gives

d
((

F∗
t

(
a′F +b′G

))
t/n

(x) ,S
)

= d

((
a0F +b0F

∗(n)
t/n

G
)

t/n
(x) ,S

)
(5.9)

≤ d

((
a0F +b0F

∗(n−1)
t/n

(
t
n
(aF +bG)+G

))
t/n

(x) ,S

)
+o1

(
1
n2

)

= d



(

a0F +b0
t
n

(
a◦F(n−1)t/n

)
F

+b0 ·
(

t
n

(
b◦F(n−1)t/n

)
+1
)

F
∗(n−1)

t/n
G

)

t/n

(x) ,S


+o1

(
1
n2

)

= d



( [

a0 +
(
b0

t
n

(
a◦F(n−1)t/n

))
◦
(
a0Ft/n

)]
F

+b0 ·
(

t
n

(
b◦F(n−1)t/n

)
+1
)

F
∗(n−1)

t/n
G

)

t/n

(x) ,S


+o1

(
1
n2

)

= d

((
a1F +b1F

∗(n−1)
t/n

G
)

t/n
(x) ,S

)
+o1

(
1
n2

)
(5.10)

where

a1 := a0 +
(
b0

t
n

(
a◦F(n−1)t/n

))
◦
(
a0Ft/n

)
and

b1 := b0 ·
(

t
n

(
b◦F(n−1)t/n

)
+1
)

.

This painful calculation from the third line to the fourth line employs the linearity of pull-

back (Proposition 4.2); while the fifth line is due to the linearity of F (Proposition 3.10).

After toiling through these many complicated estimates we can relax a bit, since the rest

of the proof follows more mechanically by iterating the result of lines (5.9) and (5.10):

d

((
a0F +b0F

∗(n)
t/n

G

)
t/n

(x) ,S

)

≤ d

((
a1F +b1F

∗(n−1)
t/n

G
)

t/n
(x) ,S

)
+o1

(
1
n2

)

≤ d

((
a2F +b2F

∗(n−2)
t/n

G
)

t/n
(x) ,S

)
+o1

(
1
n2

)
+o2

(
1
n2

)

≤ ...≤ d

(
(anF +bnG)t/n (x) ,S

)
+

n

∑
i=1

oi

(
1
n2

)
(5.11)

where

a2 := a1 +
(
b1

t
n

(
a◦F(n−2)t/n

))
◦
(
a1Ft/n

)

b2 := b1 ·
(

t
n

(
b◦F(n−2)t/n

)
+1
)

and in general

ai := ai−1 +
(
bi−1

t
n

(
a◦F(n−i)t/n

))
◦
(
ai−1Ft/n

)

bi := bi−1 ·
(

t
n

(
b◦F(n−i)t/n

)
+1
)

In the region of interest the |a| and |a0| are bounded by some A ∈ R and |b| and |b0| are
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bounded by some B ∈ R so

|b1| =
∣∣b0 ·

(
t
n

(
b◦F(n−1)t/n

)
+1
)∣∣ ≤ B

(
t
n
B+1

)

|b2| =
∣∣b1 ·

(
t
n

(
b◦F(n−1)t/n

)
+1
)∣∣ ≤ B

(
t
n
B+1

)2

|bi| ≤ B
(

t
n
B+1

)i
and

|a1| =
∣∣a0 +b0

t
n

(
a◦F(n−1)t/n

)∣∣≤ A+B t
n
A

|a2| =
∣∣a1 +b1

t
n

(
a◦F(n−2)t/n

)∣∣≤
(
A+B t

n
A
)
+B

(
t
n
B+1

)
t
n
A

|a3| =
∣∣a2 +b2

t
n

(
a◦F(n−3)t/n

)∣∣

≤ A+B t
n
A+B

(
t
n
B+1

)
t
n
A+B

(
t
n
B+1

)2 t
n
A

|ai| ≤ A+ t
n
AB

i−1

∑
k=0

(
t
n
B+1

)k
= A+ t

n
AB

(
t
n
B+1

)i −1
t
n
B

= A
(

t
n
B+1

)i
.

Therefore

|bn| ≤ B
(

t
n
B+1

)n ≤ BetB and

|an| ≤ A
(

t
n
B+1

)n ≤ AetB.

Penultimately, we need to estimate the oi

(
1
n2

)
. Remember from line (5.8)

o1

(
1
n2

)
:= r

(
b0 (y)

(
t
n

)2
)

eΛX(n−1)t/n+ΛY b0(y)t/n

where r (s) = o(s), so

o2

(
1
n2

)
= r
(

b1 (y)
(

t
n

)2
)

eΛX(n−2)t/n+ΛY b1(y)t/n

≤ B
(

t
n
B+1

)
o

((
t
n

)2
)

e
ΛX (n−2)t/n+ΛY B

(
t
n

B+1
)

t/n

oi

(
1
n2

)
= r
(

bi−1 (y)
(

t
n

)2
)

eΛX(n−i)t/n+ΛY bi−1(y)t/n.

Consequently

n

∑
i=1

oi

(
1
n2

)
≤

n

∑
i=1

r
(

bi−1 (y)
(

t
n

)2
)

e
ΛX (n−i)t/n+ΛY B

(
t
n

B+1
)i−1

t/n

≤ o
((

t
n

)2
)

BetB
n

∑
i=1

e
ΛX (n−i)t/n+ΛY B

(
t
n

B+1
)i−1

t/n

since r

(
bi−1 (y)

(
t
n

)2
)

= o

((
t
n

)2
)

BetB for all i. Therefore

n

∑
i=1

oi

(
1
n2

)
≤ o

((
t
n

)2
)

BetBneΛX t+ΛY BetBt/n = o
(

1
n

)
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as n → ∞. Putting this into (5.11) gives

d

((
F∗

t

(
a′F +b′G

))
t/n

(x) ,S

)
≤ d

(
(anF +bnG)t/n (x) ,S

)
+o
(

1
n

)
= o

(
1
n

)

because of the uniform bound on |an| and |bn|. To see this notice

d
(
(a∗F +b∗G)t/n (x) ,S

)
= o

(
1
n

)

uniformly for bounded a∗ and b∗ since a∗F +b∗G∼ b∗G+a∗F and as before (b∗G+a∗F)t (x)∈
S using the uniform Λ and Ω derived in the proofs of Propositions 3.7 and 3.8 (cf. Remark

2.4).

Finally we need to check

d
((

F∗
t

(
a′F +b′G

))
r
(x) ,S

)
= o(r)

when r is not necessarily t/n. We may assume 0 < t < 1 and 0 < r < t so that t = nr +ε for

some 0 ≤ ε < r and integer n with t
r
−1 < n ≤ t

r
. Therefore the above calculations give

d
((

F∗
t

(
a′F +b′G

))
r
(x) ,S

)
= d

((
F∗

ε F
∗(n)

r (cF +dG)
)

r
(x) ,S

)

≤ d (F∗
ε (anF +bnG)r (x) ,S)+o(r) = o(r) .

The n-dimensional corollary of this 2-dimensional version is given in the next section.

Remark 5.5. In the assumptions of Theorem 5.4 [F,G] can be replaced with [X ,Y ] when

they are tangent. Since the brackets use
√

t we have [F,G] ∼ [X ,Y ] when X and Y are

2nd-order tangent to their flows, i.e.,

d (Xt (x) ,Ft (x)) = O
(
t2
)

and

d (Yt (x) ,Gt (x)) = O
(
t2
)

locally uniformly. We denote 2nd-order local uniform tangency by X ≈ F. This holds, for

example, when X comes from a twice continuously differentiable vector field by Taylor’s

theorem. But in formulating our theorem for the nonsmooth case, the two brackets are not

interchangeable. Beware: 2nd-order tangency is “big oh” of t2, not “little oh”.

We might have chosen to define the bracket [X ,Y ] using the flows instead of the arc

fields to simplify the statements of Theorem 5.4 and those below. However it is often easier

to calculate the bracket and to check closure using arc fields instead of the flows.

In light of this remark, Theorem 5.4 gives

Corollary 5.6. Assume X & Y verge, are transverse, and satisfy E1 and E2 on a locally

complete metric space M. Further assume X and Y are 2nd-order tangent to their local

flows F and G. If [X ,Y ]∼ aX +bY for some Lipschitz functions a,b : M → R, then for each

x0 ∈ M there exists an integral surface S through x0.
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6 Global Frobenius Theorem

The goal of this section is to recast Theorem 5.4 in the language of distributions and foli-

ations, and so we begin with several definitions. M is, as ever, a locally complete metric

space. Just as a distribution on a manifold is a subbundle of the tangent bundle, i.e., a

distribution is a set of vectors, we make the following definition on a metric space.

Definition 6.1. A distribution ∆ on M is a set of arc fields.

The following are the archetypical examples of distributions. Using the addition and

multiplication operations defined for arc fields on M (§3) we may define the linear span of

arc fields:

∆
(
X1, . . . ,Xn

)
:=

{
n

∑
i=1

aiX
i

∣∣∣∣ai ∈ Lip(M,R)

}

where Lip(M,R) is the set of Lipschitz functions on M.

The linear span of two (or more) distributions ∆1 and ∆2 on M is also obviously defined

to give another distribution

∆1 +∆2 :=
{

X +Y |X ∈ ∆1,Y ∈ ∆1
}

.

Writing

∆(X) := {aX |a ∈ Lip(M,R)}

we automatically have ∆(X ,Y ) = ∆(X)+ ∆(Y ). Associativity also holds for this formal

sum: (
∆1 +∆2

)
+∆3 = ∆1 +

(
∆2 +∆3

)

so we may write finite summands without confusion. Then without difficulty we have

∆
(
X1, . . .,Xn

)
=

n

∑
i=1

∆
(
X i
)

.

Commutativity is not generally valid, but it does hold up to tangency, defined below.

For x ∈ M denote ∆x := {X (x, ·) |X ∈ ∆}. I.e., ∆x is a set of curves based at x. For y ∈ M

define (with another overload of d notation)

d (y,∆x) := inf{d (y,X (x, t)) |X ∈ ∆ and t ∈ [−1,1]} .

Definition 6.2. An arc field X is locally uniformly tangent to ∆, denoted X ∼ ∆, if for

each x ∈ M there is an arc field X∆ ∈ ∆ with X ∼ X∆ uniformly in a neighborhood of x.

Two distributions ∆ and ∆̃ are locally uniformly tangent, denoted ∆ ∼ ∆̃, if X ∼ ∆̃ for

each X ∈ ∆ and X̃ ∼ ∆ for each X̃ ∈ ∆̃. Again, ∼ is an equivalence relation.

By definition, then, X ∼ ∆
(
X1, . . . ,Xn

)
if and only if there exist Lipschitz functions

ai : M → R such that X ∼
n

∑
i=1

aiX
i. Restating, tangency between two distributions means a

correspondence between tangent arc fields within the distributions.



24 C. Calcaterra

Example 6.3. When the arc fields
{

X i
}

i∈I
satisfy E1 and E2 and mutually verge, then we

have

∆
(
X1,X2

)
∼ ∆

(
X2,X1

)
and ∆(X)+∆(X) ∼ ∆(X)

or more generally, assuming |I| < ∞

∆
({

X i
}

i∈I

)
∼ ∆

({
X j
}

j∈J

)
+∆

({
Xk
}

k∈K

)
if J∪K = I.

Definition 6.4. X is (locally uniformly) transverse to ∆ if for all x0 ∈ M there exists a δ > 0

such that for all x ∈ B(x0,δ) we have

d (Xx (s) ,Yx (t)) ≥ δ(|s|+ |t|)

for all Y ∈ ∆ and all |s| , |t|< δ. In this case we have

d (Xx (t) ,∆) ≥ δ |t| .

The arc fields X1, . . . ,Xn are transverse to each other if for each i ∈ {1, . . .,n} we have X i

transverse to

∆
(
X1, . . . ,X i−1,X i+1, . . .,Xn

)
.

Inspecting Example 5.2 shows this definition generalizes transversality in R
n. A set of

transverse arc fields is meant to generalize linearly independent vector fields.

Definition 6.5. Let F :=
{

X1, . . . ,Xn
}

be a set of n transverse arc fields which satisfy E1

and E2 on a neighborhood U ⊂ M and whose flows mutually verge. F is a local frame for

a distribution ∆ if ∆ ∼ ∆
(
X1, . . .,Xn

)
on U . F is a global frame for ∆ if every point in M

has a neighborhood on which F is a local frame..

A distribution is n-dimensional if each point in M has a neighborhood with a local

frame with cardinality n.

Whether global frames of a particular dimension even exist on a space M may be diffi-

cult to answer—even when M is a manifold, where the question falls under the purview of

topology and global analysis.

Definition 6.6. An n-dimensional distribution ∆ is involutive if there exists a local frame

at each point in M and if each local frame
{

X1, . . . ,Xn
}

has

[
X i,X j

]
∼ ∆

for all i, j ∈ {1, . . . ,n}.

A surface (or n-surface) is a topological manifold S (of dimension n). A surface S ⊂ M

is locally uniformly tangent to an arc field X , denoted X ∼ S, if d (Xt (x) ,S) = o(t) locally

uniformly for x ∈ S.

An n-dimensional surface S is an integral surface for an n-dimensional distribution if

for any local frame
{

X1, . . . ,Xn
}

we have
n

∑
k=1

akXk ∼ S for any choice of Lipschitz functions

ak : M → R.

An n-dimensional distribution ∆ is said to be integrable if there exists an integral sur-

face for ∆ through every point in M.
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Theorem 5.4 has the following corollary:

Theorem 6.7. An n-dimensional involutive distribution is integrable.

Proof. n = 1 is Theorem 2.2. n = 2 is Theorem 5.4. Now proceed by induction. We do

enough of the case n = 3 to suggest the path; and much of this is copied from the proof of

Theorem 5.4.

Choose x0 ∈ M. Let X ,Y, and Z be the transverse arc fields guaranteed in the definition

of a 3-dimensional distribution. If we find an integral surface S for ∆(X ,Y,Z) through x0

then obviously S is an integral surface for ∆. Let F,G, and H be the local flows of X ,Y , and

Z and define

S := {FtGsHr (x0) : |r| , |s| , |t|< δ}
with δ > 0 chosen small enough as in the proof of Theorem 5.4 so that S is a three dimen-

sional manifold. Again we may assume δ is also chosen small enough so that throughout S

the functions |ak| are bounded by A, the constants Λ, Ω, and ρ for X ,Y and Z hold uniformly,

and the closure of B(x,3δ(ρ+1)) is complete. Notice

S := {GsHr (x0) : |r| , |s|< δ}
is an integral surface through x0 for ∆(Y,Z) by the proof of Theorem 5.4. Notice S ∼ X

by construction, but it is not immediately clear S ∼ a′X + b′Y + c′Z for arbitrarily chosen

a′,b′,c′ ∈ R. Again we really only need to show S ∼ a′F +b′G+c′H for an arbitrary point

z := FtGsHr (x0) ∈ S, and again it is sufficient to prove

(Ft)
∗ (

a′F +b′G+c′H
)
∼ S at y = GsHr (x0)

by the construction of S. Continue as above adapting the same tricks from the proof of

Theorem 5.4 to the extra dimension.

Similar to the definition for a surface, an arbitrary set S ⊂ M is defined to be locally

uniformly tangent to X if

d (Xt (y) ,S) = o(t)

locally uniformly for y ∈ S, denoted S ∼ X .

Lemma 6.8. Let σx : (α,β)→ U ⊂ M be an integral curve to X which meets Condition E1

with uniform constant Λ on a neighborhood U. Assume S ⊂ U is a closed set with S ∼ X.

Then

d (σx (t) ,S)≤ eΛ|t|d (x,S) for all t ∈ (α,β) .

Proof. (Adapted from the proof of Theorem 2.6 given in [5].)

We check only t > 0. Define

g(t) := e−Λtd (σx (t) ,S) .

For h ≥ 0, we have

g(t +h)−g(t)

= e−Λ(t+h)d (σx (t +h) ,S)−e−Λtd (σx (t) ,S)

≤ e−Λ(t+h) [d (σx (t +h) ,Xh (σx (t)))+d (Xh (σx (t)) ,Xh (y))+d (Xh (y) ,S)]

−e−Λtd (σx (t) ,S)
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for any y ∈ S, which in turn is

≤ e−Λ(t+h) [d (Xh (σx (t)) ,Xh (y))+o(h)]−e−Λtd (σx (t) ,S)

≤ e−Λte−Λhd (σx (t) ,y)(1+Λh)−e−Λtd (σx (t) ,S)+o(h)

=
[
e−Λh (1+Λh)d (σx (t) ,y)−d (σx (t) ,S)

]
e−Λt +o(h) .

Therefore

g(t +h)−g(t)≤
[
e−Λh (1+Λh)−1

]
e−Λtd (σx (t) ,S)+o(h)

since y was arbitrary in S. Thus

g(t +h)−g(t)

≤ o(h)e−Λtd (σx (t) ,S)+o(h) = o(h) (g(t)+1) .

Hence, the upper forward derivative of g(t) is nonpositive; i.e.,

D+g(t) := lim
h→0+

(
g(t +h)−g(t)

h

)
≤ 0.

Consequently, g(t) ≤ g(0) or

d (σx (t) ,S) ≤ eΛtd (σx (0) ,S) = eΛtd (x,S) .

Choosing x ∈ S in Lemma 6.8 gives the following metric space generalization of the

Nagumo-Brézis Invariance Theorem (Example 2.3 shows how this generalizes the Banach

space setting).

Theorem 6.9. Let X satisfy E1 and E2 and assume a closed set S ⊂ M has S ∼ X. Then for

any x ∈ S we have Ft (x) ∈ S for all t ∈ (αx,βx). I.e., S is an invariant set under the flow F.

The case for forward flows is easily achieved mutatis mutandis. Cf. [10] for an exposi-

tion on general invariance theorems.

Next, local integral surfaces are pieced together to get global integral surfaces.

Proposition 6.10. If S1 and S2 are integral surfaces through x ∈ M, then

(i) S1 ∩S2 is an integral surface

(ii) S1 ∪S2 is an integral surface.

Further, there is a unique maximal integral surface S through x, meaning S∩S1 = S1

for any integral surface S1 through x.

Proof. The case n = 1 is true by the uniqueness of integral curves.

For (i) in higher dimensions n, Theorem 6.9 guarantees S1 and S2 contain local integral

curves for
n

∑
k=1

akXk for all choices of ak ∈ R with initial condition x. Since the Xk are
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transverse, there is a small neighborhood of x on which all the choices of the parameters ak

give local non-intersecting curves in M which fill up n dimensions giving an integral surface

in S1∩S2 (precisely the argument in the second paragraph of the proof of Theorem 5.4).

For (ii) since S1 ∩S2 is an integral surface inside S1 ∪S2 the only question is whether

the union is still an n-dimensional manifold. Pick x ∈ S1 ∪S2 and for i = 1,2 let Ui ⊂ Si be

the n-dimensional neighborhood of x guaranteed by the fact that Si is an integral surface.

As with (i) each of these neighborhoods are manifolds filled by the flows of
n

∑
k=1

akXk. By

Nagumo’s invariance result, Theorem 6.9, they coincide near x.

The maximal integral surface is the union of all integral surfaces through x.

Definition 6.11. A foliation is a partition of M into a set of subsets Φ := {Li}i∈I for some

indexing set I, where the subsets Li ⊂ M (called leaves) are disjoint, connected topological

manifolds each having the same dimension.

A foliation Φ is tangent to a distribution ∆ if the leaves are integral surfaces; in this

case we say ∆ foliates M.

Collecting all these results we have the following version of the Global Frobenius The-

orem.

Theorem 6.12. Let ∆ be an n-dimensional distribution on a locally complete metric space

M.

(i) If ∆ is involutive, then ∆ is integrable.

(ii) If ∆ is integrable, then ∆ foliates M.

(iii) If ∆ foliates M into Φ := {Lx}x∈M then for any X ,Y ∈ ∆, we have [X ,Y ]x (t) ∈ Lx

for t ∈ [−1,1].

(iv) ∆ is involutive if and only if ∆ has a local frame at each x ∈ M with commutative

flows.

Proof. (i) is Proposition 6.7.

(ii) is Proposition 6.10.

(iii) follows from Theorem 6.9 and the definition of the bracket.

(iv) (⇐) This is automatic since the bracket is trivial if the flows commute.

(⇒) Pick any local frame
{

X i
}

at x ∈ M and construct a commutative frame as follows.

Let σ1
x : (α,ω) → M be the integral curve of X1. (Remember F1

t (x) = σ1
x (t).) Define a

2-dimensional surface by pushing σ1
x along the transverse flow F2

S :=
{

F2
t2

(
σ1

x (t1)
)∣∣ |t1|< δ, |t2|< δ

}

for suitably small δ > 0. Restricted to S define X̃1 at s = F2
t2

(
σ1

x (t1)
)
∈ S by

X̃1 (s) = X̃1
t

(
F2

t2

(
σ1

x (t1)
))

:= F2
t2

F1
t

(
σ1

x (t1)
)

=
(
F2

t2∗ ◦F1
t

)
(s)

and keep X̃2

∣∣∣
S

:= X2. This forces

(a) F̃1 and F̃2 commute

(b) X̃1 and X̃2 span a surface (S) locally
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(c) ∆
(

F̃1, F̃2
)
⊂ Lx.

Continue with n = 3, etc., pushing forward ∆
(

F̃1, F̃2

)
with F3 to extend X̃1 and X̃2 on

a local 3-D set and X̃3

∣∣∣
3−D set

:= X3. In the end we have an n-dimensional surface (property

(b)) in Lx (property (c), which is the key point of the proof and requires the assumption of

the statement of the theorem) and so fills Lx locally and commutes (property (a)).

Part (iii) of Theorem 6.12 is as close to a converse of (i) as we have been able to

achieve. The bracket is tangent to the distribution in the sense given in the theorem, but not

necessarily locally uniformly tangent to a single arc field in the distribution—which is the

definition of ∼ required for involutivity.

The local frame with commutative flows gives local coordinates on the leaves of the

foliation. If the foliation is trivial, having only one leaf, then the flows give local coordinates

near each point in M—called flow coordinates—in which case M is a topological manifold.

7 Commutativity of Flows

Theorem 7.1. Assume X and Y satisfy E1 and E2 on a locally complete metric space M.

Let F and G be the local flows of X and Y . Then [F,G]∼ 0 if and only if F and G commute,

i.e.,

FtGs (x) = GsFt (x) , i.e., F∗
t (G) = G.

Proof. The assumption [F,G] ∼ aX +bY with a = b = 0 allows us to copy the approach in

the proof of Theorem 5.4. Let δ > 0 be chosen small enough so

1. the functions |a| and |b| are bounded

2. the constants Λ, Ω, and ρ for X and Y hold uniformly

3. [F,G] ∼ 0 uniformly

all on S := B(x,2δ(ρ+1)) and that S is also complete. We check t > 0. Since F∗
t (G) and

G are both local flows, we only need to show they are tangent to each other and then they

must be equal by uniqueness of integral curves.

Imagine being in the context of differentiable manifolds. There, for vector fields f and

g with local flows F and G, we would have

lim
h→0

F∗
h (g)−g

h
= L f g = [ f ,g] = 0

so F∗
h (g) = g+o(h) and thus we expect

F∗
h (g) = g+o(h) .

We might use this idea as before with the linearity of pull-back (Proposition 4.2) to get

F∗
t (g) = lim

n→∞
F
∗(n)

t/n
(g) = lim

n→∞
g+no(1/n) = g

as desired.
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Now in our context of metric spaces with t > 0, line (4.2) again gives

F∗
t/n (G)t/n (x) =

(
t
n
[F,G]+G

)
t/n

(x) .

For t < 0 one would use (4.3). Also we again have

[F,G]∼ 0 implies

d
((

t
n
[F,G]

)
t/n

(x) ,x
)

= o
(

1
n2

)
.

Using these tricks (and Theorem 2.6 in the fourth line following) gives

d
(
(F∗

t (G))t/n (x) ,Gt/n (x)
)

= d

((
F
∗(n−1)

t/n
F∗

t/n (G)
)

t/n
(x) ,Gt/n (x)

)

= d
(

F
∗(n−1)

t/n

(
t
n
[F,G]+G

)
t/n

(x) ,Gt/n (x)
)

≤ d

(
F
∗(n−1)

t/n

(
Gt/n

t
n
[F,G]t/n (x)

)
,F

∗(n−1)
t/n

Gt/n (x)
)

+d

(
F
∗(n−1)

t/n
Gt/n (x) ,Gt/n (x)

)

≤ d

(
Gt/n

t
n
[F,G]t/n (y) ,Gt/n (y)

)
eΛX

t(n−1)
n +d

(
F
∗(n−1)

t/n
Gt/n (x) ,Gt/n (x)

)

where y := F(n−1)t/n (x)

≤ d

(
t
n
[F,G]t/n (y) ,y

)
eΛY t/neΛX

t(n−1)
n +d

(
F
∗(n−1)

t/n
Gt/n (x) ,Gt/n (x)

)

and so

d
(
(F∗

t (G))t/n (x) ,Gt/n (x)
)

≤ d

(
F
∗(n−1)

t/n
Gt/n (x) ,Gt/n (x)

)
+eΛY t/n+ΛX

t(n−1)
n o1

(
1
n2

)

where o1

(
1
n2

)
:= d

(
t
n
[F,G]t/n (y) ,y

)
.

Iterating this result gives

d

((
F∗n

t/n (G)
)

t/n
(x) ,Gt/n (x)

)

≤ d
(

F
∗(n−1)

t/n
Gt/n (x) ,Gt/n (x)

)
+eΛY t/n+ΛX

t(n−1)
n o1

(
1
n2

)

≤ d
(

F
∗(n−2)

t/n
Gt/n (x) ,Gt/n (x)

)
+eΛY t/n+ΛX

t(n−2)
n o2

(
1
n2

)
+eΛY t/n+ΛX

t(n−1)
n o1

(
1
n2

)

≤ ...≤ d
(

F0
t/nGt/n (x) ,Gt/n (x)

)
+eΛY t/n

n

∑
i=1

oi

(
1
n2

)
eΛX

t(n−i)
n

= eΛY t/n
n

∑
i=1

oi

(
1
n2

)
eΛX

t(n−i)
n

where oi

(
1
n2

)
:= d

(
t
n
[F,G]t/n (yi) ,yi

)
and yi := F(n−i)t/n (x). Since d

(
t
n
[F,G]t/n (y) ,y

)
=
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o
(

1
n2

)
uniformly for y ∈ B(x,2δ(ρ+1)) we have

d

((
F∗n

t/n (G)
)

t/n
(x) ,Gt/n (x)

)

≤ eΛY t/n
n

∑
i=1

oi

(
1
n2

)
eΛX

t(n−i)
n = o

(
1
n2

)
eΛY t/n

n

∑
i=1

eΛX
t(n−i)

n

= o
(

1
n2

)
eΛY t/neΛX t

n

∑
i=1

(
e−

t
n

)i

= o
(

1
n2

)
eΛY t/n+ΛX t

1−
(

e−
t
n

)n+1

1−
(

e−
t
n

) .

So

d
(
(F∗

t (G))t/n (x) ,Gt/n (x)
)

= o
(

1
n

)

and F∗
t (G) ∼ G by the same argument at the last paragraph of the proof of Theorem 5.4.

The converse is trivial.

Using Example 2.3, this theorem applies to the non-locally compact setting with nons-

mooth vector fields. [13], another paper which inspires this one, obtains similar results in

the setting of manifolds with a very different approach.

8 Examples

Example 8.1. Let M be a Banach space. First let X and Y be translations in the directions

of u and v ∈ M

Xt (x) := x+ tu Yt (x) := x+ tv

then F = X and G = Y for |t| ≤ 1. Obviously [F,G] = 0 and the flows commute.

Next consider the dilations X and Y about u and v ∈ M

Xt (x) := (1+ t) (x−u)+u Yt (x) := (1+ t) (x−v)+v.

The flows are computable with little effort using Euler curves, e.g.,

Ft (x) = lim
n→∞

X
(n)
t/n

(x) = etx−
(
et −1

)
u.

Then for t ≥ 0

[F,G]t2 (x)

= G−tF−tGtFt (x)

= e−t
[
e−t
(
et
[
etx−

(
et −1

)
u
]
−
(
et −1

)
v
)
−
(
e−t −1

)
u
]
−
(
e−t −1

)
v

= x−u+e−t u−e−t v+e−2tv−e−2t u+e−tu−e−tv+v

= x+(v−u)
(
e−t −1

)2
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so [F,G] ∼ Z where Z is the translation Zt (x) := x+ t (v−u) since, for instance with t > 0

d ([F,G]t (x) ,Zt (x))

= |v−u|
∣∣∣∣
(

e−
√

t −1
)2

− t

∣∣∣∣= |t| |v−u|

∣∣∣∣∣∣

(
e−

√
t −1√
t

)2

−1

∣∣∣∣∣∣
= o(t) .

Hence the distribution ∆(X ,Y ) is not involutive. However, this shows the set of all dilations

generates all translations using brackets. Using the same tricks we’ve just employed, it is

easy to check the bracket of a dilation and a translation is tangent to a translation, e.g., if

Ft (x) := x+ tu and Gt (x) := etx (dilation about 0) then [F,G]∼ F since for t > 0

[F,G]t2 (x) = G−tF−tGtFt (x) = e−t
[
et [x+ tu]− tu

]
= x+ tu

(
1−e−t

)

and so

d ([F,G]t (x) ,Ft (x)) = |tu|
∣∣∣1−e−

√
t√

t
−1

∣∣∣ = o(t) .

Example 8.2. Now consider the metric space (H (Rn) ,dH) where H (Rn) is the set of non-

void compact subsets of R
n for n ∈ N and dH is the Hausdorff metric given by

dH(a,b) := max

{
sup
x∈a

[
inf
y∈b

{d (x,y)}
]
, sup

y∈a

[
inf
x∈b

{d (x,y)}
]}

.

To aid intuition it might help to see one more equivalent definition:

dH (a,b) = inf{r ≥ 0|b ⊂ B(a, r) and a ⊂ B(b, r)}

where B(a, r) := ∪
x∈a

B(x, r).

H (Rn) has several useful topological properties in common with R
n. It is separable,

complete and even locally compact. However, this space is incapable of accepting any

natural linear structure. H (Rn) is a particularly strange space topologically because, despite

being locally compact, H (Rn) is infinite dimensional by most any measure we can attempt

to apply. We can even find infinitely many transverse flows.

First define arc fields X and Y : H (Rn)× [−1,1] → H (Rn) to be the translations in the

directions of u and v ∈ Rn

Xt (a) := a+ tu Yt (a) := a+ tv

where a + tu := {x+ tu| x ∈ a}, e.g. Then X and Y are their own flows for |t| ≤ 1. It is

straightforward to check X and Y are transverse, they verge and [F,G] = 0. This shows

the flows commute, and the 2-dimensional distribution generated by X and Y is involutive,

integrable and foliates H (Rn) with 2-dimensional topological manifolds—in a space which

is decidedly not locally linear.

Next try applying the theory described in this paper to X , Y and the dilation Zt (a) :=

eta = {etx| x ∈ a}. The form of the calculations in Example 8.1 will be repeated in this

new context.
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Finally consider the arc fields

X1
t (a) :=

{
x+ t

(
0,e−x2

1

)∣∣∣ x = (x1,x2) ∈ a
}

X2
t (a) := a+ t (cosθ, sinθ)

X3
t (a) := et (a−a)+a.

where θ := sup
x,y∈a

{|x−y|} is the diameter of a, and a is the center of mass of the convex

hull of a. The distribution ∆
(
X ,X1

)
where Xt (a) := a + tu where u := (1,0) is called the

“Taffy distribution” because the effect of the bracket
[
X ,X1

]
t
(a) is similar to a taffy-pulling

machine on a blob a ∈ H
(
R

2
)
, as will become clearer after studying Example 8.3.

In this next example we explore non-involutive metric space distributions on classical

Hilbert space L2 (R).

Example 8.3 (two parameter decomposition of L2). Now let M be real Hilbert space L2 (R).

Since M is Banach the results of the previous example hold. In this example, though, we

only consider translation in L2 (R) by a function h ∈ C∞ (R)∩L2 (R) denoted

Xt ( f ) := f + th.

Here on M := L2 (R) there is another obvious candidate for an elementary flow: trans-

lation with respect to the variable x, i.e.,

Yt ( f ) (x) := f (x+ t) .

Unlike dilation and translation, the dynamic engendered by Y seemingly has nothing to do

with the vector space structure of L2 (R). In fact, despite appearances, Y is a nonsmooth

flow: notice for example with the characteristic function χ as initial condition,

d

dt
Yt

(
χ[0,1]

)∣∣∣∣
t=0

/∈ L2 (R) .

Interpreted as a flow on a metric space, however, this is no obstacle. We refer to X as vector

space translation and Y as function translation. Notice X and Y are their own flows (for

|t| ≤ 1). It is straightforward to check X & Y verge when, for example, h ∈ C1 (R) with

derivative h′ ∈ L2 (R) :

d (YsXt ( f ) ,XtYs ( f ))

=

√
Z

( f (x+ s)+ th(x+ s)− [ f (x+ s)+ th(x)])2
dx

= |st|

√
Z

(
h(x+ s)−h(x)

s

)2

dx

= O(|st|)

uniformly for f ∈ M. Since they obviously satisfy E1 and E2, Theorem 3.9 promises a

unique flow for their sum. This was introduced by Colombo and Corli in [7, section 5.2]
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with other interesting function space examples with motivation from partial differential

equations.

Let us now compute the bracket. We check t > 0 explicitly, skipping the case t ≤ 0

though this is just as easy.

[X ,Y ]t2 ( f ) (x)

= Y−tX−tYtXt ( f ) (x) = Y−tX−t [ f (x+ t)+ th(x+ t)]

= f (x)+ th(x)− th(x− t) = f (x)+ t2

[
h(x)−h(x− t)

t

]
.

Defining a new arc field Zt ( f ) := f + th′ (which is its own flow) we therefore have

d ([X ,Y ]t ( f ) ,Zt ( f )) = |t|

√√√√
Z

R

(
h(x)−h(x− t)

t
−h′ (x)

)2

dx = o(t)

when h ∈C1 (R) with h′ ∈ L2 (R). Thus [X ,Y ]∼ Z. (See Figures 4 and 5 with h(x) = e−x2

.)

X1 (0) = e−x2
Y1X1 (0) = e−(x+1)2

X−1Y1X1 (0) = e−(x+1)2 −e−x2
Y−1X−1Y1X1 (0) 6= 0

Figure 4: X and Y do not commute.
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Figure 5:

∥∥∥∥Y−√
tX−

√
tY−

√
tX−

√
t (0)− t

(
d

dx
e−x2

)∥∥∥∥
2

= o(t)

This has remarkable consequences. Using the idea of Chow’s Theorem from control theory

(also called the Chow-Rashevsky Theorem or Hermes’ Theorem), if the (n+1)-st derivative

h[n+1] is not contained in span
{

h[i] : 0 ≤ i ≤ n
}

then iterating the process of bracketing X

and Y generates a large space reachable via repeated compositions of X and Y . Denoting

n

Zt ( f ) := f + th[n] (8.1)

successive brackets of X and Y are

[X ,Y ] ∼ Z =:
1

Z

[
X2,Y

]
:= [[X ,Y ] ,Y ]∼

2

Z

[Xn,Y ] := [[... [[X ,Y ] ,Y ] , ...,Y] ,Y ]︸ ︷︷ ︸
n times

∼
n

Z. (8.2)

For notational purposes we set
[
X0,Y

]
:= X . In the particular case h(x) := e−x2

all of L2 (R)

is reachable by X and Y .

To see this we apply the theory of orthogonal functions with the Hermite1 polynomials

Hn (x) := (−1)n
ex2 dn

dxn
e−x2

= (−1)n
ex2

h[n] (x)

which have dense span in L2 (R) when multiplied by e−x2/2. Those familiar with orthogonal

expansions can predict the rest; we review some of the details.

{
1√

n!2n
√

π
Hn (x)e−x2/2 : n ∈ N

}

is a basis of L2 (R) and is orthonormal since

R

R

Hm (x)Hn (x)e−x2

dx = n!2n
√

πδmn. (8.3)

The Hermite polynomials also satisfy some useful relations

Hn+1 (x) = 2xHn (x)−2nHn−1 (x) and H ′
n (x) = 2nHn−1 (x) . (8.4)

1We may of course use other orthogonal families with a different choice of h, particularly when the domain

of interest is other than R; e.g., scaled Chebyshev polynomials for [0,2π), etc. We expect many choices of h

give controllable systems whether the brackets generate orthogonal sets or not.
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Given any g ∈ L2 (R) it is possible to write

g(x) =
∞

∑
n=0

an
1√

n!2n
√

π
Hn (x)e−x2/2 (8.5)

(equality in the L2 sense) where

an := 1√
n!2n

√
π

R

R

g(x)Hn (x)e−x2/2 (x)dx ∈ R.

The necessity of this formula for an can easily be checked by multiplying both sides of

(8.5) by Hn (x)e−x2/2, integrating and applying (8.3). However, we want

g =
∞

∑
n=0

cnh[n]

so apply the above process to g(x)ex2/2 instead2. Then

g(x)ex2/2 =
∞

∑
n=0

bn
1√

n!2n
√

π
Hn (x)e−x2/2 so

g =
∞

∑
n=0

cnh[n]

where

bn := 1√
n!2n

√
π

R

R

g(x)ex2/2Hn (x)e−x2/2 (x)dx so that

cn := (−1)n

n!2n
√

2π

R

R

g(x)h[n] (x)ex2

(x)dx.

Therefore when N is large, g is approximated by

N

∑
n=0

cnh[n] = F1 (0)

where F is the flow of the arc field

X̃ :=
N

∑
n=0

cn [Xn,Y ]

which we follow for unit time starting with initial condition 0 ∈ L2 (R). F can, of course,

be approximated by Euler curves

F1 (0) = lim
n→∞

X̃
(n)
1/n

(0)

and since X̃ is merely a (complicated) composition of X and Y , this gives us a simple

algorithm for approximating any function g with only two simple flows.

2The function g(x)ex2/2 is no longer necessarily L2, of course, but here we lapse into the habit of ignoring

convergence issues as they are important for the theoretical proof that all of L2 (R) is reachable with X andY , but

not central to this demonstration. This theoretical lapse is easily remedied by multiplying by the characteristic

function χ[−m,m] to guarantee all of the following integrals converge, then letting m → ∞ at the end.
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Let us compute a basic example to illustrate this surprising fact. Choosing at random

g(x) := χ[0,1] (x), the characteristic function of the unit interval, we have

cn := (−1)n

n!2n
√

2π

1
R

0

Hn (x)dx = (−1)n

2(n+1)n!2n
√

2π
[Hn+1 (1)−Hn+1 (0)] so, e.g.,

c0 = 1√
2π

, c1 = −1

2
√

2π
, c2 = 1

12
√

2π
, c3 = 1

12
√

2π
, c4 = 1

480
√

2π
, etc.

by (8.4). Then stopping for the purposes of illustration at N = 3 our function g is approxi-

mated by
3

∑
n=0

cnh[n].

Notice the flow of
i

Z from (8.1) is locally the same as
i

Z since it is just vector space trans-

lation, so we will use the same symbol. All vector space translations commute under (arc

field) addition, and the arc field

Z̃t ( f ) :=

(
c0

0

Z +c1

1

Z +c2

2

Z +c3

3

Z

)

t

( f )

is locally equal to its flow. Obviously

Z̃1 (0) =
3

∑
n=0

cnh[n]

and Z̃ ∼ X̃ where

X̃t ( f ) := (c0X +c1 [X ,Y ]+c2 [[X ,Y ] ,Y ]+c3 [[[X ,Y ] ,Y ] ,Y ])t ( f )

=

(
3

∑
n=0

cn [Xn,Y ]

)

t

( f ) .

Remember the arc field bracket and the arc field sum are defined as nothing more than

compositions of arc fields, e.g.,

(c0X +c1 [X ,Y ]+c2 [[X ,Y ] ,Y ])t

= [[X ,Y ] ,Y ]c2t [X ,Y ]c1t Xc0t

and, e.g., when t > 0

c2 [[X ,Y ] ,Y ]t
= Y−√

c2t

(
X−√

c2tY−√
c2tX

√
c2tY

√
c2t

)
Y√c2t(Y−√

c2tX−√
c2tY

√
c2tX

√
c2t).

Therefore this approximation of g is achieved by computing the Euler curves for X̃ which

is a complicated process (with a simple formula) of composing the elementary operations

of function translation (Y ) and vector space translation by the Gaussian (X).

Continuing the example, for choices of h other than the Gaussian it may be the case that

h[n+1] ∈ span
{

h[i] : 0 ≤ i ≤ n
}

. Then the space reachable by X and Y is precisely limited.

E.g., when h is a trigonometric function from the orthogonal Fourier decomposition of L2



Foliating Metric Spaces: A Generalization of Frobenius’ Theorem 37

the parameter space is two-dimensional, or when h is an n-th order polynomial in the context

of M = L2 [a,b] then the parameter space is (n+1)-dimensional.

Restating these results in different terminology: Controlling amplitude and phase the

2-parameter system is holonomically constrained. Controlling phase and superposition per-

turbation (Y and X) generates a larger space of signals; how much Y and X deviate from

holonomy depends on the choice of perturbation function h. Consequently, a result for

signal analysis is: controlling two parameters is enough to generate any signal.

We collect some of the results of the previous example. Denote the reachable set of X

and Y by

R(X ,Y ) :=
{

Ysn
XtnYsn−1

Xtn−1
...Ys1

Xt1 (0) ∈ L2 (R) : si, ti ∈ R, n ∈ N
}

where 0 ∈ L2 (R) is the constant function. R(X ,Y) is the set of all finite compositions of X

and Y .

Theorem 8.4. Let h ∈ L2 (R) be the Gaussian h(x) := e−x2
and define

Xt ( f ) := f + th and Yt ( f )(x) := f (x+ t) .

Then R(X ,Y) is dense in L2 (R).

This result is a constructive approach related to Wiener’s Tauberian Theorem and the

Müntz-Szász Theorem (see [16] and [9]) as will be detailed in a forthcoming paper.

Algorithm 8.5. Let g ∈ L2 (R) be such that
R

R

[
g(x)ex2/2

]2

dx < ∞. Then

g = lim
n→∞

X̃
(n)
1/n

(0)

where

X̃ :=
∞

∑
n=0

cn [Xn,Y ] with cn := (−1)n

n!2n
√

2π

R

R

g(x)h[n] (x)ex2

(x)dx

and [Xn,Y ] := [[... [[X ,Y ] ,Y ] , ...,Y] ,Y ]︸ ︷︷ ︸
n times

and

[X ,Y ] ( f , t) :=

{
Y−

√
tX−

√
tY

√
tX

√
t ( f )

X−
√

|t|Y−
√

|t|X
√

|t|Y
√

|t| ( f )
for t ≥ 0

for t < 0

for any f ∈ L2 (R).

Let us recast this result in a setting more familiar in infinite-dimensional control theory.

Consider the bang-bang control system given by the partial differential equation (PDE)

ut = φ (t)ux +ψ(t)h (8.6)

where u = u(x, t), h = h(x) is as above a smooth function with square integrable derivatives

of all orders, while φ and ψ are the “bang-bang” controls with range limited to {−1,0,1}.

Notice when φ (t) = 0 and ψ(t) = ±1 on an interval, the solution to the PDE coincides with

X . When φ (t) = ±1 and ψ(t) = 0 on an interval, the solution to the PDE coincides with

Y . So to put the above results in still other terminology, this bang-bang control system is

controllable when h(x) = e−x2
.
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Example 8.6. Let us continue Example 8.3 with M = L2 (R) and

Xt ( f ) := f + th and Yt ( f )(x) := f (x+ t)

which are vector space translation and function translation. Define the arc fields

Vt ( f ) := et f and Wt ( f )(x) := f
(
etx
)

which may be thought of as vector space dilation (about the point 0 ∈ M) and function

dilation (about the point 0 ∈ R). Again, V and W are coincident with their own flows.

Using the same approach as in Example 8.3 it is easy to check the brackets satisfy

[X ,Y ]t ( f ) = f + th′ +o(t) [X ,V ]t ( f ) = f + th+o(t)

[X ,W ]t ( f ) (x) = f (x)+ txh′ (x)+o(t) [Y,V ] = 0

[Y,W ]t ( f ) (x) = f (x− t)+o(t) [V,W ] = 0

assuming for the [X ,Y ] and [X ,W ] calculations that h ∈ C1 (R) and h′ ∈ L2 (R). Conse-

quently

∆(X ,Y ) may be highly non-involutive depending on h,

∆(X ,V) is involutive, but X and V do not commute,

∆(X ,W) may be highly non-involutive depending on h,

∆(Y,V) is involutive; Y and V commute,

∆(Y,W) is involutive, but Y and W do not commute,

∆(V,W) is involutive; V and W commute.

When h is chosen correctly, X and W control many function spaces, similarly to X and Y .

The four involutive distributions foliate L2 (R).

Finally we give two examples on probability spaces.

Example 8.7. (Probability distributions and geometry of the infinite-dimensional unit

sphere) Begin with M := Lp (R) and modify the previous example with the arc fields

Vt ( f ) (x) :=
etg f

‖etg f‖p

and

Wt ( f ) (x) := etc/p f
(
etcx
)

where c ∈ R and we pick g ∈ Lp (R) satisfying dn

dxn g ∈ Lp (R) for all n ∈ N. V and W are

well-defined arc fields restricted to the subsets

S :=
{

f ∈ Lp (R)| ‖ f‖p = 1
}

and S+ :=
{

f ∈ Lp (R)| f ≥ 0∧‖ f‖p = 1
}

.

S is the unit sphere; and the “hemisphere”, S+, corresponds to a space of probability dis-

tributions on R. These arc fields are their own flows. Yt ( f ) (x) := f (x+ t) also restricts to

an arc field on S and on S+. Further, Xt ( f ) := (1− t) f + th restricts to an arc field on S if
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we choose h ∈ S, but on S+ we must restrict X to t ≥ 0. Then picking h ∈ Lp (R) satisfying
dn

dxn h ∈ Lp (R) for all n ∈ N we get the following table of brackets

[·, ·]∼ W V

X X1
t ( f ) := f (x)+ t

[
cxg′1 (x)+

(
1+ c

p

)
g1 (x)

]
X2

t ( f ) := f+tg1·g9

‖ f+tg1·g‖p

Y −cY X3
t ( f ) := e

−tg′
9 f∥∥∥e

−tg′
9 f

∥∥∥
p

All of these arc fields give 1-dimensional foliations of M\{0} and since they are each

invariant on the unit ball B(0,1) ⊂ M they also foliate B\{0} by a family of isometries as

well as S. Interestingly the length of the integral curves are infinite (whenever the initial

condition is not f ≡ 0) and not geodesics (locally minimal-length curves). An insight into

the infinite dimension of L2 comes from comparing these foliations to the 1-dimensional

foliation of R2\{0} given by rotations which also foliates the ball BR2 (0,1)\{0}. These

rotations are a family of isometries, where the integral curves have finite length 2πr.

Since the bracket satisfies [Y,W ] ∼ −Y is involutive, we know ∆(Y,W) gives a 2-

dimensional foliation of M\{0} and B\{0} and S. The area (with any reasonable definition)

of each leaf is again infinite. Higher dimensional foliations are given by adding transverse

arc fields.

Finally, the results of Example 8.7 extend immediately to more abstract spaces.

Example 8.8. Given any complete metric space we let B (M) denote the σ-algebra of Borel

sets in M (i.e., all countable unions, intersections and complements of open subsets of M).

A Radon measure on a metric space is inner regular (any Borel set A satisfies µ(A) =

sup{µ(S)| compact S ⊂ A}) and locally finite (for any x ∈ M there exists r > 0 such that

µ(B(x, r)) < ∞) on B (M). The support of a Radon measure µ is the set

supp(µ) := {x ∈ M| µ(B(x, r)) > 0, ∀r > 0} .

Denote ‖µ‖ := µ(M) ∈ [0,∞]. A metric space (M,d) with a radon measure µ is called a

metric measure space (M,d,µ).
On any complete separable metric space (M,d) define the spaces of measures

M (M) := {Radon measures on M}
F(M) :=

{
µ ∈ M (M)

∣∣ ‖µ‖ = 1 & supp(µ) is bounded in M
}

For φ : M → R denote µ(φ) :=
R

M φdµ. Denote the set of Lipschitz functions f : M → R

with Lipschitz constant less than or equal to 1 by Lip1 (M). The Wasserstein metric dW on

F(M) is defined by

dW (µ,ν) := sup{µ(φ)−ν (φ)| φ ∈ Lip1 (M)} .

On F(M) define the arc fields

Vt (µ)(x) :=
etgµ

‖etgµ‖
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for g : M → R and Yt (µ)(φ) := µ(F∗
t φ) where F is any flow on M and F∗ denotes the

pullback, as defined above.

The bracket [V,Y ] is then an arc field on F(M) which gives geometric information about

the distribution ∆(V,Y) on F(M).
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