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OBSERVERS IN LANGUAGE-BASED CONTROL∗

SEAN B. ANDERSSON† , DIMITRIS HRISTU-VARSAKELIS‡ , AND MORTEZA

LAHIJANIAN†

Abstract. This work discusses the construction of an observer for language-driven control

systems. Such systems accept symbolic inputs corresponding to feedback control laws together with

logical conditions which determine when each control law is to be applied. Here, we explore the

problem of how to identify the symbolic string driving the system through observation of its output.

We discuss the identification of individual “instructions” from which inputs are composed, as well as

the recovery of more global features of the input. These features can be quite complex depending on

the richness of the grammar. Our approach is motivated by settings where language-driven systems

(e.g., mobile robots) must cooperate “silently”, so that a newcomer who wants to be useful must

first determine what others in the team are trying to accomplish. Our ideas are illustrated in a series

of numerical experiments involving symbolic control of linear systems using the motion description

language MDLe.

1. Introduction. One of R. W. Brockett’s influential ideas was that in systems
of even mild complexity, such as robots moving about in their environment, control
design should take place not in the space of mappings between sensor and actuator
signals but rather in a set of control primitives. These primitives, termed atoms,
corresponded roughly to well-defined feedback control laws [1]. By assigning a symbol
to each atom, one could then compose control strings — elements of a so-called Motion
Description Language (MDL) — which would be “interpreted” by a system to produce
trajectories, as it evolved under the controllers corresponding to the various symbols.
This need to “lift” the controller design process from the level of individual sensors
and actuators is perhaps evident to anyone working with laboratory robots, in the
same way that programmers understand the need for hierarchical programming and
high-level languages. There are at least two reasons for doing so, one having to
do with the desire to achieve hardware-independence (as Brockett himself has often
illustrated using the example of postscript as a language for printers), the other being
the reduction in complexity that results when passing to the language-based setting
[2] .

With Brockett’s original MDL papers [1, 3], these ideas were placed on a systems
and control-oriented foundation that codified the existing intuition and – to a certain
extent – also coincided with the beginning of a broader effort in the control systems
community aimed at making contact with ideas from computer science. His work
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set the stage for new ways of applying existing tools, and thinking about control
problems at a more abstract level [4]-[8]. It has also lead to the development of other
control languages and similar constructs, all of which, at one level or another, seek to
take advantage of the complexity reduction offered by symbolic control. Besides the
“direct descendants” of MDL, [9]-[11], one finds in the literature a broad collection of
works whose viewpoint is clearly influenced by the basic idea of a motion description
language and symbolic control. A small sampling of recent works includes [4], [12]-[20].

The goal of this paper is to explore the problem of determining the symbolic
inputs driving a control system from observations of its (continuous) outputs. Our
work is motivated by a fundamental problem that emerges in the areas of robotics
and cooperative control, namely how to deduce what a robot is doing by observing its
actions. Since the time of the Brockett’s original work on MDLs, robot cooperation
has emerged as one of the focal points in robotics research, especially in the context
of mobile robots and teams thereof. The complexity and hardware-independence
arguments that motivated the development of MDL appear even stronger in this newer
context. For the present work, we have in mind scenarios in which multiple language-
driven robots must cooperate “silently” for reasons having to do with security, secrecy,
energy consumption, or lack of communication equipment.

In a cooperation-without-communication setting, there are a series of challenges
that arise, not the least of which is how one should participate in the team once the
goal is understood (for example, moving an object requires a much different type of
coordination than does searching a large area). Perhaps the most basic problem that
an autonomous robot must undertake before being able to assist its peers, however,
is to determine what they are trying to accomplish. Without communication, the
newcomer must do this simply by observing the other’s actions. In a language-based
setting, this translates to understanding which control primitive(s) (MDL atoms) a
subject is executing, based on observations; essentially, we are asking for a symbolic
observer. This paper is concerned precisely with the construction of such observers.
If a control system evolves based on a collection of control primitives (e.g. atoms of a
motion description language or similar construction), then instead of a state estimate,
the language-based observer should produce an estimate of which symbol “runs” at
each time. In cases where the control language supports additional structure (e.g.,
the “behaviors” and “plans” of the extended Motion Description Language (MDLe)
[9]) the observer should also recover that structure. Besides being interesting from a
systems viewpoint, such a symbolic observer lies at the heart of “silent cooperation” in
multi-robot groups. As we will see, studying the matter in a language-based setting is
a good choice in the present context, for the same reason that led Brockett to propose
MDLs, namely hardware independence, and “freedom” from too many options (i.e.,
an infinite number of control laws, vs. combinations of a few basic primitives). The
main contribution of the current work is a structured approach for handling the basic
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case (a simplified language syntax and linear time-invariant dynamics) by composing
existing tools from estimation and hypothesis testing.

As alluded to in the previous discussion, viewing the problem in question as
one of observation implies that in addition to the usual state-space in which the
underlying system evolves, we consider also a discrete state corresponding to the
linguistic primitive being used to steer the system at a particular time. Although we
will not require any dynamics at the level of linguistic primitives here, the observer
viewpoint will be a helpful “guide”. Alternatively, one could think of this as an
inverse problem where the input space is made up of strings rather than continuous
signals. While we will not explore that route here, it is interesting to note the parallels
between such an approach and the basic problem behind R. W. Brockett’s doctoral
dissertation [21].

The remainder of this paper is organized as follows. In Section 2 we give a
brief description of the motion description language MDLe. We make extensive use
of MDLe in this work, partly for the sake of concreteness, but we note that what
is described here could be accomplished with other motion description languages
as well, including some of those cited in the Introduction. Section 3 discusses the
fundamental challenges involved in constructing a observer for symbolic inputs and
outlines a general approach to the problem. Section 4 applies this approach to the
special case of a linear system and presents a series of numerical experiments.

2. The motion description language MDLe . Consider an underlying phys-
ical system (equipped with a set of sensors and actuators) for which we want to specify
a motion control task. Let the system’s evolution be governed by

(1) x(k + 1) = f(x(k), u(k)) +G(x(k))w(k); y(k) = h(x(k)) + ν(k)

where x ∈ Xn, an n-dimensional manifold, u(k) ∈ Rm may be an open loop input
or a feedback law of the type u = u(k, h(x(k))), y(k) ∈ Rp, and G is a matrix
whose columns are vector fields in Rn. The system is subject to sensor and actuator
noise, ν(k) and w(k), respectively. The noise processes are taken to be bounded
and independent. We assume that Xn may contain obstacles and that there may be
subsets of Xn that are uncertain or unknown.

In order to be able to discuss control problems for (1) in a language-based setting,
we will first impose some structure on the kinds of inputs (control laws) that will be
allowed, as well as on the rules which will govern their compositions. The result will be
a formal language in which motion control tasks will be described, and which will allow
us to compose complex control laws from simpler ones. See [11] for a more complete
description of MDLe’s grammar; for background material on formal languages and
grammars, see [22].

Consider for the moment the deterministic version of (1) where ν(k) = w(k) = 0
for all time. Let U = {u : Rp × R+ → Rm} be a finite subset of the set of possible
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control laws (sometimes termed “control quarks”), including the trivial unull = 0.
Let B = {ξ = (ψ AND (t ≤ T )), ψ : Rp → {0, 1}, T ∈ R+ ∪ {∞}} be a finite set
of boolean functions of the output variables and time, including the null function
ξnull : Rp ×R∗+ → 1. We will refer to elements of B as interrupt functions. The sets
U and B, together with the special symbols “(”, “)” and “,” define a finite alphabet
over which the MDLe strings are formed.

Definition 1 ([11]). MDLe is the formal language generated by the context free
grammar
M := (N , T , S,Π), where:
N = {Q} is the set of non-terminal symbols, where Q is designated as the start
symbol;
T is the set of terminal symbols, i.e. the set of symbols that form the strings of the
language. In other words, T = U ∪ B ∪ {(), };
Π ⊂ N × (N ∪T )∗ is a finite relation which consists of the following production rules:

(P1) Q→ ε, where ε is the null string.
(P2) Q→ (u, ξ), u ∈ U , ξ ∈ B
(P3) Q→ QQ

(P4) Q→ (Q, ξ), ξ ∈ B
To compose a string in MDLe one begins with a collection of nonterminal symbols

(in this case the only choice is the start symbol Q) and applies the production rules
P1-P4 until the resulting string contains only terminal symbols. For example, a single
application of P2 yields the simplest MDLe strings, termed atoms; they are pairs of
the form (u, ξ), where the control u is selected from U and the interrupt ξ from B. To
evaluate or run the atom (u, ξ) means to apply the input u to the dynamical system
until the interrupt function ξ is “high” (logical 1).

MDLe allows us to compose motion control programs (generically referred to as
plans), from other simpler programs, all the way down to hardware-specific feedback
laws. For example, we could use the production rules P4, P3, P2, P2 to form Q →
(Q, ξb) → (QQ, ξb) → ((u1, ξ1)Q, ξb) → ((u1, ξ1)(u2, ξ2), ξb). Evaluating the plan b =
((u1, ξ1)(u2, ξ2), ξb) means evaluating the atom (u1, ξ1) followed by (u2, ξ2) until the
interrupt function ξb returns “high” (logical 1), or (u2, ξ2) has terminated, whichever
occurs first. Plans themselves can be composed to form higher-level strings, e.g.,
((b, (u3, ξ3)), ξ4). MDLe is a context free language, and it is therefore possible to
write an MDLe compiler (e.g., [10, 4]). For more details on the language and its
complexity, including example programs, see [11].

3. Observers for Language-driven systems . The basic problem we are con-
cerned with is the following:

Problem 1. Given a finite alphabet of control and interrupt quarks, U and ψ,
find the MDLe plan that produced the observed output y of (1), assuming that one
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exists.

Solving this problem requires one to be able to identify:

1. the control quarks of which the plan is composed
2. the times at which atom transitions occur
3. the interrupt that causes each transition, and
4. the overall structure of the MDLe plan.

In the sequel we develop a method to accomplish the first three items in the case where
the plan structure is straightforward, namely a series of atoms with no higher-level
behaviors or nesting. A possible starting point for exploring the general case is [11].

3.1. Control Symbol Detection. Consider the system (1), where the input u
is determined by an MDLe atom. If u (equivalently, the control quark corresponding
to the atom) were known, then we would have available a model for the closed-loop
system, and we could construct an estimator of the conditional density of the state
based on the observations. In our setting, we do not know the particular control
quark that is running at a given time; we know only that it is one of a given and finite
collection as defined by the set U . The task of identification is then the problem of
determining which control quark was most likely to have given rise to the observations.

The proposed scheme for identifying control quarks is illustrated in Fig. 1. Each
element of U gives rise to a different possible model of the system dynamics. For each
such model, we construct a corresponding estimator which is to maintain a conditional
density for the system state. That density is then transformed through the observation
function into a density on the next measurement. To determine which model is the
one most likely to be currently executing, an m−ary hypothesis test is used, based on
the conditional densities and driven by actual measurements (see, e.g., [23] for details
on hypothesis testing).

In between measurements, the conditional density of the state evolves according
to the well-known Fokker-Planck equation. Solving this equation in the general case is
not practical, and thus some approximation is required. The filter should be selected
so as to take advantage of any structure in the system models. For example, in
the linear system setting considered in Sec. 4 below, state estimation is performed
using Kalman filters. One notable possibility for handling the general case is to use a
particle (or sequential Monte Carlo) filter, or one of its many variants [24].

To apply the m-ary hypothesis framework based on a single measurement, we
assume we have a priori probabilities πi, i = 1, . . . , Nc on the likelihood that control
quark i is being run at the current time. As described in Sec. 3.3 below, these
probabilities are updated based on the measurements and the collection of plans
through the use of a partially-observed Markov chain framework. HypothesisHi in the
tester is that the current measurement, y[k], comes from the conditional probability
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Fig. 1. Illustrating control quark detection. The current observations are used to drive a bank

of estimators, one for each possible control quark. Each estimator is used to generate the predicted

density of the next observation. A bank of hypothesis testers compares the next observation to the

set of predicted densities to determine whether or not a particular model was likely to have given

rise to the measurement.

density of the observation under the model corresponding to the ith control quark:

Hi : y[k] ∼ pi[k].(2)

The hypothesis Hi is accepted if it is most likely to have given rise to the observation
y[k].

If we assume that each control quark produces a unique observation, then in the
absence of noise and after some possible transient behavior, the m-ary test will settle
on a single hypothesis corresponding to the current control quark. In any practical
setting, however, noise cannot be ignored and single measurements are not expected
to be unique. To improve the performance of the observer, the hypothesis test can
be modified to use multiple measurements. To do so, one builds the conditional
joint distributions based on the previous m measurements rather than on a single
measurement. Under the assumption that the observation noise process is white, the
ith hypothesis becomes

Hi : y[k] ∼ ρm[k] := pi[k]pi[k − 1] ... pi[k −m].(3)

The use of multiple observations helps to overcome the effects of noise on the mea-
surements by effectively increasing the signal-to-noise ratio. As m increases, however,
the time it takes the hypothesis tester to settle also increases, thus delaying detection
and identification of symbol transitions. Intuitively, we expect that more samples will
be needed if the measurement noise is large. There is a tradeoff, then, between the
robustness of the symbol identification and the speed of detection of symbol transi-
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tions. Here, we use confidence ellipsoids to determine the number of measurements
to use in the identification of a control symbol.

Suppose that y[k], k = 1, ...,m are a series of measurements from one of the
estimators, and that their joint conditional distribution is ρm. There will be one such
series for each estimator, though here we refer to only one of them in order to avoid
subscripts. Assuming that the estimators have reached steady state, and that their
output sequences are unique, there will be precisely one of these distributions with zero
mean error. The problem we are faced with is to determine which of the series came
from a zero-mean distribution. We could view this as the problem of estimating the
(unknown) mean of each series of samples. Alternatively, one can compute confidence
ellipsoids for the mean. Given the second and higher moments of ρm together with
the distribution of the sample mean, then the α-confidence ellipsoid for each series
for a given 0 < α < 1 is determined by integrating ρm over the appropriate region.
Depending on the distance between the steady state means for the estimators and on
the noise level present, one expects that the confidence ellipsoids may overlap for a
small number of measurements. We can thus determine the number of measurements
needed for a given confidence level by making additional measurements until only a
single ellipsoid contains the origin.

We note that there may be regions in the environment for which two control
quarks produce similar measurement sequences, leading to control sequences which
are indistinguishable. Such issues are related to the notion of observability of a set of
control quarks. In such a scenario, the hypothesis tester may settle on an incorrect
symbol while the confidence ellipsoids of two or more measurement sequences will
contain the origin and overlap. In Section 3.3 below, we show that such estimation
errors can be handled by placing the identification problem in a stochastic setting.
In short, we will maintain a probability distribution over the set of control symbols
using a partially observed Markov chain structure. By running an MDLe program
multiple times in either a real or simulated environment, we can build up a statistical
description of the probability of detecting control ui given that control uj is running.
This “observation matrix” can then be used to update a probability density over the
set of controls and in turn over a set of possible plans (c.f. Sec. 3.3) using the Markov
chain.

3.2. Interrupt Symbol Detection. As with control quarks, we will assume
that the “alphabet” of possible interrupt functions is known in advance. Once a
transition between atoms is detected, and the control quarks running before and after
the transition have been identified according to the scheme proposed above, the time
history of sensor data at (or near) the switching time can be used to decide which
interrupt “fired”. We begin by considering MDLe strings consisting of a sequence
of atoms with no higher-level nesting. In such a setting, identifying the interrupt
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associated with a transition can be accomplished by calculating the output of each
ξi given the state estimate and time. If the interrupts are designed to be unique,
meaning that only one of them can be active at any given time, the process described
here will uniquely identify the interrupt. Coupling this to the atom detection scheme
discussed above yields complete identification of the last executed atom.

There are two primary challenges to interrupt detection which need to be ad-
dressed. First, one does not expect interrupts to be unique in general. Depending
on noise and similarities in the environment, there may be more than one ξi indicat-
ing a transition at the time of a switch. As an example, consider the statements “I
see a red door” and “I see a door”, viewed as Boolean functions. To overcome this
ambiguity we will once again turn to a Markov chain structure, to be discussed in
Sec. 3.3 below. As in the case of uncertainty in control symbol detection, here we
can determine the probability of detecting interrupt ξi given that ξj was the “true”
interrupt via multiple executions of an MDLe plan. The corresponding “observation
matrix” can then be coupled into the Markov chain structure.

The second challenge is that the switching time, ts, may be uncertain. If that is
the case, then the Markov chain must include not only a probability distribution over
the collection of atoms but also over the possible values of ts.

Remark: When using hypothesis testing or confidence ellipsoids to detect atom
transitions, we must contend with the fact that the time-window during which mea-
surements are made may include a switching time. Of course, we do not know with
certainty when a transition has occurred. On the other hand, the previous discus-
sion assumed that the filter bank used to decide which control symbol is running
has reached steady-state when measurements are made, so that the distribution from
which we are sampling is stationary. Practically, we will deal with this by relying
on the confidence intervals for switch detection, and by introducing a short delay be-
tween the detection of a switch and the execution of the identification algorithm. The
time delay is to be determined by the properties of the estimators, including their
convergence rates. Of course, the sum of the delay and measurement times must be
less than the minimum time during which an atom may possibly run.

3.3. Plan Detection. In the motion description language MDLe, an atom is
generated by pairing a control and interrupt quark; a behavior is generated by com-
bining a sequence of atoms with an interrupt quark; and a plan is determined by
combining a sequence of behaviors with an interrupt quark. Thus, given even a finite
set of control and interrupt quarks, there is an infinite set of possible plans which can
be constructed. If we allow for nesting in our MDLe plans, then identifying what plan
is being run based on a series of measurements of the control and interrupt quarks is
an exceedingly challenging problem. That is because, despite the “serial” nature of
MDLe strings (i.e., control quarks are listed from left to right), the triggering of vari-
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ous interrupt during execution mean that different executions of the same string (e.g.,
starting from different initial conditions) will produce different identified sequences of
control quarks (and corresponding interrupts).

The problem we are faced with then, is: given a series of executions of an MDLe
plan (each being a sequence of control-interrupt pairs), find an MDLe plan which
could have produced every one of them. The main difficulty here is that given two
consecutive atoms, (a1, ξ1), (a2, ξ2), observed in a single execution of a plan, we are
unsure if the original plan contained additional atoms “in between” or not. The
interrupt ξ1 could have been a behavior or higher-level interrupt, or it could be an
atom-level interrupt, to be matched with a1. Furthermore, if on a second execution of
the same plan, we observe (a1, ξ3), (a4, ξ4), ..., we are not sure whether a4 belongs in
the same behavior as a1 (i.e., precedes a2 in the plan) or whether ξ3 is the interrupt of
a behavior which included a2, in which case a2 was “skipped over”. Such difficulties
are neither superficial nor easy to deal with. Every MDLe plan can be transformed to
an equivalent directed graph, with nodes and edges corresponding to control quarks
and interrupts, respectively [11]. The problem of finding an MDLe plan given a
sufficient number of executions is thus related to the problem of inferring a graph
from its paths. Recent work on this last problem [25] has shown that it is strongly
NP-hard for planar graphs. In the following, we will focus on the detection of simple
plans which contain no nesting1.

We will assume that we have a collection of plans Γ = {Γ1,Γ2, ...,Γn}, each plan
being a sequence of r atoms,

Γi = {σi1, σi2, ..., σir}, i ∈ [1,m], q ∈ [1, n].

where each atom σij is drawn from a given alphabet of symbols. Assume for conve-
nience that each plan has the same length, although the extension to plans of different
lengths is straightforward. Further assume that the Γi contain no subsequences which
are repeats of a single atom; that is, terms of the form σ1, σ1 . . . , σ1 are expressly for-
bidden. This is without loss of generality because any such repeats can be collapsed
down to a single occurrence of the atom by suitably redefining the interrupt.

Our approach will be to use a partially observed Markov chain to update the
conditional probability distribution over the set of atoms. This information will then
be employed to calculate the probability distribution over the set of plans. Thus, let
σ[j] denote the jth atom in the sequence and let σ̂[j] denote the measured atom as
determined by the identification scheme described in Sec. 3.1. Let b[j|j] be a row
vector of conditional probabilities of occurrence of the atoms at index j, given the

1The detection of a simple plan with no nesting is similar to the Sequence Inference from Spectrum

Feature problem [25] whose complexity is linear in the length of the plan.
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prior information up to index j:

b[j|j] =



p(σ[j] = σ1 | σ̂[j], . . . , σ̂[1])
p(σ[j] = σ2 | σ̂[j], . . . , σ̂[1])

...
p(σ[j] = σn | σ̂[j], . . . , σ̂[1])
p(σ[j] = σT | σ̂[j], . . . , σ̂[1])



T

.

Here σT is a terminal symbol required to ensure the transition matrix below is stochas-
tic. The transition matrix is

M [j] =

 p(σ[j + 1] = σ1 | σ[j] = σ1) . . . p(σ[j + 1] = σn | σ[j] = σ1) p(xσ[j + 1] = σT | σ[j] = σ1)

.

.

.

.

.

.

.

.

.
p(σ[j + 1] = σ1 | σ[j] = σn) . . . p(σ[j + 1] = σn | σ[j] = σn) p(σ[j + 1] = σT | σ[j] = σn)

0 . . . 0 1

 ,

where the value of p(σ[j + 1] = σT |σ[j] = σi) for i = 1, . . . , n is chosen such that the
sum of each row is 1. M is constructued from the set of plans Γ by determining, for
each occurrence of σi (in any plan) at step j, the next atom in the sequence. The
conditional probability vector is updated according to

b[j + 1|j] = b[j|j]M [j].(4)

To include the atom detection information, we define an observation probability
matrix N as

N =


p(σ̂ = σ1 |σ = σ1) . . . p(σ̂ = σn |σ = σ1) 0

...
...

...
p(σ̂ = σ1 |σ = σn) . . . p(σ̂ = σn |σ = σn) 0

0 . . . 0 1

 .

A straightforward application of Bayes rule leads to the update law

b[j + 1|j + 1] = b[j + 1|j]Z(σ̂[j + 1])(5)

where Z(σ̂[·]) is a diagonal matrix determined by a row ofN . Specifically, for σ̂[j+1] =
σi for some i, the diagonal of Z(σ̂[j + 1]) contains the elements of the ith row of N .
This information is then used to calculate the probability distribution of plans up to
time step k using the following equation.

Pj(Γi) =
∏j

l=1 p(σil)∑m
q=1

∏j
l=1 p(σql)

,(6)

where Pj(Γi) indicates the probability of plan i at index j, and p(σil) is the probability
of the l-th symbol of plan i.

We note that the approach proposed here assumes that the index j correctly
counts atoms in the plan Γi. This corresponds to identifying every transition with
no false positives. One approach to overcoming this brittleness is to extend the prob-
ability distribution over the set of plans to include the index into the sequences as
well.
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4. Example: a linear system under feedback control. To illustrate the
proposed approach, we apply Section 3 to a discrete-time linear system given by

x[k + 1] = Ax[k] +Bu[k] + w[k],(7a)

y[k] = Cx[k] + v[k].(7b)

Here w[·] and v[·] are independent zero mean Gaussian white noise processes with
covariances Q and R respectively. We assume the initial state x[0] is a Gaussian
random variable with mean x̄0 and covariance Σ0 and that (A,B,C) is a minimal
realization.

A control quark ui is defined to be a pair (Ki, ūi) with a choice of state feedback
gain matrix, Ki, and open-loop input, ūi. For simplicity, in this work ūi is taken to
be constant. Therefore, at any time the system will evolve according to

x[k + 1] = Aix[k] +Būi + w[k],(8a)

y[k] = Cx[k] + v[k](8b)

where Ai = A+BKi, for some i = 1, ..., Nc. Here Nc is the number of elements in the
control set U = {(K1, ū1), · · · (KNc , ūNc)}. We will assume that each feedback gain is
chosen to make the closed loop system exponentially stable.

State estimation for each of the Nc models is performed using a bank of Kalman
filters, each of them being driven by the observations. Given the measurements up
to time k, the filters produce the conditional means x̂i[k + 1|k] and state covariances
Pi[k + 1|k] at time k + 1, under the assumption of control quark i is running, from
the standard Kalman filter equations

x̂i[k + 1|k] = Aix̂i[k|k] +Būi[k],(9a)

Pi[k + 1|k] = AiPi[k|k]AT
i +Q,(9b)

Ki[k + 1] = Pi[k + 1|k]CT (CPi[k + 1|k]CT +R)−1,(9c)

x̂i[k + 1|k + 1] = x̂i[k + 1|k] +Ki[k + 1](y[k + 1]− Cx̂i[k + 1|k]),(9d)

Pi[k + 1|k + 1] = (1I−Ki[k + 1]C)Pi[k + 1|k].(9e)

These, in turn, yield the mean and covariance of the measurement y[k] assuming that
the ith control symbol is currently being run

E{ŷi[k + 1]} = Cx̂i[k + 1|k](10)

Σŷi
= CPi[k + 1|k]CT +R.(11)

The resulting densities are then used in the m−ary hypothesis tester to determine
the current symbol.

The window size is selected according to the α-confidence interval scheme de-
scribed in Sec. 3.1. In the case of linear dynamics with Gaussian noise, we can
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specialize the approach and write an equation for the confidence ellipsoid generated
by each Kalman filter (and thereby corresponding to each possible control symbol).
Suppose that z(i), i = 1, ..., Nc, are the innovations terms associated with one of the
Kalman filters over the time interval [t1, ..., tN ] for some N (here, we limit our dis-
cussion to a single Kalman filter to avoid subscripts). Assuming the filter is in steady
state, the z(i) will have a Gaussian distribution, ρ(z), defined by the steady-state
mean and variance of the estimation error. The question of whether the correspond-
ing plant-controller model used to construct the associated Kalman filter matches
the true parameters of the system under observation is equivalent to the question of
whether the mean of that distribution is zero or not.

Let z̄ = 1
N

∑
i z(i) denote the sample mean. If ρ(z) is Gaussian with parameters

(µ,Σ) then the sample mean will be Gaussian as well, with mean µ and variance Σ/N .
Thus, the random variable

ω =
(√

Σ
)−1

(z̄ − µ)
√
N

is zero-mean, unity variance. Note that in our case, Σ can be computed from the
steady-state Kalman filter equations while µ is unknown. To determine whether µ is
zero, consider the ellipsoid that contains the sample mean with high probability, α,
and let zα ∈ R be such that

P (ωTω < zα) = α.

For a given α, the value of zα can be calculated using the known distribution for ω.
Using the relationship between ω and z̄, we then have:

P
(
(µ− z̄)T Σ−1(µ− z̄) ≤ zα

N

)
= α.

Thus with probability α, the mean of the distribution from which the z(i) are
drawn is no further than distance

√
zα

N from the sample mean (where the distance is
measured according to the metric defined by Σ−1. If the ellipsoid (µ − z̄)T Σ−1(µ −
z̄) = zα

N contains the origin, we can be confident (at the given level α) that the
corresponding z(i) process is zero-mean.

There will be one such ellipsoid defined for every Kalman filter constructed (equiv-
alently, one per control symbol in our alphabet). Thus, it may happen that the origin
is initially included in more than one ellipsoid, depending on the amount of measure-
ment noise present as well as the controller parameters. Each of these ellipsoids will
be centered at the sample mean produced by the corresponding filter; its size will be
determined by the steady-state covariance and will be inversely proportional to the
number of samples used, N . By taking N sufficiently large and assuming uniqueness
of control symbols, there will be only one ellipsoid containing the origin.

During the identification process, additional measurements are included in the
m−ary hypothesis test until only a single confidence ellipsoid contains the origin,
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thus determining the measurement window size. At that point, the output of the
hypothesis tester is declared to be the identified control symbol. The probabilities
over the set of tasks are then updated according to the Markov chain. Following
this, at each time step, we continue to calculate the sample mean for the estimator
corresponding to the identified control quark, over a moving window. The size of
the window is constant, as determined by the confidence ellipsoid calculation. If for
two consecutive time steps the origin falls outside this confidence ellipsoid centered
on the sample mean for the currently identified atom, then an interrupt is declared.
After a short period of time to allow the Kalman filters to move towards their new
equilibrium values, the process begins again with symbol detection.

4.1. Simulations. We simulated a discrete-time linear system with parameters

A =

 0 1 0
0 0 1
−1 1

2 − 1
2

 , B =

 1
1
1

 , C =
(

1 1 1
)
.(12)

Three control quarks were defined by the feedback gains

K1 =

 −1.59
1.76
−2.06

 , K2 =

 −1.18
1.62
−1.59

 , K3 =

 −1.52
1.57
−2.05

(13)

together with the constant input ūi = 10, i = 1, 2, 3. The input and measurement
noises were taken to be Gaussian white noise processes with w[k] ∼ N (0, 1) and v[k] ∼
N (0, 1). The confidence level for the adaptive window-sizing was set to α = 0.999.
The delay time after a switch was set to three time steps.

Based on the three available control symbols we defined three plans, each consist-
ing of a sequence of six atoms:

Γ1 = {σ1, σ2, σ3, σ1, σ2, σ3} ,

Γ2 = {σ1, σ3, σ2, σ1, σ2, σ3} ,

Γ3 = {σ1, σ2, σ3, σ1, σ2, σ1} ,

where each atom contained the corresponding control quark. For simplicity, the in-
terrupt associated with each atom was a simple timer that triggered a transition after
100 time steps. Note that the first and third plans are identical up until the final
symbol while the second plan differs from the other two at the second symbol. The
priors πi used in the m−ary hypothesis tester were determined from the set of possible
tasks and the current sequence index. The priors determined by the three tasks are
given in Table 1.

The transition matrix M was also determined from the set of available plans.
Recall that M [j] is the transition matrix between symbols from atom index j to time
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Table 1

Priors for the three tasks.

Sequence index

Prior 1 2 3 4 5 6

π1 1 0 0 1 0 1
3

π2 0 2
3

1
3 0 1 0

π3 0 1
3

2
3 0 0 2

3

j + 1. Given the set of plans above we have

M [1] =

 0 2
3

1
3 0

0 0 0 1
0 0 0 1

 M [2] =

 0 0 0 1
0 1

3
2
3 0

0 1
3

2
3 0


M [3] =

 0 0 0 1
1 0 0 0
1 0 0 0

 M [4] =

 0 1 0 0
0 0 0 1
0 0 0 1


M [5] =

 0 0 0 1
1
3 0 2

3 0
0 0 0 1


Due to uniqueness of equilibria in linear systems, any erroneous identification of

the current symbol is due purely to noise. The adaptive window-sizing was designed
explicitly to mitigate the effects of this noise and thus the probability of a false iden-
tification in these systems was very near to zero. Because of this, the observation
probability matrix N was taken to be the identity. We note that in a nonlinear set-
ting in which different symbols may share common equilibria, erroneous identification
could occur, leading to a non-trivial N .
First simulation: Γ2

In the first simulation the“true” plan was selected to be Γ2. The measurement
and estimated output from each of the three filters is shown in Fig. 2. Notice that
the outputs of the estimators corresponding to σ1 and σ3 are similar while that of the
σ2 estimator is clearly different. The Kalman filters did a good job of modeling the
output when the corresponding atom is being run.

In Fig. 3 we show the output of the hypothesis tester and the window size de-
termined for each identification. The true switching time is indicated with the solid
black vertical lines and the time of a detected switch is indicated with a dashed ver-
tical line (Fig. 3(a)). The window size used for estimation varied between one and
five steps although a single measurement was often all that was needed for confident
identification (Fig. 3(b)). Notice that in the first interval five measurements were
needed; this is due to the fact that the output of the third symbol was also very close
to the measured output and thus it was also likely to have given rise any of the in-
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(a) Model assuming the plant executes σ1

(b) Model assuming the plant executes σ2

(c) Model assuming the plant executes σ3

Fig. 2. Output of each of the three filters (solid line) and the true measurement (dashed line).

The actual plan being executed is Γ2. Atom switches occur every 100 seconds.
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dividual observations. Because the measurement matrices were identity, we expected
the probabilities over the set of plans to directly mirror the uniqueness of the plans.
Thus, since all three plans were identical in the first segment, the probabilities were
initially uniform. In the second step, however, only Γ2 had σ3 and thus the system
correctly identified that as the current plan at that stage.

To illustrate the benefit of the adaptive window-sizing, in Fig. 4 we show the
output of the m−ary hypothesis tester if only a single measurement is used to generate
the probability distributions. Because the adaptive window sizes in segments two,
four, and six were one, good performance was expected during those periods. The
figure shows that in fact no erroneous identifications are made at those times. It
is perhaps initially surprising that no false measurements are made during the first
segment when the confidence intervals indicated that five measurements were needed
to distinguish between atoms one and three. The m−ary tester, however, simply takes
the most likely candidate and it is clear from Fig. 2 that the error corresponding to σ1

is smaller. In fact the only erroneous identifications are made during the third time
period when σ2 is running. Considering the evolution shown in Fig 2, we surmise this
is most likely due to the oscillatory decay of the outputs of the first and third atoms.
The corresponding errors thus go through brief periods where they are very close to
zero and a single-measurement m−ary tester has difficulty distinguishing between the
different possibilities.

Second simulation: Γ1

In the second simulation we executed the first plan. Because the first and third
plans are identical until the final atom, we expected the probabilities of these two
plans to each be 1

2 from the second segment until the last segment at which Γ1 should
be selected as the correct plan. The measurement and estimated output from each
of the three models is shown in Fig. 5. The dynamics were similar to those in the
previous simulation. The results of symbol detection, adaptive window sizing, and
plan detection are shown in Fig. 6.

5. Summary. We have discussed the problem of inferring the symbolic inputs of
a language-driven system based on observations of its output. This problem is related
to that of “silent” cooperation between a group of mobile robots, where each new
robot must determine what task the others are trying to accomplish before being able
to help. We outlined an approach based on the notion of motion description languages,
as advanced by Brockett. To identify the control symbols used to steer the plant and
their switching times, we constructed one estimator per possible closed-loop dynamics,
and compared the estimator outputs against the true plant output. Depending on
the noise level in the system and on the alphabet of allowed atoms, determining the
correct estimator may be difficult if only the error based on a single measurement is
used. For that reason, we have introduced an adaptive procedure based on confidence
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(a) Symbol detection

(b) Window sizes

(c) Probabilities over the plans

Fig. 3. Results of the simulation when Γ2 was executed.
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Fig. 4. Output of the m−ary tester based on only a single measurement.

ellipsoids for determining an appropriate number of measurements. The different
estimators are compared using an m−ary hypothesis tester to determine the actual
atom being executed by the plant. The interrupt condition that is associated from
the switch can be inferred from the plant output near the time of a switch and the
effect of noise mitigated by appealing to a Markov chain structure. This structure is
also utilized to identify the particular plan being executed by the system from among
a collection of possible plans. We provided details for the case of linear systems with
Gaussian noise, and illustrated the performance of our method using simulations.
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(a) Model assuming the plant executes σ1

(b) Model assuming the plant executes σ2

(c) Model assuming the plant executes σ3

Fig. 5. Output of each of the three estimators (solid line) and the true measurement (dashed

line). The actual plan being executed is Γ1. Atom switches occur every 100 seconds.
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(a) Symbol detection

(b) Window sizes

(c) Probabilities over the plans

Fig. 6. Results of the simulation when Γ1 was executed.
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