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NEW ALGORITHMS IN REAL TIME SOLUTION OF THE

NONLINEAR FILTERING PROBLEM∗

STEPHEN S. T. YAU†

Abstract. It is well known that the filtering theory has important applications in both military

and commercial industries. The Kalman–Bucy filter has been used in many areas such as navigational

and guidance systems, radar tracking, solar mapping, and satellite orbit determination. However, the

Kalman–Bucy filter has limited applicability because of the linearity assumptions of the drift term

and observation term as well as the Gaussian assumption of the initial value. Therefore there has

been an intensive interest in solving the nonlinear filtering problem. The central problem of nonlinear

filtering theory is to solve the DMZ equation in real time and memoryless way. In this paper, we

shall describe three methods to solve the DMZ equation: Brockett-Mitter estimation algebra method,

direct method, and new algorithm method. The first two methods are relatively easy to implement

in hardware and can solve a large class of nonlinear filtering problems. We shall present the recent

advance in the third method which solves all the nonlinear filtering problems in a real-time manner

in theory.

1. Introduction. It is well known that the filtering theory has important ap-

plications in both military and commercial industries. The Kalman–Bucy filter has

been used in many areas such as navigational and guidance systems, radar tracking,

solar mapping, and satellite orbit determination. However, the Kalman–Bucy filter

has limited applicability because of the linearity assumptions of the drift term and

observation term as well as the Gaussian assumption of the initial value. Therefore

there has been an intensive interest in solving the nonlinear filtering problem. The

nonlinear filtering problem involves the estimation of a stochastic process x = {xt}
(called the signal or state process) that cannot be observed directly. Information con-

taining x is obtained from observations of a related process y = {yt} (the observation

process). The goal of nonlinear filtering is to determine the conditional density ρ(t, x)

of xt given the observation history of {ys : 0 6 s 6 t}. In the late 1960s, Duncan [Du],

Mortensen [Mo] and Zakai [Za] independently derived the Duncan–Mortensen–Zakai

(DMZ) equation for the nonlinear filtering theory which the conditional probability

density ρ(t, x) must satisfy. The central problem of nonlinear filtering theory is to

solve the DMZ equation in real time and memoryless way. In this paper, we shall

describe three methods to solve the DMZ equation: Brockett–Mitter estimation al-

gebra method, direct method, and new algorithm method. The first two methods

are relatively easy to implement in hardware and can solve a large class of nonlinear

filtering problems. We shall present the recent advance in the third method which

solves all the nonlinear filtering problems in a real-time manner theoretically.
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The first method began in the late seventies. Brockett and Clark [Br-Cl], Brockett

[Br], and Mitter [Mi] proposed the idea of using estimation algebras to construct finite-

dimensional nonlinear filters. There is an excellent survey paper by Marcus [Ma] of

earlier results before 1984. In 1994, Chiou and Yau [Chi-Ya] introduced the concept

of maximal rank estimation algebra. In a series of papers [Ya1], [Ch-Ya1], [Ch-Ya2],

[H-Y-C], [W-Y-H], [Y-W-W], and [Ya-Hu3], Yau and his co-workers have classified all

finite-dimensional estimation algebras with maximal rank. The self-contained proof

of the classification of finite-dimensional estimation algebras of maximal rank can

be found in [Ya3], [Ya4]. Ten years ago, Wong and Yau [Wo-Ya] wrote a survey

paper of results before 1998, which was dedicated to Brockett on the occasion of his

60th birthday. In this survey paper, Wong and Yau had a detailed discussion on the

importance of the papers [T-W-Y] and [D-T-W-Y] in understanding the structure of

exact estimation algebra. Therefore we shall not discuss the classification of maximal

rank finite dimensional estimation algebras, which was done before 1998, in this paper.

Despite the success of the classification of finite-dimensional estimation alge-

bras with maximal rank, the problem of classification of non-maximal rank finite-

dimensional estimation algebras is still wide open except for the case of state space

dimension 2 which was finished recently by Wu and Yau [Wu-Ya] and some con-

struction of non-maximal rank finite-dimensional estimation algebras by Rasoulian

and Yau [Ra-Ya]. There are several reasons to tackle the problem of classification of

non-maximal rank finite-dimensional estimation algebras. The first one is that the

theory of estimation algebra provides a systematic tool to deal with questions con-

cerning finite-dimensional filters. It has led to a number of new results concerning

finite-dimensional filters and to a deeper understanding of the structure of nonlinear

filtering in general. It explains convincingly in [Bu-Pa] and [H-M-S] why it is easy to

find exact recursive filters for linear dynamical models, while it is very hard to handle

the cubic sensor problem. The second reason is that the solution of this problem may

give us many new classes of finite-dimensional estimation algebras and hence many

new classes of finite-dimensional filters. More importantly, the finite-dimensionality

of the estimation algebra guarantees the explicit construction of the finite-dimensional

recursive filter, and the filter so constructed is universal in the sense of [Ch-Mi]. Due

to the difficulty of the problem, Brockett suggested that one should understand the

low-dimensional estimation algebras first. In [Ya-Ra] Yau and Rasoulian have classi-

fied estimation algebras of dimension at most four. In [C-C-Y], Chiou, Chiueh and

Yau gave a structure theorem for estimation algebras of dimension 5.

The second approach to solve the nonlinear filtering problem is the direct method

introduced by Yau and Yau [Ya-Ya1], [Ya-Ya2] and generalized by Hu and Yau

[Hu-Ya], [Ya-Hu1], [Ya-Hu2]. Recall that in the Wei–Norman approach of using the

estimation algebras to solve the DMZ equation one has to know explicitly the basis

of a vector space of the estimation algebra in order to reduce the DMZ equation to
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a finite system of ordinary differential equation, Kolmogorov equation, and several

first-order linear partial differential equations. Classically one knows the explicit ba-

sis for the estimation algebra only in the case that it has maximal rank. The new

direct method offers several advantages. It is easy and the derivation no longer needs

the maximal rank condition of the estimation algebras. Thus, the algorithm is uni-

versal for any Yau filtering model [Ch] which includes the linear filtering model and

the Benés filtering model as special cases. Furthermore, it eliminates the necessity

of integrating n first-order linear partial differential equations, as was the case in the

estimation algebra method. Finally, the number of sufficient statistics required to

compute the conditional probability density of the state in this direct method is n.

The main purpose of this paper is to describe the third approach which enables us

to solve the nonlinear filtering problem completely. The filtering problem considered

here is based on the following continuous signal observation model described by the

vector Ito stochastic differential equation

(1.1)







dxt = f(xt, t) dt + G(xt, t) dvt,

dyt = h(λt, t) dt + dwt

where xt and f are n-vectors, G is an n × r matrix, and vt is an r-vector Brownian

motion process with E[dvtdvT
t ] = Q(t)dt, yt and h are m-vectors and wt is an m-vector

Brownian motion process with E[dwtdwT
t ] = R(t)dt and R(t) > 0. We assume that

{vt, t > 0}, {wt, t > 0}, and x0 are independent. Recently Yau and Yau [Ya-Ya3],

[Ya-Ya4] studied the above model with the following assumptions: (1) f , G and h

are functions of the state xt only; (2) G is an orthogonal matrix, i.e., GGT = I;

(3) {vt, t > 0} and {wt, t > 0} are standard Brownian motion processes, i.e., R(t) =

Q(t) = I. In 2000, Yau and Yau [Ya-Ya3] proposed a novel algorithm to solve the

DMZ equation in real time and memoryless way under the assumptions that the drift

term of the state equation, and its first and second derivatives, and the drift term of

the observation equation and its first derivatives, have linear growth. They showed

that the solution obtained from their algorithm converges to the true solution of the

DMZ equation. Although this approach is very successful, so far it cannot handle

the famous cubic sensor problem in engineering, which is well known that there is no

finite dimensional filter.

The breakthrough in the subject is the recent paper [Ya-Ya4] which appeared

in SIAM Control and Optimization. Yau and Yau showed that under very mild

conditions (which essentially say that the growth of the observation |h| is greater

than the growth of the drift |f |), the DMZ equation admits a unique nonnegative

weak solution u which can be approximated by a solution uR of the DMZ equation

on the ball BR with uR|∂BR
= 0. The error of this approximation is bounded by

a function of R which tends to zero as R goes to infinity. The solution uR can

in turn be approximated efficiently by an algorithm depending only on solving the
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observation-independent Kolmogorov equation on BR. In theory, their algorithm can

solve practically all engineering problems in real time. Specifically, they show that

the solution obtained from their algorithms converges to the solution of the DMZ

equation in the L1-sense. Equally important, they have a precise error estimate of

this convergence, which is important in numerical computation. Most recently, Yan

and Yau [Yan-Ya] generalize the Yau–Yau algorithm so that it can solve the general

filtering model without the above assumptions (1), (2) and (3). Basically for the

general filtering model, we can again solve the robust DMZ equation by means of the

Kolmogorov equation which is independent of observation

In section 2, we shall recall some basic concepts and results in nonlinear filtering

theory. In section 3, we shall describe the recent results on finite dimensional non-

maximal rank estimation algebras. In section 4, we shall discuss the direct method

and explain how it solves the DMZ equation arising from the Yau filtering model.

In section 5, we shall describe the last approach which solves theoretically all the

engineering problems in nonlinear filtering.

We are very grateful to Professor Brockett for his continuous support on this

research project. It is our great pleasure to dedicate this paper to him on the occasion

of his 70th birthday. We wish him a healthy and active life for another seventy years!

2. Some Basic Concepts and Results. The filtering problem considered in

§3, §4 and part of §5 is based on the signal observation model

(2.1)







dx(t) = f(x(t)) dt + g(x(t)) dv(t), x(0) = x0

dy(t) = h(x(t)) dt + dw(t), y(0) = 0.

Here x, v, y and w are respectively R
n, R

n, R
m and R

m valued processes, and v and

w have components which are independent, standard Brownian processes. We assume

that f , h are C∞ smooth, and g is an orthogonal matrix. We refer to x(t) as the state

of the system at time t and to y(t) as the observation at time t.

Let ρ(t, x) denote the conditional probability density of the state given the obser-

vation {y(t) : 0 6 s 6 t}. It is well known (see, e.g., [Da-Ma]) that ρ(t, x) is given by

normalizing σ(t, x), which satisfies the DMZ equation:

(2.2)
dσ(t, x) = L0σ(t, x) dx +

m
∑

i=1

Liσ(t, x) dyi(t)

σ(0, x) = σ0











where

L0 =
1

2

n
∑

i=1

∂2

∂xi
2
−

n
∑

i=1

fi

∂

∂xi

−
n
∑

i=1

∂fi

∂xi

− 1

2

m
∑

i=1

hi
2

and, for i = 1, . . . , m, Li is the zero degree differential operator of multiplication by

hi. The term σ0 is the probability density of the initial point x0.
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Equation (2.2) is a stochastic partial differential equation (with probability space

a space of paths {y}) and as such a solution is in principle only defined apart from

a set of measure zero. On the other hand, actual observations will always consist

of piecewise smooth sample paths y(t) and the class of all such paths is of measure

zero. Thus there arises the question whether there exists a version of (2.2) which can

be interpreted pathwise for all y(t) and for which the solution of (2.2) for piecewise

smooth y(t) carry (approximate) information. This means that in real applications,

we are interested in constructing robust state estimators from observed sample paths

with some property of robustness. Davis [Da] studied this problem and proposed some

robust algorithms. In our case, his basic idea reduces to defining a new unnormalized

density

(2.3) u(t, x) = exp
(

−
m
∑

i=1

hi(x)yi(t)
)

σ(t, x)

Davis reduced (2.2) to the following time-varying partial differential equation, which

is called the robust DMZ equation:

∂u

∂t
(t, x) = L0 u(t, x) +

∑m
i=1 yi(t)[Lm, Li]u(t, x)

+
1

2

m
∑

i,j=1

yi(t) yj(t)[[L0, Li], Lj ] u(t, x)















(2.4)

u(0, x) = σ0(x).

Here we have used the following notation.

Definition 2.1. If X and Y are differential operators, the Lie bracket of X and

Y , [X, Y ] is defined by [X, Y ]φ = X(Y φ) − Y (Xφ) for any C∞ function φ.

Recall that a real vector space F , with an operation F×F → F denoted (x, y) →
[x, y] (called the Lie bracket of x and y) is called a Lie algebra if the following axioms

are satisfied:

(i) The Lie bracket operation is bilinear

(ii) [x, x] = 0 for all x ∈ F
(iii) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (x, y, z ∈ F).

Definition 2.2. The estimation algebra E of a filtering model (2.1) is defined

as the Lie algebra generated by {L0, Li, . . . , Lm} denoted by {L0, L1, . . . , Lm}L.A.. E

is said to be an estimation algebra of maximal rank if, for any 1 6 i 6 n, there exists

a constant ci such that xi + ci is in E.

Example 2.1. Consider the filtering model (2.1) with n = m = 2 and f ≡ 0.

Case 1. h1 = x1, h2 = x2. In this case the estimation algebraa E generated by

{L0, x1, x2} is an estimation algebra of maximal rank. In fact, E is of dimension 6.

It consists of elements 1, x1, x2, D1, D2, and L0.

Case 2. h1 = x1, h2 = 0. In this case the estimatin algebra E generated by
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{L0, x1} is not of maximal rank. In fact, E is of dimension 4. It consists of elements

1, x1, D1 and L0.

Definition 2.3. Wong’s matrix of a filtering model (2.1) is a n × n matrix

Ω = (ωij) defined by

(2.5) ωij =
∂fj

∂xi

− ∂fi

∂xj

1 6 i, j 6 n

We remark that clearly Ω is a skew symmetric matrix with the cyclic conditions

∂ωjk

∂xi

+
∂ωki

∂xj

+
∂ωij

∂xk

= 0, ∀ 1 6 i, j, k 6 n.

Define

(2.6) Di =
∂

∂xi

− fi and η =

n
∑

i=1

∂fi

∂xi

+

n
∑

i=1

f2
i +

m
∑

i=1

h2
i .

Then

(2.7) L0 =
1

2

(

n
∑

i=1

D2
i − η

)

The following theorem due to Ocone [Oc] is the first result which allows us to

understand what kind of functions can appear in a finite dimensional estimation al-

gebra.

Theorem 2.1 (Ocone [Oc]). Let E be a finite-dimensional estimation algebra.

If a function ξ is in E, then ξ is a polynomial of degree at most two.

It follows by (2.6) that the underdetermined partial differential equation

(2.8)

n
∑

i=1

∂fi

∂xi

+

n
∑

i=1

f2
i = F

provides a characterization of the realization of such nonlinear filtering models. There-

fore, it is of primary interest to investigate the solution and solution properties for

this class of equations. In (2.8), f1, . . . , fn and F are C∞ functions on R
n. F is given

and fi, . . . , fn are treated as unknown. Although there is only one equation with n

unknowns, (2.8) may not have solutions. The following important result can be found

in [Ya2].

Theorem 2.2 (See [Ya2]). Let F (x1, . . . , xm) be a C∞ function on R
n. Suppose

that there exists a path c : R → R
n and δ > 0 such that limt→∞ ‖c(t)‖ = ∞ and

limt→∞ supBδ(c(t)) F = −∞, where Bδ(c(t)) = {x ∈ R
n : ‖x − c(t)‖ < δ}. Then there

are no C∞ functions f1, f2, . . . , fn on R
n satisfying (2.8).

The following results are applications of Theorem 2.2 that will be used in the

classification of estimation algebras.
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Theorem 2.3 (See [Wu-Ya]). Let F (x1, . . . , xn) be a polynomial on R
n, let

c(t) = (c1(t), . . . , cn(t)) be a polynomial path (i.e., ci(t)’s are polynomials in t), and let

ε = (ε1, . . . , εn). Then F (c(t)+ε) is a polynomial in t, i.e., F (c(t)+ε) =
∑d

j=0 aj(ε)t
j,

where aj(ε)’s are polynomials of ε1, . . . , εn. If there exists a path c(t) such that the

coefficient ad(t) of the leading term of F (c(t) + ε) is a negative constant and d > 1,

there are no C∞ functions f1, f2, . . . , fn on R
n satisfying the equation (2.8).

Theorem 2.4 (See [Wu-Ya]). Let F (x1, . . . , xn) be a degree d > 1 polynomial

on R
n. The homogeneous degree d part of F is denoted by Fd =

∑

|i|=d aix
i1
1 . . . xin

n ,

where i = (i1, . . . , in). If there exist n numbers b1, . . . , bn such that Fd(b1, . . . , bn) < 0,

then there are no C∞ functions f1, f2, . . . , fn on R
n satisfying (2.8).

Corollary 2.1. Let F (x1, . . . , xn) be a polynomial on R
n. If the degree of F is

odd, there are no C∞ functions f1, f2, . . . , fn in R
n satisfying (2.8).

Corollary 2.2. Let F (x1, . . . , xn) be a degree d > 1 polynomial on R
n. If there

exist C∞-functions f1, f2, . . . , fn on R
n satisfying (2.8), then the homogeneous degree

d part of F is a nonnegative function.

In fact, the above theorems can be further generalized to the case when F is a

polynomial in x1, . . . , xr variables with C∞ coefficient functions xr+1, . . . , xn. For

example, we have the following theorem.

Theorem 2.5 (See [Wu-Ya]). Let d and r 6 n be two positive integers and

F (x1, . . . , xn) =
∑

|i|6d

ai(xr+1, . . . , xn)xi1
1 , . . . xir

r ,

where i = (i1, . . . , ir), and where ai’s are C∞ functions in xr+1, . . . , xn variables.

The homogeneous degree d part in x1, . . . , xr variables of F is denoted by Fd =
∑

|i|=d ai(xr+1, . . . , xn)xi1
1 . . . xir

r . If there exist n numbers b1, . . . , bn such that Fd(b1,

. . . , bn) < 0, then there are no C∞ functions f1, f2, . . . , fn on R
n satisfying (2.8).

3. Finite-Dimensional Estimation Algebras of Non-Maximal Rank. In

this section, we shall study finite-dimensional estimation algebras of non-maximal

rank. We shall first give general construction of finite-dimensional estimation algebras

of non-maximal rank. This construction gives rise to a new class of finite-dimensional

nonlinear filters which are not discussed previously. Presumably most of the finite-

dimensional estimation algebras of non-maximal rank are arising in this way.

3.1. Construction of a finite-dimensional estimation algebra of non-

maximal rank.

Suppose that E is the finite-dimensional estimation algebra associated with the

filtering model (2.1). Consider the following deterministically decoupled filtering sys-

tem:

(3.1)
dx̃(t) = f̃(x̃(t)) dt + g̃(x̃(t)) dṽ(t), x̃(0) = x̃0

dy(t) = h(x̃(t)) dt + dw̃(t), y(0) = 0

}
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Here x̃ = (x1, . . . , xn, xn+1, . . . , xn+k), f̃(x̃(t)) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn),

fn+1(xn+1, . . . , xn+k), . . . , fn+k(xn+1, . . . , xn+k)), g̃(x̃(t)) = orthogonal matrix,

h(x̃(t)) = h(x1, . . . , xn), and ṽ and w̃ have components which are independent, stan-

dard Brownian processes.

Let Ẽ be the estimation algebra associated with (3.1). We shall show that Ẽ is

isomorphic to E as a Lie algebra. Observe that

ω̃ij =
∂f̃j

∂xi

− ∂f̃i

∂xj

=







































∂fj

∂xi

(x) − ∂fi

∂xj

(x) = ωij if 16 i, j6n

0 if i>n, j6n or i6n, j > n,
∂fj

∂xi

(xn+1, . . . , xn+k)

− ∂fi

∂xj

(xn+1, . . . , xn+k), i, j>n,

L̃0 =
1

2

(

n+k
∑

i=1

Di
2−η̃

)

,

where

Dn+i =
∂

∂xn+i

− fn+i(xn+1, . . . , xn+k), 1 6 i 6 k,

η̃(x̃) = η(x) +

n+k
∑

i=n+1

∂fj

∂xi

(xn+1, . . . , xn+k) +

n+k
∑

i=n+1

fi
2(xn+1, . . . , xn+k).

Lemma 3.1. If F is a differential operator in x1, . . . , xn variables of order r,

then [F, η̃(x1, . . . , xn, xn+1, . . . , xn+k)] = [F, η(x1, . . . , xn)] is a differential operator of

order r − 1 in x1, . . . , xn variables.

Lemma 3.2. Let F be a differential operator of order r in x1, . . . , xn variables.

Then for n + 1 6 j 6 n + k, [Dj
2, F ] = 0.

Lemma 3.3. For any differential operator F in x1, . . . , xn variables, [L̃0, F ] =

[L0, F ].

Theorem 3.1 (Rasoulian–Yau [Ra-Ya]). The estimation algebra Ẽ associated

with the filtering model (3.1) is isomorphic to the estimation algebra E associated

with the filtering model (2.1), and Ẽ consists of a basis such that all elements in

this basis are differential operators in x1, . . . , xn variables except L̃0. Furthermore,

Ω̃ =
(

∂f̃j

∂xi
− ∂f̃i

∂xj

)

is given by Ω̃ = ( Ω 0
0 A ), where Ω is the n × n matrix

(

∂fj

∂xi
− ∂fi

∂xj

)

associated with (2.1) and A is a k× k matrix with (i, j)-entry
(

∂fn+j

∂xn+i

− ∂fn+i

∂xn+j

)

(xn+1,

. . . , xn+k).

Remark 3.1. (1) The finite-dimensional estimation algebra Ẽ is of non-maximal

rank if k > 0. Observe that A is quite arbitrary. (2) We would like to emphasize that

the orthogonal matrix g̃(x1, . . . , xn, xn+1, . . . , xn+k) is arbitrary and is not necessarily
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of the form

(

g(x1, . . . , xn) 0

0 g(xn+1, . . . , xn+k)

)

.

So (3.1) is not a direct sum of two filtering systems. This is a central point of Theo-

rem 3.1.

3.2. Classification of finite-dimensional estimation algebras of dimen-

sion less than or equal to four.

Let E =
{

L0, h1, h2, . . . , hm

}

L.A.
be the estimation algebra associated with the

filtering model (2.1). By Ocone’s theorem, h1, h2, . . . , hm are polynomials at most

degree two. Let h1, h2, . . . , hk, k 6 m be linearly independent and the other hi
′s,

k + 1 6 i 6 m be linear combinations of h1, . . . , hk. If k = 1 and h1 = constant, it is

obvious that E is 1-dimensional if and only if h1 = 0, and E is 2-dimensional if and

only if h1 = 1. Thus we have the following proposition.

Proposition 3.1. Let E be the estimation algebra associated with the filtering

model (2.1). Then

(1) dimE = 1 if and only if E = 〈L0〉
(2) dimE = 2 if and only if E = 〈L0, 1〉.
Theorem 3.2 (Yau–Rasoulian [Ya-Ra]). Let E be the estimation algebra asso-

ciated with the filtering model (2.1). Then dimE 6= 3.

The following theorem gives a structure of 4-dimensional estimation algebras.

Theorem 3.3 ([Ya-Ra]). Suppose that state space of the filtering model (2.1)

is of a dimension greater than one. Then the observation function h(x) is linear

and the linear span of ∇h1, . . . ,∇hm is 1-dimensional. Assume h1(x) = x1. Then

the 4-dimensional estimation algebra has a basis given by 1, x1, D1 = ∂
∂x1

− f1 and

L0 = 1
2

(
∑n

i=1 D2
i − η

)

. Moreover, ω12 = ω13 = · · · = ω1n = 0, [L0, x1] = D1,

[D1, x1] = 1, [L0, D1] = 1
2

∂η
∂x1

= αx1 + β. where α, β are constants. Also, η =

αx1
2 + 2βx1 + g(x2, . . . , xn), where g(x2, . . . , xn) is in C∞(Rn−1). In particular,

f1, . . . , fn have to satisfy the equation

(3.2)

n
∑

i=1

∂fi

∂xi

+

n
∑

i=1

fi
2 = (α − 1)x2

1 + 2βx1 + g(x2, . . . , xn)

where α > 1.

3.3. Structure theorem for five-dimensional estimation algebras.

The following lemmas plays an important role in understanding estimation algebra

of non-maximal rank.

Lemma 3.4 (Chiou–Chiueh–Yau [C-C-Y]). For any 1 6 l 6 n, if γi, i = 1, . . . , l,

are polynomials in x1, . . . , xl with coefficients in C∞ functions of xl+1, . . . , xn satis-
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fying

(3.3)
∂γj

∂xi

+
∂γi

∂xj

= 0 for all 1 6 i, j 6 l,

then each γi is necessarily of the form

(3.4) γi =
∑

16j6l

cj
i (xl+1, . . . , xn)xj + di(xl+1, . . . , xn)

where cj
i (xl+1, . . . , xn) and di(xl+1, . . . , xn) are C∞ functions and cj

i = −ci
j.

Lemma 3.5. If dimE = 5, then E cannot contain two linear independent degree

one polynomials.

Theorem 3.4 (Chiou–Chiueh–Yau [C-C-Y]). If dimE = 5, then E cannot

contain any degree two polynomial.

Theorem 3.4, above, together with Theorem 3.3 asserts the following Mitter con-

jecture is true for estimation algebras with dimension at most five.

Mitter Conjecture 1. Let E be a finite-dimensional estimation algebra. Then

any function in E is a polynomial of degree at most one.

Now we are ready to state the structure theorem of five-dimensional estimation

algebras.

Theorem 3.5 (Chiou–Chiueh–Yau [C-C-Y]). Suppose that the state space of the

filtering model (2.1) is of dimension at least two. Then the five-dimensional estimation

algebra is isomorphic to to Lie algebra generated by L0 and an observation function

h = x1 with a basis given by 1, x1, D1 = ∂
∂x1

− f1(x1, . . . , xn), Y1 = [L0, D1] =
∑n

i=1 ωi1Di + 1
2

∂η
∂x1

, L0 = 1
2

(
∑n

i=1 Di
2 − η

)

. Moreover, the following holds:

(1) ω1i 6= 0 for some i = 2, . . . , n and each ω1i is of the form

(3.5) ω1i =

n
∑

k=2

eikxk + ei for 2 6 i 6 n,

(3.6) eij = −eji, 2 6 i, j 6 n,

where eij and ei are constants.

(2) η is of the form

(3.7) η =
(

n
∑

j=2

ω2
ij + c3

)

x1
2 + β(x2, . . . , xn)x1 + γ(x2, . . . , xn),

where c3 > 1 is a constant and β(x2, . . . , xn) and γ(x2, . . . , xn) are C∞ func-

tions

(3) There exists a constant c1 such that

(3.8)
n
∑

j=1

ω1jωji +
1

2

∂2y

∂xi∂x1
= c1ω1i, 2 6 i 6 n
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(4) There exists constants c0 and c2 such that

(3.9) −1

2

n
∑

i,j=1

∂ω1j

∂xi

ωji +
1

2

n
∑

j=1

ω1j

∂η

∂xj

= c0x1 +
c1

2

∂η

∂x1
+ c2.

In particular, f1, . . . , fn have to satisfy the following equation:

(3.10)

n
∑

i=1

∂fi

∂xi

+

n
∑

i=1

fi
2 =

(

n
∑

j=2

ω2
1j + c3 − 1

)

x1
2

+ β(x2, . . . , xn)x1 + γ(x2, . . . , xn).

Moreover, the five-dimensional estimation algebra has the following multiplication ta-

ble.

E 1 x1 D1 Y1 L0

1 0 0 0 0 0

x1 0 0 −1 0 −D1

D1 0 1 0 c3 −Y1

Y1 0 0 −c3 0 −c0x1−c1Y1−c2−c3D1

L0 0 D1 Y1 c0x1+c1Y1+c2+c3D1 0

Corollary 3.1. Suppose that the state space of the filtering model (2.1) is of

dimension at least two. If ω1j, 2 6 j 6 n, are constants, then the five-dimensional

estimation algebra is isomorphic to a Lie algebra generated by L0 and x1 with a basis

given by 1, x1, D1 = ∂
∂x1

− f1(x1, . . . xn), Y1 = [L0, D1] =
∑n

i=1 ωi1Di + 1
2

∂η
∂x1

,

L0 = 1
2

(
∑n

i=1 D2
i − η

)

. Moreover, the following holds:

(1) η is of the form

(3.11) η = ax1
2 + β(x2, . . . , xn)x1 + γ(x2, . . . , xn)

for some constant a > 1 and C∞ functions β(x2, . . . , xn) and γ(x2, . . . , xn).

(2) There exists constant d1 such that

(3.12)
1

2

∂β

∂xi

(x2, . . . , xn) = d1ω1i +

n
∑

j=1

ω1jωij for 2 6 i 6 n.

(3) There exist constants d2 and d3 such that

(3.13)
n
∑

j=1

ω1j

∂β

∂xj

(x2, . . . , xn) = d2

(3.14)
n
∑

j=1

ω1j

∂γ

∂xj

(x2, . . . , xn) = d1β(x2, . . . , xn) + d3.
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We shall give an example of five-dimensional estimation algebras by using Theo-

rem 3.5. Example 3.1 below is a new class of finite-dimensional estimation algebras.

Example 3.1. Consider the filtering model







dx(t) = f(x(t)) dt + g(x(t)) dv(t)

dy(t) = h(x(t)) dt + dw(t)

where f1 = ax1, f2 = bx1x3, f3 = −bx1x2, fi = gi(x4, . . . , xn), 4 6 i 6 n, h(x) = x1,

and a, b are nonzero constants. Then

ω12 =
∂f2

∂x1
− ∂f1

∂x2
= bx3, ω13 =

∂f3

∂x1
− ∂f1

∂x3
= −bx2

ω23 =
∂f3

∂x2
− ∂f2

∂x3
= −2bx1, ω1j =

∂fj

∂x1
− ∂f1

∂xj

= 0, 4 6 i 6 n.

n
∑

i=1

fi
2 +

n
∑

i=1

∂fi

∂xi

= a2x1
2 + b2x1

2x3
2 + b2x1

2x2
2

+
n
∑

i=4

gi
2(x4, . . . , xn) + a +

n
∑

i=4

∂gi

∂xi

(x4, . . . , xn)

=
(

n
∑

i=1

ω1i
2 + a2

)

x1
2 +

n
∑

i=4

gi
2(x4, . . . , xn) + a

+
n
∑

i=4

∂gi

∂xi

(x4, . . . , xn).

It is easy to check that ω1i, 1 6 i 6 n, satisfy (3.5), η is of the form (3.7) with

c3 = a2 + 1 satisfying (3.8) and (3.9) with c0 = 2b2, c1 = c2 = 0. The estimation

algebra E is five-dimensional with basis {1, x1, D1, Y1 = bx3D2 − bx2D3 + (a2 + 1 +

b2x2
2 + b2x3

2)x1, L0}.

3.4. Classification of estimation algebras with state dimension 2.

In this subsection, we shall fix the state dimension 2 and consider all finite-

dimensional estimation algebras.

Theorem 3.6 (Wu–Yau [Wu-Ya]). Suppose that the state dimension of the fil-

terings model (2.1) is two. Assume dim E < ∞ and Y = p(x)D2 + function is an

element in E. Then p is a polynomial in x1, x2, of degree at most one.

Theorem 3.7 (Wu–Yau [Wu-Ya]). Suppose that the state space dimension of

the filtering model (2.1) is two. If dimE < ∞ and φ ∈ E, then φ is a polynomial of

degree at most one.

Theorem 3.8 (Wu–Yau [Wu-Ya]). Suppose that the state dimension of the fil-

tering model (2.1) is two. If E has linear rank 1 and is finite-dimensional, then the

Wong matrix Ω has constant entries
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We are now read to classify all finite-dimensional estimation algebras with state

dimension 2. First assume E has linear rank 1. By Theorem 3.7, hi’s must be degree

at most 1 polynomial in x1. By Theorem 3.8, ω12 is a constant.

(i) ω12 = 0, [L0, D1] = 1
2

∂η
∂x1

∈ E. Thus, η must be a degree 2 polynomial in x1

plus a C∞-function in x2. E = {Lo, x1, D1, 1}. For example, f1 = x1, f2 = sin x2,

h1 = x1, η = 2x1
2 + 1 + cosx2 + sin2 x2.

(ii) If ω12 6= 0, let

(3.15) A1 := [L0, D1] = ω12D2 +
1

2

∂η

∂x1
∈ E

(3.16) A2 := [D1, A1] = −ω2
12 +

1

2

∂2η

∂x1
2
∈ E

A3 := [L0, A1] =

(

1

2

∂2η

∂x1
2
− ω2

12

)

D1 +
1

2

∂2η

∂x1∂x2
D2

+
1

2
ω12

∂η

∂x2
+

1

4

∂3η

∂x1
3

+
1

4

∂3η

∂x1∂x2
2
∈ E(3.17)

By (3.16), η = d0x1
3 + d1x1

2 + e2(x2)x1 + e3(x2). By Theorem 2.5, d0 = 0. By (3.17)

and D1 ∈ E.

(3.18)
1

2

∂2η

∂x1∂x2
D2 +

1

2
ω12

∂η

∂x2
+

1

4

∂3η

∂x1∂x2
2
∈ E.

By Theorem (3.6), ∂2η
∂x1∂x2

= e′2(x2) is a polynomial of degree at most 1. Thus e2 is a

polynomial of degree at most 2 in x2. By substituting e2 and e3 into η and removing

D1, x1, and 1 from (3.15) and (3.18), one has

A1 = ω12D2 +
1

2
e2 ∈ E(3.19)

A3 =
1

2
e′2D2 +

1

2
ω12(e

′
2x1 + e′3) ∈ E(3.20)

If e2 is a degree 2 polynomial in x2, then [A1, A3] − 1
2e′′2A1 = 1

2ω2
12e

′′
3 − 1

4 (e2e
′′
2 +

e′2e
′
2) + 1

2ω2
12e

′′
2x1 ∈ E. Since the degree 2 term of e2e

′′
2 + e′2e

′
2 will never be zero,

e3(x2) must be a degree 4 polynomial. Now, consider

B1 = [L0, A3]

=
1

2
e′′1D2

2 +
1

2
ω12(e

′′
2x1 + e′′3)D2 +

1

4
e′2(e

′
2x1 + e′3) +

1

4
ω12e

′′
3 ∈ E

B2 = [L0, B1] =
1

2
e′′2
[

L0, D2
2
]

+ [L0,
1

2
ω12(e

′′
2x1 + e′′3)D2]

=
1

2
ω12e

′′
3D2

2 − 1

2
ω12e

′′
2D2D1 + function ∈ E.

From the discussion of the proof of Lemma 4.13 (iii) in [Wu-Ya], e′′′3 must be a con-

stant, Contradiction! Hence e2 must be a degree 1 polynomial.
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Consider ω12A3 − 1
2e′1A1 = 1

2ω2
12e

′
2x1 + 1

2ω2
12e

′
3 − 1

4e′2e2 ∈ E ⇒ 1
2ω2

12e
′
3 − 1

4e′2e2

is independent of x2 and e3 must be a degree 2 polynomial. Hence, η is a degree 2

polynomial in x1 and x2. E is of dimension 5 and E = {L0, x1, D1, D2 + cx2, 1}.
For example, f1 = 5x1 − 3x2, f2 = 4x2, h1 = x1. Then ω12 = 3 and η =

26x1
2 − 30x1x2 + 25x2

2 + 9. It is easy to show that E = {L0, x1, D1, D2 − 5x2, 1}.
If E has linear rank 0, hi’s must be constants, and E = {L0} or E = {L0, 1}.
If E has linear rank 2, E is of maximal rank. The Ω-matrix must have constant

entries and E = {L0, x1, x2, D1, D2, 1} by the theorem of Yau and Hu [Ya-Hu3]. In

summary, we have the following.

Theorem 3.9 (Wu–Yau [Wu-Ya]). Let n = 2. If E is finite-dimensional, then

(1) if hi’s are constants, E = {L0} or E = {L0, 1};
(2) otherwise, Ω-matrix has constant entries. hi’s must be affine in x1 and x2.

E has dimension of either 4, 5, or 6.

Moreover, from the above discussion, it is easy to see that if E is finite-dimension-

al, it has only elements with order less than or equal to 2. Thus, the Levine conjecture

holds for the finite-dimensional estimation algebras with state dimension 2.

4. Direct Method of Solving the DMZ Equation. The direct method was

first introduced by Yau–Yau [Ya-Ya1][Ya-Ya2] to solve DMZ equations arising from a

linear filtering model or an exact filtering model. This direct method was generalized

by Yau–Hu [Ya-Hu1] [Ya-Hu2] to treat a more general filtering system.

Recall that in 1990, Yau [Ya1] (cf. [Ya2] for detailed version) first studied the

filtering model (2.1) with the following conditions:

(c′1)
∂fj

∂xi

− ∂fi

∂xj

= constant cij for all 1 6 i, j 6 n.

This was called the Yau filtering model in [Ch]. The Yau filtering model includes

linear filtering model and exact filtering model. By Theorem 3.3, we know that (c′1)

is equivalent to the following condition:

(4.1) (c1) fi(x) = li(x) +
∂F

∂xi

(x), 1 6 i 6 n

where li(x) =
∑n

j=1 dijxj + di for 1 6 i 6 n and F is a C∞ function.

A theorem in [Ya2] tells us that h1, . . . , hm are polynomials of degree at most one

if the Yau filtering model has a finite-dimensional estimation algebra. So we list the

following condition:

(4.2) (c2) hi(x) =

n
∑

j=1

cijxj + ci, 1 6 i 6 m

where cij and ci are constants.
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Moreover, by a theorem in [Ya2], we know that η(x) is a polynomial of degree at

most two for Yau filtering models with finite-dimensional estimation algebra. Hence

we assume the following condition:

(4.3) (c3) η(x) =

n
∑

i,j=1

ηijxixj +

n
∑

i=1

ηixi + η0

where ηij , ηi, and η0 are constants.

Lemma 4.1 (Yau–Hu [Ya-Hu2]). Equation (2.4) is equivalent to the following

equation

(4.4)

∂u

∂t
(t, x) =

1

2
∆u(t, x) +

n
∑

i=1

θi(t, x)
∂u

∂x2
(t, x) + θ(t, x)u(t, x)

u(0, x) = σ0(x)











where

θi(t, x) =

m
∑

j=1

yj(t)
∂hj

∂xi

(x) − fi(x),

θ(t, x) =
1

2

(

n
∑

i=1

θi
2(t, x) +

n
∑

i=1

∂θi

∂xi

(t, x) − η(x)
)

.

Theorem 4.1 (Yau–Hu [Ya-Hu2]). Suppose u(t, x) is a solution of (4.4) and

(4.5) ũ(t, x) = eΛ(t,x)u(t, x + b(t))

Then ũ(t, x) is the solution of the following Kolmogorov equation:

(4.6)

∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

Hi(x)
∂ũ

∂xi

(t, x) − P (x)ũ(t, x)

ũ(0, x) = eΛ(0,x)u(0, x + b(0)).











if we can choose Hi(x) and P (x) such that Λ(t, x) satisfy the following systems:

(4.7) b′i(t) −
∂Λ

∂xi

(t, x) + H(x) + θi(t, x + b(t)) ≡ 0 1 6 i 6 n

(4.8)
∂Λ

∂t
(t, x) − 1

2

n
∑

i=1

(b′i(t))
2 −

n
∑

i=1

θi(t, x + b(t))b′n(t) − 1

2
η(x + b(t))

+
1

2

n
∑

i=1

Hi
2(x) − 1

2

n
∑

i=1

∂Hi

∂xi

(x) + P (x) ≡ 0

Moreover, if u,
∂u

∂x1
, . . . ,

∂u

∂xn

are linearly independent, then (4.7) and (4.8) are also

necessary conditions for (4.6).
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Next if we assume that condition (c3) holds, then

(4.9) η(x + b(t)) = η(x) +

n
∑

i=1

Bi(t)xi + B(t)

where

Bi(t) =

n
∑

j=1

(nij + ηji)bj(t),

B(t) =

n
∑

i,j=1

nijbi(t)bj(t) +

n
∑

i=1

ηibi(t)

The following theorem says that in many situations if the solution of (4.4) can be

represented in the form of (4.5) and (4.6), then condition (c1) in (4.1) holds.

Theorem 4.2 (Yau–Hu [Ya-Hu2]). Assume conditions (c2) and (c3) hold. Sup-

pose u(t, x) is a solution of (4.4) and

ũ(t, x) = eΛ(t,x)u(t, x + b(t))

where b′i(t), 1 6 i 6 n, are linearly independent and ũ(t, x) is the solution of the

following Kolmogorov equation:














∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

Hi(x)
∂ũ

∂xi

(t, x) − P (x)ũ(t, x)

ũ(0, x) = eΛ(0,x)u(0, x + b(0)).

Furthermore, let

Λ(t, x) = c(t) + G(x) +

n
∑

i=1

aj(t)xj − F (x + b(t)).

If we can choose H(x), G(x), and P (x) such that

(4.10)
1

2

n
∑

i=1

Hi
2(x) − 1

2

n
∑

i=1

∂H

∂xi

(x) − 1

2
η(x) + P (x) ≡ 0,

then

fi(x) =
∂F

∂xi

(x) + li(x), 1 6 i 6 n,

where li(x) =
∑n

j=1 dijxj + di, dij and di are constants, i.e., condition (c1) holds.

The following theorem plays an important role in our direct method.

Theorem 4.3 (Yau-Hu [Ya-Hu2]). Consider the filtering model (2.1) with con-

ditions (c1), (c2), and (c3). Then the solution u(t, x) for the DMZ equation (2.4) or

(4.4) is reduced to the solution of ũ(t, x) for the Kolmogorov equation














∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

Hi(x)
∂ũ

∂xi

(t, x) − P (x)ũ(t, x)

ũ(0, x) = eG(x)−F (x)σ0(x)
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where

ũ(t, x) = exp
[

c(t) + G(x) +

n
∑

i=1

ai(t)xi − F (x + b(t))
]

· u(t, x + b(t))

and ai(t), bi(t), and c(t) satisfy the following system of ODEs:














b′i(t) − ai(t) −
n
∑

j=1

dijbj(t) +

n
∑

j=1

cjiyj(t) = 0

bi(0) = 0 1 6 i 6 n

(4.11)















a′
i(t) −

1

2

n
∑

j=1

(ηij + ηji)bj(t) +

n
∑

j=1

djib
′
j(t) = 0

ai(0) = 0 1 6 i 6 n

(4.12)



































c′i(t) = −1

2

n
∑

i=1

(b′i(t))
2 +

n
∑

i=1

ai(t)b
′
i(t) −

n
∑

i=1

dib
′
i(t)

+
1

2

n
∑

i,j=1

ηijbi(t)bj(t) +
1

2

n
∑

i=1

ηibi(t)

c(0) = 0,

(4.13)

if we can choose H(x), G(x), and P (x) such that

(4.14)
1

2

n
∑

i=1

Hi
2(x) − 1

2

n
∑

i=1

∂Hi

∂xi

(x) − 1

2
η(x) + P (x) ≡ 0

where Hi(x) − ∂G
∂xi

(x) = li(x).

We have several choices of H(x), G(x), and P (x). We list some of them as follows.

Corollary 4.1. Choose a C∞ function G(x) such that

∆G(x) + |∇G|2(x) + 2
n
∑

i=1

li(x)
∂G

∂xi

(x) ≡ η(x) −
n
∑

i=1

li
2(x) −

n
∑

i=1

∂li
∂xi

(x).

Let

Hi(x) =
∂G

∂xi

(x) + li(x), 1 6 i 6 n,

and

P (x) =

n
∑

i=1

∂Hi

∂xi

(x) =

n
∑

i=1

(

∂2G

∂xi
2
(x) +

∂li
∂xi

(x)

)

Then the corresponding Kolmogorov equation is































∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

(

li(x) +
∂G

∂xi

(x)

)

∂ũ

∂xi

(t, x)

−
n
∑

i=1

(

∂li
∂xi

(x) +
∂2G

∂xi
2
(x)

)

ũ(t, x)

ũ(0, x) = eG(x)−F (x)σ0(x)
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where

ũ(t, x) = exp
[

c(t) + G(x) +

n
∑

i=1

ai(t)xi − F (x + b(t))
]

· u(t, x + b(t))

and ai(t), bi(t), and c(t) satisfy ODEs (4.11), (4.12) and (4.13).

Corollary 4.2. Choose

G(x) ≡ 0

P (x) =
1

2
η(x) − 1

2

n
∑

i=1

li
2(x) − 1

2

n
∑

i=1

∂li
∂xi

(x)

Hi(x) = li(x), 1 6 i 6 n.

Then the corresponding Kolmogorov equation becomes































∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

li(x) +
∂ũ

∂xi

(t, x)

− 1

2

(

n
∑

i=1

li
2(x) −

n
∑

i=1

∂li
∂xi

(x) − η(x)
)

ũ(t, x)

ũ(0, x) = e−F (x)σ0(x)

where

ũ(t, x) = exp

[

c(t) +

n
∑

i=1

ai(t)xi − F (x + b(t))

]

· u(t, x + b(t))

and ai(t), bi(t), and c(t) satisfy ODEs (4.11), (4.12) and (4.13).

Corollary 4.3. Choose a C∞ function G(x) such that ∂G
∂xi

(x) = −li(x) if

dij = dji for 1 6 i, j 6 n. Let P (x) = 1
2η(x) and Hi(x) ≡ 0, 1 6 i 6 n. Then the

corresponding Kolmogorov equation becomes










∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) − 1

2
η(x)ũ(t, x)

ũ(0, x) = eG(x)−F (x)σ0(x).

where

ũ(t, x) = exp
[

c(t) + G(x) +

n
∑

i=1

ai(t)xi − F (x + b(t))
]

· u(t, x + b(t))

and ai(t), bi(t), and c(t) satisfy ODEs (4.11), (4.12) and (4.13).

Corollary 4.4. Choose

G(x) = F (x)

P (x) =
1

2
η(x) − 1

2

n
∑

i=1

fi
2(x) +

1

2

n
∑

i=1

∂fi

∂xi

(x)

Hi(x) = fi(x), 1 6 i 6 n.
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Then the corresponding Kolmogorov equation becomes































∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

i=1

fi(x) +
∂ũ

∂xi

(t, x)

+
1

2

(

n
∑

i=1

fi
2(x) −

n
∑

i=1

∂fi

∂xi

(x) − η(x)
)

ũ(t, x)

ũ(0, x) = σ0(x)

where

ũ(t, x) = exp
[

c(t) +

n
∑

i=1

ai(t)xi + F (x) − F (x + b(t))
]

· u(t, x + b(t))

and ai(t), bi(t), and c(t) satisfy ODEs (4.11), (4.12) and (4.13).

5. New Algorithms in Real Time Solution of the Nonlinear Filtering

Problem. The purpose of this section is to describe our new algorithms which can

solve all engineering problems in real time. In section 5.1, we give some detail why

the solution arising from our algorithm converges to the true solution of the DMZ

equation for the filtering model (2.1). In section 5.2, we describe how our algorithm

works for the general filtering model (1.1).

5.1. Yau–Yau algorithm of solving nonlinear filtering problems.

The direct method described in the previous section works very nicely for the Yau

filtering system and it is very easy to implement. However, in all the direct methods

in [Ya-Ya1] [Ya-Ya2] [Ya-Hu1][Ya-Hu2], they need to assume that all the observation

terms hi(x), 1 6 i 6 m, are degree one polynomials. On the other hand, in many

practical examples, e.g., tracking problem, the observation terms may be nonlinear. In

2000, we [Ya-Ya3] proposed a novel algorithm to solve the DMZ equation in real time

and memoryless way. Under the assumptions that the drift terms fi(x), 1 6 i 6 n,

and their first and second derivatives, and the observation terms hi(x), 1 6 i 6 m,

and their first derivatives, have linear growth, we showed that the solution obtained

from our algorithms converges to the true solution of the DMZ equation. Recently we

[Ya-Ya4] show that under very mild conditions which essentially say that the growth

of |h| is greater than the growth of |f |, the DMZ equation admits a unique nonnegative

solution u which can be approximated by solutions uR of DMZ equation on the ball

BR with uR|∂BR
= 0. The rate of convergence can be efficiently estimated in L1-norm.

The solutions uR can in turn be approximated efficiently by an algorithm depending

only on solving the time independent Kolmogorov equation on BR. Our algorithm

can solve practically all engineering problems including the cubic sensor problem in

real time and memoryless manner.

It is shown in [Ya-Ya3] that the robust DMZ equation can be written in the
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following form

(5.1)







































∂u

∂t
(t, x) =

1

2
∆u(t, x) + (−f(x) + ∇K(t, x)) · ∇u(t, x)

+

(

− div f(x) − 1

2
|h(x)|2 +

1

2
∆K(t, x)

− f(x) · ∇K(t, x) +
1

2
|∇K(t, x)|2

)

u(t, x)

u(0, x) = σ0(x).

where K =
∑m

j=1 yi(t)hj(x), f = (f1, . . . , fn) and h = (h1, . . . , hm).

To simplify our presentation, we introduce the following condition.

Condition (C1):

−1

2
|h|2 − 1

2
∆K − f · ∇K +

1

2
|∇K|2 + |f −∇K| ≤ c1 ∀ (t, x) ∈ [0, T ]× R

n,

where c1 is a constant possibly depending on T .

Our main theorems are as follows:

Theorem 5.1 ([Ya-Ya4]). Consider the filtering model (2.1). For any T > 0, let

u be a solution of the robust DMZ equation (5.1) in [0, T ] × R
n. Assume Condition

(C1) is satisfied.

Then

(5.2) sup
0≤t≤T

∫

Rn

e
√

1+|x|2u(t, x) ≤ e(c1+
n+1

2
)T

∫

Rn

e
√

1+|x|2u(0, x).

In particular,

(5.3) sup
0≤t≤T

∫

|x|≥R

u(t, x) ≤ e−
√

1+R2

e(c1+
n+1

2
)T

∫

Rn

e
√

1+|x|2u(0, x).

Theorem 5.1 above says that one can choose a ball large enough to capture almost

all the density. In fact we have a precise estimate of density lying outside this ball by

(5.3).

Theorem 5.2 ([Ya-Ya4]). Consider the filtering model (2.1). For any T > 0, let

u be a solution of the robust DMZ equation (5.1) in [0, T ]× R
n. Assume

(1) Condition (C1) is satisfied.

(2) − 1
2 |h|2 − 1

2∆K − f(x) · ∇K(t, x) + 1
2 |∇K|2 + 12 + 2n + 4|f −∇K| ≤ c2 for

all (t, x) ∈ [0, T ]× R
n, where c2 is a constant possibly depending on T .

(3) e−
√

1+|x|2[12 + 2n + 4|f −∇K|] ≤ c3 for all (t, x) ∈ [0, T ]× R
n.

Let R ≥ 1 and uR be the solution of the following DMZ equation on the ball BR

(5.4)



































∂uR

∂t
=

1

2
∆uR+(−f +∇K)·∇uR

+

(

− div f− 1

2
|h|2+

1

2
∆K−f · ∇K+

1

2
|∇K|2

)

uR

uR(t, x) = 0 for (t, x) ∈ [0, T ]× ∂BR

uR(0, x) = σ0(x).
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Let v = u − uR. Then v ≥ 0 for all (t, x) ∈ [0, T ]× BR and

(5.5)

∫

BR

φv(T, x) ≤ ec2T − 1

c2
c3e

−Re(c1+
n+1

2
)T

∫

Rn

e
√

1+|x|2u(0, x)

where φ(x) = e
|x|

4

R3
− 2|x|

2

R − e−R. In particular

(5.6)

∫

B R

2

v(T, x)

≤ 2(ec2T − 1)

c2
c3e

− 9

16
Re(c1+

n+1

2
)T

∫

Rn

e
√

1+|x|2u(0, x).

Theorem 5.2 above says that we can approximate u by uR. The approximation

is good if R is large enough. In fact we have a precise error estimate of this approxi-

mation by (5.6).

Theorem 5.3 ([Ya-Ya4]). Let Ω be a bounded domain in R
n. Let F : [0, T ]×Ω →

R
n be a family of vector fields C∞ in x and Holder continuous in t with exponent α

and J : [0, T ]×Ω → R be a C∞ function in x and Holder continuous in t with exponent

α such that the following properties are satisfied

(5.7) | divF (t, x)| + 2|J(t, x)| + |F (t, x)| ≤ c for (t, x) ∈ [0, T ]× Ω

(5.8) |F (t, x) − F (t̄, x)| + | div F (t, x) − div F (t̄, x)|
+ |J(t, x) − J(t̄, x)| ≤ c1|t − t̄|α

for (t, x), (t̄, x) ∈ [0, T ]× Ω.

Let u(t, x) be the solution on [0, T ]× Ω of the equation

(5.9)



















∂u

∂t
(t, x) =

1

2
∆u(t, x) + F (t, x) · ∇u(t, x) + J(t, x)u(t, x)

u(0, x) = σ0(x)

u(t, x)
∣

∣

∂Ω
= 0.

For any 0 ≤ τ ≤ T , let Pk = {0 = τ0 < τ1 < τ2 < · · · < τk = τ} be a partition of [0, τ ]

where τi = iτ
k
. Let ui(t, x) be the solution on [τi−1, τi] × Ω of the following equation

(5.10)































∂ui

∂t
(t, x) =

1

2
∆ui(t, x) + F (τi−1, x) · ∇ui(t, x)

+ J(τi−1, x)ui(t, x)

ui(τi−1, x) = ui−1(τi−1, x)

ui(t, x)
∣

∣

∂Ω
= 0.
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Here we use the convention u0(t, x) = σ(x). Then the solution u(t, x) of (5.9) can

be computed by means of the solution ui(t, x) of (5.10). More specifically, u(τ, x) =

lim
k→∞

uk(τk, x) in L1-sense on Ω and the following estimate holds

(5.11)

∫

Ω

|u − uk|(τk, x) ≤ 2c2

α + 1

T α+1ecT

kα

where

(5.12) c2 =c1e
cT+c1

√

Vol (Ω)ec2T

√

2c2T

∫

Ω

u2(0, x)+

∫

Ω

|∇u(0, x)|2.

The right hand side of (5.11) goes to zero as k → ∞.

In case (5.9) and (5.10) are DMZ equations, i.e., F (t, x) = −f(x) + ∇K and

J(t, x) = − div f − 1
2 |h|2 + 1

2∆K − f · ∇K + 1
2 |∇K|2, where K =

∑m

j=1 yj(t)hj(x),

by Proposition 5.1 below (which is similar to Proposition 3.1 of [Ya-Ya3]), ui(τi, x)

can be computed by ũi(τi, x) where ũi(t, x) for τi−1 ≤ t ≤ τi satisfies the following

Kolmogorov equation

(5.13)











































∂ũi

∂t
(t, x)=

1

2
∆ũi(t, x)−

n
∑

j=1

fj(x)
∂ũi

∂xj

(t, x)

−
(

divf(x)+
1

2

m
∑

j=1

h2
j(x)

)

ũi(t, x)

ũi(τi−1, x)= exp
(

m
∑

j=1

(yj(τi−1)−yj(τi−2))hj(x)
)

ũi−1(τi−1, x).

In fact

(5.14) ui(τi, x) = exp
(

−
m
∑

j=1

yj(τi−1)hj(x)
)

ũi(τi, x).

Therefore theoretically to solve the DMZ equation in a real time manner, we only

need to compute the following Kolmogorov equations off-line



































∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) −

n
∑

j=1

fj(x)
∂ũ

∂xj

(t, x)

−
(

div f(x) +
1

2

m
∑

j=1

h2
j(x)

)

ũ(t, x)

ũ(0, x) = φi(x)

where {φi(x)} is an orthonormal base in L2(Rn). The only real time computation

here is to express arbitrary initial condition φ(x) as the linear combination of φi(x).

But this can be done by means of parallel computation.

The following Proposition 5.1 plays a fundamental role in our real time solution

to the robust DMZ equation (5.1) in memoryless manner.
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Proposition 5.1. ũ(t, x) satisfies the following Kolmogorov equation

∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x) − f(x) · ∇ũ(t, x)

−
(

div f(x) +
1

2

m
∑

i=1

h2
i (x)

)

ũ(t, x)(5.15)

for τℓ−1 ≤ t ≤ τℓ if and only if

(5.16) u(t, x) = e
−

m
∑

i=1

yi(τℓ−1)hi(x)
ũ(t, x)

satisfies the robust DMZ equation with observation being frozen at y(τℓ−1)

∂u

∂t
(t, x) =

1

2
∆u(t, x) + (−f(x) + ∇K(τℓ−1, x)) · ∇u(t, x)

+

(

− div f(x) − 1

2
|h(x)|2 +

1

2
∆K(τℓ−1, x)(5.17)

−f(x) · ∇K(τℓ−1, x) +
1

2
|∇K(τℓ−1, x)|2

)

u(t, x).

We remark that (5.17) is obtained from the robust DMZ equation by freezing the

observation term y(t) to y(τℓ−1). We shall show that the solution of (5.17) approxi-

mates the solution of the robust DMZ equation very well in L1-sense.

Suppose that u(t, x) is the solution of the robust DMZ equation and we want to

compute u(τ, x). Let Pk = {0 = τ0 < τ1 < τ2 < . . . < τk = τ} be a partition of [0, τ ]

where τi = iτ
k

. Let ui(t, x) be a solution of the following partial differential equation

for τi−1 ≤ τ ≤ τi:

(5.18)































































∂ui

∂t
(t, x) =

1

2
∆ui(t, x) + (−f(x) + ∇K(τi−1, x)) · ∇ui(t, x)

+

(

− div f(x) − 1

2
|h(x)|2

+
1

2
∆K(τi−1, x)

− f(x) · ∇K(τi−1, x)

+
1

2
|∇K(τi−1, x)|2

)

ui(t, x)

ui(τi−1, x) = ui−1(τi−1, x).

By Theorem 5.3 we have that u(τ, x) = lim
k→∞

uk(τk, x) in L1-sense. By Proposition

5.1, u1(τ1, x) can be computed by ũ1(τ1, x) where ũ1(t, x) for 0 ≤ t ≤ τ1 satisfies

equation (5.15) with initial condition

(5.19) ũ1(0, x) = σ0(x).

In fact

(5.20) u1(τ1, x) = ũ1(τ1, x).
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In general Proposition 5.1 tells us that for i ≥ 2, ui(τi, x) can be computed by ũi(τi, x),

where ũi(t, x) for τi−1 ≤ t ≤ τi satisfies equation (5.15) with initial condition

(5.21) ũi(τi−1, x) = exp
[

m
∑

j=1

(yj(τi−1) − yj(τi−2))hj(x)
]

ũi−1(τi−1, x)

where the last initial condition comes from

ũi(τi−1, x)

= ui(τi−1, x) exp
(

m
∑

j=1

yj(τi−1)hj(x)
)

= ui−1(τi−1, x) exp
(

m
∑

j=1

yj(τi−1)hj(x)
)

= exp
(

−
m
∑

j=1

yj(τi−2)hj(x)
)

ũi−1(τi−1, x) exp
(

m
∑

j=1

yj(τi−1)hj(x)
)

= exp
[

m
∑

j=1

(yj(τi−1) − yj(τi−2)hj(x)
]

ũi−1(τi−1, x).

In fact,

(5.22) ui(τi, x) = exp
(

−
m
∑

j=1

yj(τi−1)hj(x)
)

ũi(τi, x)

Theorem 5.4 ([Ya-Ya4]). Let uR be the solution of (5.4) the DMZ equation

on BR. Assume that

(1) f(x) and h(x) have at most polynomial growth.

(2) For any 0 ≤ t ≤ T , there exist positive integer m and positive constants c′

and c′′ independent of R such that the following two inequalities hold on R
n.

(a) m2

2 |x|2m−2− m
2 (m+n−2)|x|m−2−m|x|m−2x · (f −∇K)− ∆K

2 − 1
2 |h|2−

f · ∇K + 1
2 |∇K|2 ≥ −c′

(b)
∣

∣

m2|x|2m−2

2 − m(m+n−2)
2 |x|m−2 − m|x|m−2(f −∇K) · x

∣

∣

≤ m(m+1)
2 |x|2m−2 + c′′

(3) − 1
2 |h|2 − 1

2∆K −
n
∑

j=1

fj
∂K
∂xj

+ 1
2 |∇K|2 ≤ c1 for all (t, x) ∈ [0, T ] × R

n where

c1 is a constant possibly depending on T .

Then for any R0 < R,
∫

BR0

(

e−|x|m − e−Rm

0

)

uR(T, x)

≥ e−c′T

∫

BR0

(e−|x|m − e−Rm

0 )σ0(x)

+
e−Rm

0

c′

(

m(m + 1)

2
R2m−2

0 + c′′
)

(

1 − ec′T
)

∫

BR

σ0(x).
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In particular, the solution u of the robust DMZ equation on R
n has the following

estimate

∫

Rn

e−|x|mu(T, x) ≥ e−c′T

∫

Rn

e−|x|mσ0(x).

In practical nonlinear filtering computation, it is important to know how much

density remains within the given ball. Theorem 5.4 provides such a lower estimate.

In particular, the solution u of the DMZ equation in R
n obtained by taking lim

R→∞
uR,

where uR is the solution of the DMZ equation in the ball BR, is a nontrivial solution.

5.2. Extended Yau–Yau Algorithm for General Nonlinear Filtering

Model.

The purpose of this subsection is to describe the extended Yau–Yau algorithm for

general nonlinear filtering model (1.1) developed by Yan and Yau [Yan-Ya]. For the

system (1.1), the unnormalized density σ(x, t) of xt conditioned on the observation

history Yt = {ys, 0 6 s 6 t} is given by the following DMZ equation

(5.23)







dσ(x, t) = Lσ(x, t)dt + σ(x, t)hT (x, t)R−1(t)dyt

σ(x, 0) = σ0(x)

in which σ0(x) is the probability density of the initial point x0, and

(5.24) L(∗) ≡ 1

2

n
∑

i,j=1

∂2

∂xi∂xj

[

(GQGT )ij∗
]

−
n
∑

i=1

∂(fi∗)
∂xi

The DMZ equation (5.23) is a stochastic partial differential equation due to the

term with dyt, there is no easy way to derive a recursive algorithm for solving this

equation. In real applications, we are interested in constructing robust state estima-

tors from observed sample paths with some property of robustness. Using Rozovsky’s

transformation [Ro]

(5.25) σ(x, t) = exp
[

hT (x, t)R−1(t)yt

]

ρ(x, t),

we obtain the following robust DMZ equation for ρ(x, t) which involves yt only in the

coefficients:

(5.26)























∂ρ

∂t
+

∂

∂t

(

hT R−1
)T

ytρ

= exp
(

−hT R−1yt

)

[

L− 1

2
hT R−1h

]

[

exp
(

hT R−1yt

)

ρ
]

ρ(x, 0)=σ0(x)

Proposition 5.2 ([Yan-Ya]). The robust DMZ equation (5.26) is equivalent to
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the following partial differential equation,

(5.27)











































































































































































∂ρ

∂t
+

∂

∂t

(

hT R−1
)T

ytρ

=
1

2

n
∑

i,j=1

(

GQGT
) ∂2ρ

∂xi∂xj

+

n
∑

i=1

[

n
∑

j=1

∂

∂xj

(

GQGT
)

ij

+

n
∑

j=1

(

GQGT
)

ij

(

∂h

∂xj

R−1yt

)

− fi

]

∂ρ

∂xi

+

{

1

2

n
∑

i,j=1

∂2

∂xi∂xj

(

GQGT
)

ij

+

n
∑

i,j=1

∂

∂xi

(

GQGT
)

ij

(

∂h

∂xj

R−1yt

)

+
1

2

n
∑

i,j=1

(

GQGT
)

ij

[

(

∂2h

∂xi∂xj

R−1yt

)

+

(

∂h

∂xi

R−1yt

)(

∂h

∂xj

R−1yt

)

]

−
n
∑

i=1

∂fi

∂xi

−
n
∑

i=1

fi

(

∂h

∂xi

R−1yt

)

− 1

2

(

hT R−1h
)

}

ρ

ρ(x, 0) = σ0(x)

where for h being an m × 1 column vector, we define

∂h

∂t
≡
[

∂h1

∂t

∂h2

∂t
. . .

∂hm

∂t

]

,
∂h

∂xi

≡
[

∂h1

∂xi

∂h2

∂xi

. . .
∂hm

∂xi

]

∂2h

∂xi∂xj

≡
[

∂2h1

∂xi∂xj

∂2h2

∂xi∂xj

. . .
∂2hm

∂xi∂xj

]

The fundamental problem of nonlinear filtering theory is how to solve the robust

DMZ equation (5.26) or (5.27) in real time and in memoryless manner. In this section

we shall describe the extended Yau–Yau algorithm which achieves this goal for any

filtering system with arbitrary initial distribution.

Let Pi = {0 = τ0 < τ1 < τ2 · · · < τi = T } be a partition of [0, T ]. Let ρi(x, t) be

a solution of the following partial differential equation for τi−1 6 t 6 τi,

(5.28)























∂ρi

∂t
+

∂

∂t

(

hT R−1
)T

yτi−1
ρi

= exp
(

−hT R−1yτi−1

)

(

L − 1

2
hT R−1h

)

[

exp
(

hT R−1yτi−1

)

ρi

]

ρi(x, τi−1)=ρi−1(x, τi−1)

Define the norm of the partition Pk by |Pk| = sup16i6k{|τi − τi−1|}. As |Pk| → 0

we have

(5.29) ρ(x, t) = ρi(x, t)
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where ρ(x, t) is the solution of the robust DMZ equation (5.26) or (5.27). As shown

in [Ya-Ya4] (See section 4 above), the solutionof (5.28) approximates the solution of

robust DMZ equation (5.26) or (5.27) very well in both pointwise sense and L2 sense

for the model (2.1). For the most general (1.1), the proof of (5.29) can be done in a

similar way, but it is substantially more difficult.

Proposition 5.3. For τi−1 6 t 6 τi, ρi(x, t) satisfies (5.28) if and only if

(5.30) ui(x, t) = exp
[

hT (x, t)R−1(t)yτi−1

]

ρi(x, t)

satisfies the following Kolmogorov-type equation

(5.31)
∂ui

∂t
(x, t) =

(

L − 1

2
hT R−1h

)

ui(x, t)

Observe (5.25), (5.29) and (5.30) for time interval τi−1 6 t 6 τi, at t = τi−1, the

left hand of time interval, we have



















σ(x, τi−1) = exp
[

hT (x, τi−1)R
−1(τi−1)yτi−1

]

ρ(x, τi−1)

ρ(x, τi−1) = ρi(x, τi−1)

ui(x, τi−1) = exp
[

hT (x, τi−1)R
−1(τi−1)yτi−1

]

ρ(x, τi−1)

(5.32)

⇒ ui(x, τi−1) = σ(x, τi−1)(5.33)

at t = τi, the right hand of the time interval, we have



















σ(x, τi) = exp
[

hT (x, τi)R
−1(τi)yτi

]

ρ(x, τi)

ρ(x, τi) = ρi(x, τi)

ui(x, τi) = exp
[

hT (x, τi)R
−1(τi)yτi−1

]

ρi(x, τi)

(5.34)

⇒ σ(x, τi) = exp
[

hT (x, τi)R
−1(τi)

(

yτi
− yτi−1

)]

ui(x, τi)(5.35)

Our main idea is given as follows. First, to solve the DMZ equation (5.23) is

equivalent to solve the robust DMZ equation (5.26) or (5.27). Second, the solutions

of the robust DMZ equation (5.26) or (5.27) can be obtained approximately by solving

(5.28) on each time interval τi−1 6 t 6 τi. Finally, to solve (5.28) is equivalent to the

Kolmogorov-type equation (5.31) through Proposition 5.3.

On each time interval τi−1 6 t 6 τi, (5.33) can be treated as the initial condition

of (5.31) ui(x, τi) can be treated as the prediction of unnormalized density when

the observation yτi−1
is given, but yτi

is not available. (5.35) on the one hand, is the

update unnormalized density when the observation yτi
is available; on the other hand,

it is the initial condition for next time step.

Proof. [Conclusion:] The Yan–Yau algorithm can be described as follows: for
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0 6 t 6 τ1, u1(x, t) can be calculated through










∂u1

dt
(x, t) =

(

L − 1

2
hT R−1h

)

u1(x, t)

u1(x, 0) = σ0(x)

(5.36)

and σ(x, τ1) = exp
[

hT (x, τ1)R
−1(τ1)yτ1

]

u1(x, τ1)(5.37)

For i > 2 and τi−1 6 t 6 τi, ui(x, t) can be calculated through

(5.38)











∂ui

dt
(x, t) =

(

L − 1

2
hT R−1h

)

ui(x, t)

ui(x, τi−1) = σ(x, τi−1)

and σ(x, τi) is obtained by (5.35).

Observe that in our algorithm at time step i, we only need the observation at time

τi−1 and τi to calculate σ(x, τi). We do not need any other previous observation data.

Observe also that the partial differential equation (5.31) is independent of observation

yt. It can be computed off-line.
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