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Abstract. Adaptive control is a very appealing technology, at least in principle. Yet its use

has been conditioned by an attitude of distrustfulness on the part of some practitioners. In this

paper, we explain why such distrustfulness is warranted, by reviewing a number of adaptive control

approaches which have proved deficient for some reason that has not been immediately apparent.

The explanation of the deficiencies, which normally were reflected in unexpected instabilities, is our

main concern. Such explanations, coupled with remedies for avoiding the deficiencies, are necessary

to engender confidence in the technology. These include the unpredictable failure of the MIT rule;

the bursting phenomenon, and how to prevent it; the Rohrs’ counterexample, which attempted to

disqualify all adaptive control algorithms; the notion that identification of a plant is only valid

conceptually for a restricted range of controllers (with the implication that in adaptive control,

certain controller changes suggested by adaptive control algorithms may introduce instability); and

the concept of multiple model adaptive control.

1. Introduction. Adaptive controllers are a fact of life, and have been for some

decades. However, theory and practice have not always tracked one another. In this

paper, we examine several instances of such a mismatch. These are:

• The MIT rule, an intuitively based gradient descent algorithm that gave

unpredictable performance; satisfactory explanation of performance started

to become possible in the 1980s.

• Bursting, a phenomenon of temporary instability in adaptive control algo-

rithm implementation of a type observed in the 1970s; explanation and our

understanding of avoidance mechanisms only became possible in the 1980s.

• The Rohrs’ counterexample, which argued that adaptive control laws existing

at the time could not be used with confidence in practical designs, because

unmodeled dynamics in the plant could be excited and yield an unstable

control system.

• Iterative controller re-design and identification, an intuitively appealing ap-

proach to updating controllers that came to prominence in the 1980s and

1990s, and which can lead to unstable performance. Explanation and an

understanding of an avoidance mechanism came around 2000.

• Multiple model adaptive control, another intuitively appealing approach to

adaptive control with the potential to include non-linear systems. It too can

lead to unstable performance; early theoretical development left untouched

important issues of the number of controllers to be used, and their location
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in parameter space. These issues have only been dealt with in the last five

years.

The common thread through all these examples except for the Rohrs’ counterex-

ample is that algorithms to secure adaptive control were postulated, and the algo-

rithms at times led to instability (though for quite different causes). By instability

here, we mean to include the notion of temporary instability; in practical terms, tem-

porary instability occurs when a destabilising controller is connected to a plant for a

time interval that is at least as big as a number of time constants of the closed loop

system, so that signal levels grow to often destructive levels. In all four situations,

this instability was not predicted, and in this sense, the theory behind the algorithms

at the time of their advancement (and implicit endorsement by those advancing them)

must be regarded as inadequate. It is easy to be a prisoner of one’s past and view

a new idea through overly optimistic spectacles, and the author is certainly one of

those who has done this in the past.

The Rohrs’ counterexample could be regarded as constituting an example where

instability was present, and an explanation attempted, but the explanation was at

the very least highly incomplete.

The examples of a theory-practice mismatch are in fact not the only examples we

might have picked on. Let us point out just two more practical difficulties, which most

theory has left unaddressed, but which will not be explored further in this paper.

• There are many adaptive control theorems which run along the lines that if

conditions A, B and C hold, then all signals in the loop are bounded and

some form of convergence occurs. These theorems leave open the theoretical

probability of 1MA current in a 10W motor; it is not hard to provide adap-

tive control simulation examples demonstrating this. The real point is that

temporary instability, usually from the temporary insertion of a destabilis-

ing controller, is a practically unacceptable phenomenon, but typically not

excluded by the theory.

• Much adaptive control theory postulates unknownness, to some degree at

least, of the plant, together with a performance index, which should be min-

imized. Given that the plant is unknown, it may be the case that the per-

formance index, at least in practical terms, can never be minimized. What

if for the real unknown plant, a linear-quadratic minimisation were to yield

a controller giving rise to a closed-loop phase margin of .01 radians? Any

attempt to construct an adaptive controller will founder in tears, or typically

instability, no matter what the theory says, and adaptive control theories for

the most part sidestep any treatment of this issue.

The structure of the paper is as follows. In Section 2, we present a very high level

statement of what constitutes adaptive control. The next five sections treat each

of the five problems we first identified above. The final section contains concluding
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remarks.

2. Adaptive Control. Our aim in this section is to summarize material that

is now to be found in scores of textbooks and hundreds of papers. We cite a few

textbooks [1, 2, 3, 4, 5, 6]. A conventional control loop appears as in Figure 1. The

controller is determined using knowledge of the plant together with a list of specifica-

tions on the closed-loop performance: the specifications may include the requirement

to minimise a certain performance index.

—
Reference

r
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Controller

Input

u
Plant

Output

y

Disturbance

d

Fig. 1. Conventional Control Loop

The first thing that is different in an adaptive control context is that the plant

is initially unknown, or only partially known, or it may be slowly varying. Since in

many cases, a single controller will not be able to deliver a satisfactory result for any

possible plant, it is necessary to incorporate some learning capability in the controller.

One can of course conceive of doing this whether or not the plant and controller are

linear; for the most part here, we shall confine consideration to linear plants and

controllers. A typical non-adaptive controller maps the error signal r − y of Figure 1

into the plant input u in a causal time-invariant manner:

ẋc = Acxc + bc(r − y)(1)

u = ccxc

where Ac, bc, cc are constant matrices, and xc is the state vector of the controller. In

an adaptive controller some of the entries of Ac, bc or cc are adjusted. One high level

architecture is shown in Figure 2

The job of the identifier is to determine what the plant is, or at least to determine

an estimate of the plant. The control law calculator does on-line what would be done

by the designer before controller introduction in a conventional control problem where

the plant is known.

Most of the theory of adaptive control is concerned with writing down algorithms

to do these various tasks, and to establishing that the algorithms do what is desired
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Fig. 2. A high level architecture for adaptive control

with no untoward side effects.

For future reference, we point out the existence of three time scales associated

with the scheme of Figure 2:

• The time scale of the underlying closed-loop dynamics, with fixed plant pa-

rameters and controller parameters

• The time scale for identifying the plant

• The time scale associated with plant parameter variations

It is clear that the identification time scale needs to be faster than the plant vari-

ation time scale, else identification cannot keep up. It also turns out that it is harder

to develop good adaptive controllers, which identify (and thus adjust the controllers)

at a time scale comparable with that of the closed-loop dynamics. Interaction of the

two processes can occur and generate instability. Nevertheless, operational require-

ments may force comparability of the time scales, for example in the case of a sudden

component failure of a plant, where controller reduction must occur very fast to avoid

catastrophe; such adaptive control problems are extremely challenging.

By way of more technical comment to those who are not novices in the field of

adaptive control, we would suggest that much adaptive control work of the 1980s and

1990s in retrospect can be seen as seeking algorithms in which the two time scales

of identification and closed-loop dynamics were comparable; conditions like positive

realness of certain transfer functions allow the construction of Lyapunov functions

which may establish stability without time scale separation. It is also interesting to

note in passing that some attempts to speed up the identification and control time

scales to both be fast can result in chaos [7, 8].

3. The MIT Rule. The MIT rule is a scalar parameter adjustment law which

was proposed around 1960 for the adaptive control of a linear system modelled as a

cascade of a linear stable plant and a single unknown gain [9, 10]. The adjustment
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law involves approximating a gradient-descent procedure seeking the minimum of

an integral-squared performance criterion. The initial intended application was to

the control of aircraft dynamics where the single unknown parameter was related to

dynamic pressure.

In the history of adaptive control, the MIT Rule represented a watershed; it

offered the possibility of adaptation for a useful application, the method was simply

formulated, and apparently straightforward to apprehend in an intellectual sense.

Performance however turned out to be unpredictable; explanations (as opposed to

mere reporting of the performance) took some time to be achieved, see e.g. [11].

The basic set up is shown in Figure 3. The plant is kpZp(s), where kp is unknown

apart from its sign, and Zp(s) is a known stable transfer function. The basis of

identification is that a cascade adjustable positive known gain kc(t) is introduced as

shown, and the output of the upper arm is compared to the output of kmZp(s) when

the same driving signal is applied; here, km is a known gain, with the same sign as

kp. Of course, if kpkc(t) = km for all t, zero error will result and kp will be given as

km/kc. If the error e(t) is nonzero the idea is to adjust kc to cause it to go to zero.

The MIT rule is the rule of adjustment for kc.

kc(t) kpZp(s)

kmZp(s)

r(t)
yp(t)

e(t

ym(t)

+

-

Fig. 3. Basic Set-Up for MIT Rule

The idea is to use gradient descent, i.e.,

(2) k̇c = −g
∂

∂kc

[1

2
e2(t)

]

where g is a positive gain constant. Equivalently,

(3) k̇c = −g
[

yp − ym

]

ym.

Sometimes this works, and sometimes it does not work. Figure 4 shows the result

for a plant Zp(s) = (s + 1)−1, with unit amplitude sinusoidal input of frequency ω,

and variable adaptive gain g. How can one explain the instability?

Broadly speaking, the instability being displayed is a result of interaction of the

adaptive loop dynamics with the plant dynamics, a phenomenon that is occurring

when the time scales are comparable, but does not occur otherwise. We shall explain

this in more detail.
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Fig. 4. MIT Rule Performance for first order plant with sinusoidal input

Suppose first that r(t) = R, a constant. Then the MIT Rule (3) leads to a

characteristic equation

(4) s + gkmkpR
2Zp(s) = 0.

Figure 4 indicates no instability will arise for Zp(s) = (s + 1)−1, but the seeds

of an instability can be seen in this equation. If Zp(s) has a right half plane zero,

then for high enough gR2, an instability will occur. Observe that in some sense, the

adaptation time scale is colliding with the time scale of the plant dynamics. If Zp(s)

is of the form (s2+as+b)−1 then again instability will occur if gkmkpR
2 > ab. Again,

one could say that the adaptation time scale is colliding with the time scale of the

plant dynamics. Indeed for this example where the input is a constant, to ensure

stability for all gR2, one would need
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(5) arg Zp(jω) ∈ (−π/2, π/2) ∀ω ∈ R.

If instead of a constant input one has a sinusoidal input, it is not possible to

perform as simple an analysis. The differential equation for kc is actually a Mathieu

equation. Instability corresponds to a sort of resonance effect which can only arise

when g exceeds a certain threshold. This is consistent with the fact that in Figure

4, there are no instabilities for any ω provided g is small enough. However, the

mere labelling of the phenomenon as a Mathieu equation helps little in yielding an

understanding, especially a level of understanding that would be readily transferable

to use of the MIT rule with other plants.

Below, we will develop further some of the above ideas. But, we first need to

explain a second instability mechanism which arises when one adjusts the problem

statement in a more practical direction. With plant kpZp(s), we have assumed that all

the unknownness is in kp. However, we can also suppose there is some unknownness

(e.g. unmodelled high frequency dynamics) in Zp(s), and that our knowledge of Zp(s)

is captured by a model transfer function Zm(s), which is like Zp(s), but not identical.

The error signal we construct is shown in Figure 5. The same rule (2) is still adopted.

The expanded form of (3) is now

(6) k̇c = −g
[

Zm(s)kmr(t)
][

Zp(s)kpkcr(t)
]

+ g
[

Zm(s)kmr(t)
]2

.

[The notation is of course suggestive, though not strictly proper.]

kc(t) kpZp(s)

kmZm(s)

r(t)
yp(t)

e(t

ym(t)

+

-

Fig. 5. MIT Rule Set-up with Model distinct from Plant

One might argue that the MIT rule, being an adaptive rule, is meant to cope with

uncertainties or inaccuracies and that there should therefore be some capability to

deal with Zp(s) unequal to Zm(s). Figure 6 shows what happens; the regions of gain-

frequency pairs giving instability have expanded, and while there is still protection at

low frequencies, at high frequencies instability is guaranteed for any gain, no matter

how small.
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Fig. 6. MIT Rule Performance with Model distinct from Plant

These phenomena can be understood with a tool called averaging theory; refer-

ences [2] and [5] contain much material applying averaging theory to adaptive control.

Averaging theory is a tool which is usable given separation of time scales of the closed-

loop plant dynamics and the learning/adaptation rate. It indicates that if in (6) the

gain g is small enough so that k̇ is small, then the behaviour of (6) can be approxi-

mated by the behaviour of

(7) k̇∗
c = −g

[

Zm(s)kmr(t)
][

Zp(s)kpr(t)
]

k∗
c (t) + g

[

Zm(s)kmr(t)
]2

.

In (6) kc(t) is processed by the dynamics of Zp(s), before contributing on the

right hand side to making up k̇c. In (7), this is not the case. As further intuition,

note that kp, which is constant, can be pulled out of the action on it by Zp(s); it is

reasonable then that if kc is nearly constant, the same conclusion remains true for it.

Now stability in (7) is assured if the average value of

(8) a(t) :=
[

Zm(s)kmr(t)
][

Zp(s)kpr(t)
]
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is positive. Since km and kp are constant with the same sign, it is clear that we need

r(t) to have the bulk of its energy confined to those frequencies where Zm(s) and

Zp(s) have similar frequency responses. Obviously, if Zp(s) = exp(−s)Zm(s), and

r(t) = sinωt, then for ω suitably large, a(t) in (8) will have a negative average value;

this accounts for the high frequency behaviour in Figure 6.

The MIT rule ideas, with the precautionary interpretations above, have been

used for the adaptive servo control of large antennas, such as antennas for radio

astronomy. The adaptive control problem is remarkably similar, and its satisfactory

resolution requires separation of the time scales, [12].

4. Bursting. In the early 1980s, scattered reports appeared of adaptive control

systems which worked well for a long period, say a week, and then unexpectedly burst

into an oscillation which then died away. In this section, we describe the reasons for

the phenomenon, and indicate how such undesirable behaviour can be avoided.

Figure 7 shows the phenomenon; an adaptive controller is connected to a first

order plant, and set-point control is sought.

Fig. 7. Plant Output with Adaptive Controller connection during a ”Burst”

The plant in question is described by a differential equation

(9) ẏ + cy = bu
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for some constant, unknown b and c. The identifier block in Figure 2 has the task of

using the measurements of u and y to determine b and c. Now with most measurements

this is possible; but if u is a nonzero constant (as expected with set-point control),

the identifier can be expected to identify the plant DC gain, i.e. the ratio b/c, but not

to identify b and c separately. However the identifier does not know that the input is

such that it cannot identify b and c separately; it simply runs an algorithm driven by

u and y and producing quantities b̂ and ĉ, estimates of b and c, which are supposed

to have the property that b̂ → b and ĉ → c as time evolves.

A typical identifier by the way has the form

(10)

[

˙̂
b
˙̂c

]

=

[

time function derived from u, y

second time function derived from u, y

]

and the error obeys

(11)
d

dt

[

b − b̂

c − ĉ

]

= −

[

u

y

]

[u y]

[

b − b̂

c − ĉ

]

.

In case u and y are both constant, the equation then implies

(12) u(b̂ − b) + y(ĉ − c) → 0

while also cy = bu. It follows that b̂/ĉ → b/c.

With constant u and y the actual time trajectories followed by b̂ and ĉ will depend

on initial conditions, drift, noise etc. In any case, the adaptive controller uses b̂ and

ĉ to implement a control law. Suppose that the controller simply inserts a gain

K with a view to having a high design bandwidth d = c + bK. So it will choose

K̂ = (d−ĉ)/b̂ and the actual closed loop pole will be at −c−bK̂. If b̂/ĉ = b/c, this pole

is then at −bd/b̂. Since b̂ and ĉ are not separately constrained but can move round,

randomly in many cases, the situation can arise that −bd/b̂ > 0; instability then

occurs. But with instability comes richer signals, and much improved identification.

Much improved identification then produces a stabilizing controller, and the whole

set-up recovers, until the next time the drifting signals induce an unstable closed loop.

This explanation of the bursting phenomenon can be found in [13]

Obviously, one wants b̂ − b and ĉ − c to go to zero, preferably exponentially

fast,to give protection against noise etc. It is nontrivial that a sufficient and virtually

necessary condition for this is that for some α1, α2 and T all positive and for all s,

there holds

(13) α1I <

∫ s+T

s

[

u(σ)

y(σ)

]

[u(σ) y(σ)] dσ < α2I.
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This is termed a persistency of excitation condition. Such a condition was ad-

vanced simultaneously by several workers; the simplest proof is probably to be found

in [14].

Condition (13) is far from straightforward to apprehend. It uses signals internal

to the loop. Alternative conditions have been found, starting with [15], which are

conditions on external signals and as such are much easier to verify or arrange to have

fulfilled.

If we require the external (reference) signal to be a sum of sinusoids (regarding a

constant signal as a zero frequency sinusoid), then for this problem (13) is guaranteed

by requiring that there be at least one complex sinusoid; more generally, if the plant

has m−1 finite zeros and n poles (thus there are m+n coefficients in the numerator and

denominator polynomials of the transfer function to be identified), then there must

be an external input signal that excites m+n distinct frequencies (with 0 counting as

one frequency and ±jω counting as two frequencies). Such a condition ensures that

the generalization of (13) is fulfilled, which in turn means that the adaptive identifier

can learn each unknown parameter. Of course, broadband noise will also qualify as a

rich enough input signal.

The fact that successful identification requires rich enough signals goes back earlier

than the work on bursting, see [16], but the relevance of the observation to explain

the bursting phenomenon was not appreciated until much later.

As a practical issue then, set-point control and adaptation are incompatible.

Remedies include turning off the adaptation where the input is constant, or superim-

posing a (presumably small) rich excitation on the external set-point signal to ensure

the adaptation does not lead to bursting.

5. The Rohrs’ Counterexample. The Rohrs’ counterexample amounted to an

ideological controversy of the 1980s. We note the two principal journal references, [17,

18]. Broadly speaking, one set of proponents argued that because so many adaptive

control algorithms postulated positive realness of a certain transfer function derived

from the plant, and because a real-world plant had unmodelled dynamics which would

force the relative degree of its transfer function to exceed one (and thereby prevent

the positive realness of certain transfer functions derived from it), then no adaptive

control algorithm could work. Experiments were advanced to back up the conclusion.

To begin with, the reasoning was illogical; first, the postulation of positive realness

was a sufficient but not necessary condition for the validity of the theorems asserting

convergence of the algorithms, as they were published, so it did not follow that in

the absence of positive realness a disaster would have to occur when these algorithms

were used. Second, no worker had ever said that for all conceivable algorithms, one

would have to have a positive real condition, even as a sufficient condition; so even

if it had been established that none of the algorithms covered by the then-available
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theorems could work, i.e. yield convergent behaviour, there was no disproof of the

existence of some other hitherto undiscovered algorithm which would work. Third, it

was crystal clear to everyone that there were indeed successful applications of adaptive

control, despite the jeremiadic cry. The ideological claim needed to be tempered, to

one asserting the inapplicability of the theory in many circumstances.

By the time of the appearance of [17], much but perhaps not all of this tempering

had occurred: “Our conclusion is that the adaptive algorithms as published in the

literature are likely to produce unstable control systems if they are implemented on

physical systems directly as they appear in the literature. The conclusions stem

from the results of this paper which show unstable behavior of adaptive systems

when these systems are confronted with two premises that cannot be ignored in any

physical control design: 1) there are always unmodeled dynamics at sufficiently high

frequencies (and it is futile to try to model these dynamics: and 2) the plant cannot

be isolated from unknown disturbances (e.g., 60 Hz hum) even though these may be

small.”

What though of the experiments which justified the conclusion? For the most

part, these were pointers to the inadequacies of the theory, though not quite the inad-

equacies asserted in [17]. Problems typically occurred in one or both of two situations.

In the first situation, the reference signal comprised a step, which meant that it was

not persistently exciting. The instability observed was therefore nothing other than

bursting, as described in the previous section. In the second situation, a sinusoidal

excitation was used, the frequency of which intruded into the region where there were

significant unmodeled (and unmodelable) dynamics (By unmodelable dynamics, we

mean that the number of parameters in the model of the real plant was too small to

allow the model to capture all the dynamics present in the true plant). The situa-

tion was then very much like that discussed in the section on the MIT rule, where

the second instability mechanism was described, and attributed to inability to prop-

erly model the true plant, coupled with having significant excitation in the frequency

band where that ineffective modeling was occurring. These sorts of observations can

be found in [18].

6. Iterative Control and Identification. A frequently advanced approach

to adaptive control design is iterative identification and controller redesign, see e.g.

[19, 20, 21].

This is a form of adaptive control in which the tasks of identification and control

are strictly separated. There is usually an underlying performance index which is to

be minimized. One iteration comprises: (a) identifying the plant with the current

controller (b) redefining the controller on the basis of the identified model of the

plant and in order to minimize the performance index, and then implementing the

new controller on the real plant. At this point, the identification task is re-commenced,
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with the old information being (largely at least) thrown away. If the plant is unknown

initially, but constant, then one expects convergence, i.e. the controller settles down.

However, if the plant is slowly varying, this will not happen, naturally. Furthermore,

in the event that the modelling of the plant is based on using fewer parameters than is

appropriate, the controller may settle down to an incorrect value (i.e. the performance

index is not minimized), or it may be impossible to secure bounded signals in the loop,

see [22].

While appealing conceptually, the above approach can lead to instability of the

closed loop. In the remainder of this section, we shall explain why this is so.

At each iteration, there is delivered a model of the plant (i.e. the output of the

identification process). We would term it a good model if a simulation of the model

with a copy of the current controller behaves like the plant connected with the current

controller; normally, we would expect the identification step to yield a good model. At

this point, the algorithm changes the controller to better reflect the control objective.

The controller change is determined by working with the current plant model, but

with the new controller being attached to the actual plant rather than the model. One

knows that the current controller connected to the plant will behave like the current

controller connected to the (current) model. One wants the new controller connected

to the plant to behave like the new controller connected to the current model.

This will not necessarily happen. Consider two transfer functions, a model trans-

fer function P1 = (s + 1)−1 and a plant transfer function P2 = (s + 1)(0.1s + 1)−1.

Consider Figure 8 and 9. Figure 8 shows the open-loop step responses (i.e. the

responses with a zero controller). Figure 9 shows the responses with two different

constant gain controllers. It is evident that with gain 100, the closed-loop responses

are very different.

The conclusion is that a model may be a good model of the plant with one

controller, but it is not guaranteed to be a good model of the plant for all controllers.

Therefore, if it is used as a basis for controller redesign, one even has the risk that a

new controller, while fine with the model, could destabilise the plant.

There are at least two approaches to deal with this problem. One, due to Safonov

and colleagues, e.g. [23, 24] is able to certify, for a wide class of controllers and despite

the fact that the model is not identical with the plant, that insertion of the replacement

controller will not produce closed-loop instability. The second uses gap metric ideas

to identify controller changes which are small enough to not cause instability. If the

iterative design calls for a big controller change, one moves from the current controller

“in the direction of” but not all the way to the newly designed controller, i.e. one

makes a “safe change”, or one which will not induce instability, though it does improve

performance, see e.g. [20, 21, 25, 26].

This idea has also been used in Iterative Feedback Tuning (an adaptive control

procedure involving direct tuning of controller parameters), [27] and in Virtual Refer-



14 BRIAN D. O. ANDERSON

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
1

P
2

Open Loop Behaviour

Time (sec)

A
m

pl
itu

de

Fig. 8. Comparison of Plant and Model Responses in Open Loop

ence Feedback Tuning (another adaptive control procedure, especially aimed at model

matching problems), [28].

The windsurfing approach to adaptive control [11] (which is an iterative identifica-

tion and controller redesign approach) is also a very good example; at each controller

re-design step, one expands the closed-loop bandwidth by a small amount, which is

consistent with making a safe and small controller change. The closed-loop bandwidth

is expanded out until a bandwidth corresponding to the design objective is attained,

or the algorithm indicates that, because of the identification uncertainty, there can

be no guarantee that a further bandwidth expansion is safe, and pursuit of a wider

closed-loop bandwidth should be abandoned.

This notion of having a flag in an adaptive control algorithm to indicate the in-

appropriateness of an originally posed objective is practically important, and missing

from older adaptive control literature. Logic really demands it. If a plant is initially

unknown or only partially unknown, a designer may not know a priori that a proposed

design objective is or is not practically obtainable for the plant. Having the algorithm

discover this is helpful.

7. Multiple Model Adaptive Control. Imagine a bus on a city street. The

equations of motion have parameters which depend on the load, and the friction
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Fig. 9. Comparison of Plant and Model Responses in Closed Loop

between the tyres and the road. The friction coefficient will depend on the road

surface, including the amount of oil and/or water on the surface. This is an example

of a plant which may have a complicated transfer function, or even a non-linear

description, while also containing a (frequently small) number of physical parameters

which are unknown and/or changeable. Call such a plant P (λ) where λ is the vector

of plant parameters.

It would be nice if one could learn λ from measurements by some equations such

as

(14)
˙̂
λ = f(λ̂, measurements)

with λ̂ → λtrue. This may however be too hard, especially for nonlinear plants, other

than in some specific cases.

A completely different approach, multiple model adaptive control, has been sug-

gested to cope with this situation see e.g. [29, 30, 31]. These references are all for

problems with a linear plant; it is clear that the methodology and architecture implicit

in the remarks to now and indeed in the next several paragraphs in principle could

apply to nonlinear plants also, though the details of implementation may be much

harder.

Suppose the unknown parameter vector λ lies in a bounded closed simply-connect-
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ed region Λ with P̄ the associated true plant. Choose a representative set of values

λ1, λ2, ..., λN in the region, with associated plants P1, P2, ...PN . Design N controllers

Ci such that Ci gives good performance with Pi and plants “near” Pi.

The adaptive control algorithm works as follows. With one controller connected,

run an algorithm which estimates at any time instant the particular representative

model from P1, P2, ...PN , call it PI , which is the best model to explain the measure-

ments of the inputs and outputs of P̄ . Then connect up CI . Hopefully after at most

a finite number of switchings, the best controller for the plant is obtained, and in-

deed the thrust of early theoretical results on multiple model control was to establish

conclusions such as this, at least for linear plants and controllers.

There are problems with this intuitively appealing framework at two levels:

• How many plants Pi should be chosen, how does one choose a representative

set of plants P1, P2, ...PN , and how can it be assured that the controllers Ci

will give good performance for plants near Pi? (Indeed, what does “near”

mean?)

• If controller CJ is connected, and it turns out that PI is the best explainer

of P̄ (a good model), there is no guarantee that after switching in of CI to

replace CJ , PI will continue to be a good model of P̄ . Instead, PK for some

other index K might be a good model. (This point was explained in the

previous section).

We postpone for several paragraphs dealing with the first issue. How can the

second be resolved? The situation is analogous to that for iterative identification and

control. First, instability may be encountered if the basic algorithm is used as for

iterative identification and control. Second, for broad classes of controllers, before

a particular Ci is switched in, the methods of Safonov et al, see e.g. [23], allow

prospective evaluation of its suitability, including closed-loop stability, at least if the

controller is minimum phase. Third, one can conceive of safe switching, i.e. depending

on the quality of the identification of the loop comprising the current controller and

true plant, one can determine which controllers are safe to switch in, and one can

elect to switch in one of them, only when it is foreshadowed that were the true plant

replaced by the best model of it, the proposed new controller would offer superior

performance to the current controller.

For linear plants and controllers, the algorithms of [29, 30] can indeed be modified

along these lines [32], and safe switching results, with the penalty that switching occurs

less frequently than with the unmodified algorithm (due to certain proposed switching

being ruled out on safety grounds). This is a reasonable penalty to pay, given that the

unmodified algorithm on occasions gives rise to connection of a destabilising controller.

How now can we deal with the first issue? This problem is addressed in [33] for

linear plants. In outline, one sequentially picks P1, P2, ...PN by a systematic proce-

dure. Choose λ1 and thus P1 arbitrarily. Design C1. Now determine an open ball B1
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around P1 for which C1 constitutes a satisfactory design. [One approach is to choose

P to be in the ball if and only if δν(P, P1) < 0.3bP1,C1
. Here δν denotes the ν-gap

metric distance between P and P1, and bP1,C1
is the generalised stability margin, viz.

(15) bP1,C1
=‖ T (P1, C1) ‖

−1
∞

with

(16) TP1,C1
=

[

P1

I

]

[

I − C1P1

]−1[

− C1 I
]

.

Now choose a λ2 near the outer limit of the ball B1, and design C2 using P2 =

P (λ2). Determine an open ball B2 around P2 for which C2 is a good controller. Choose

λ3 near the outer limit of B1∪B2, and so on. Of course, the λi must be drawn from Λ.

The procedure terminates at some finite N (by the Heine-Borel Theorem). Note that

the difficulty for nonlinear plants is the absence of practical ways to generalise the

ν-gap metric distance between P and P1 and the generalised stability margin, which

are necessary in the linear system case for a quantitative version of the in-principle

algorithm.

In [33], a plant collection is considered where there are two scalar parameters

that can vary, a gain and a right-half-plane zero position. The scheme just proposed

rapidly determines a collection of plants which turns out to be very similar to these

obtained in [29], where a trial and error approach was used that must have been

tedious.

8. Conclusions. Let us now summarise some of the key lessons from this survey

of decades of adaptive control difficulties.

• The MIT rule confirms that keeping adaptation and plant dynamics time

scales separate reduces the likelihood of problems. It also emphasises that

one should model as well as possible, even if there is adaptive capability.

• The bursting study contains several messages. First, one should not use more

parameters than one needs for modelling purposes; if the real plant were first

order, and a second order model was used, trouble could be expected. Second,

it also confirms that to learn, one needs satisfactory experimental conditions,

where satisfactory means persistently rich excitations. In particular, if you

want to keep learning, you need more excitation than a constant reference

signal can provide.

• The iterative control re-design and identification study reminds us that a

good model of a plant is only a good model for some controllers. This is also

a message for multiple model adaptive control. Abrupt controller changes

can introduce instability, even if the new controller is defined with what has

been a good model. Safe adaptive control is one remedy.
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• For multiple model adaptive control, it is possible to pick representative mod-

els systematically, at least in the linear cases. Even then however, safe adap-

tive control procedures should be used, for the same reasons as in iterative

control re-design and identification.

There is also a meta-lesson. The examples given, including the Rohrs’ counterex-

ample, exemplify a form of carelessness or overconfidence among theoreticians, who

proposed algorithms without recognising that on occasions disastrous behaviour could

occur. The disastrous behaviour was instability, (and there were very different reasons

for it in the various examples).

Apart from the lesson that theoreticians need to be more cautious, what more

might be said about future work? The stand-out issue seems to be to push out

the MMAC ideas to non-linear adaptive control. The challenges include especially

providing a sound basis for picking representative models, which is likely to require

some form of ν-gap metric suitable for nonlinear systems. While such an entity has

been defined, [34], the calculations would appear to be overpoweringly complicated.

Acknowledgments. This work was supported by an Australian Research Coun-

cil Discovery Projects Grant and by National ICT Australia, which is funded by the

Australian Government’s Department of Communications, Information Technology

and the Arts and the Australian Research Council through the Backing Australia’s

Ability initiative and the ICT Centre of Excellence Program.

REFERENCES

[1] GC Goodwin and KS Sin, Adaptive Filtering, Prediction and Control, Prentice Hall, Engle-

wood Cliffs, NJ 1984.

[2] BDO Anderson, RR Bitmead, CR Johnson Jr, PV Kokotovic, RL Kosut, IMY Mareels,

L Praly, and BD Riedle, Stability of Adaptive Systems, MIT Press, 1986.

[3] KJ Astrom and B Wittenmark, Adaptive Control, Addison Wesley, 1989.

[4] KS Narendra and AM Annaswamy, Stable Adaptive Systems, Prentice Hall, 1989.

[5] S Sastry and M Bodson, Adaptive Control, Prentice Hall, 1989.

[6] M Krstic, I Kanellakopoulos, and P Kokotovic, Nonlinear and Adaptive Control Design,

John Wiley, 1995.

[7] IMY Mareels and R R Bitmead, Non-linear dynamics in adaptive control: Periodic and

chaotic stabilization, Automatica, 22(1986), pp. 641-655.

[8] IMY Mareels and R R Bitmead, Non-linear dynamics in adaptive control: Periodic and

chaotic stabilization–II Analysis, Automatica, 24(1988), pp. 485-497.

[9] HP Whitaker,An Adaptive System for Control of the Dynamics Performances of Aircraft and

Spacecraft, Inst Aeronautical Services, Paper 59-100, 1959.

[10] PV Osbourne, HP Whitaker, and A Kezer, New Developments in the Design of Model

Reference Adaptive Control Systems, Inst Aeronautical Services, Paper 61-39, 1961.

[11] IMY Mareels, BDO Anderson, RR Bitmead, M Bodson, and S Sastry, Revisiting the MIT

Rule for Adaptive Control, Proc 2nd IFAC Workshop on Adaptive Systems in Control and

Signal Processing, 1986, pp. 161-166.



FAILURES OF ADAPTIVE CONTROL THEORY AND THEIR RESOLUTION 19

[12] RJ Evans, IMY Mareels, LJ Sciacca, DN Cooper, RH Middleton, RE Betz, and RA

Kennedy, Adaptive servo control of large antenna structures, in: Model Identification and

Adaptive Control, GC Goodwin, (Ed), Springer 2001, pp. 127-151.

[13] BDO Anderson, Adaptive systems, Lack of Persistency of Excitation and Bursting Phenom-

ena, Automatica, 21(1985), pp. 247-258

[14] BDO Anderson, Exponential Stability of Linear Equations Arising in Adaptive Identification,

IEEE Trans Auto Control, AC-22(1977), pp. 83-88.

[15] BDO Anderson and CR Johnson Jr, Exponential Convergence of Adaptive Identification

and Control Algorithms, Automatica, 18(1982), pp. 1-13.

[16] KJ Astrom and T Bohlin, Numerical identification of linear dynamic systems from normal

operating records, in: Theory of Self-Adaptive Control Systems, PH Hammond, (Ed),

Plenum, 1966.

[17] CE Rohrs, L Valavani, M Athans, and G Stein, Robustness of continuous-time adpative

control algorithms in the presence of unmodeled dynamics, IEEE Trans Auto Control,

30(1985), pp. 881-889.

[18] KJ Astrom, A commentary on the C E Rohrs et al paper ’Robustness of continuous-time

adaptive control algorithms in the presence of unmodeled dynamics’, IEEE Trans Auto

Control, 30(1985), 889.

[19] P Albertos, Model-based Iterative Control Design, in: Iterative Identification and Control, P

Albertos and A Salas (Eds), Springer 2002, pp. 121-142.

[20] RR Bitmead, Iterative Optimal Control Design, in: Iterative Identification and Control, P

Albertos and A Salas (Eds), Springer 2002, pp. 167-184.

[21] M Gevers, Identification and Validation for Robust Control, in: Iterative Identification and

Control, P Albertos and A Salas (Eds), Springer 2002, 185-208.

[22] H Hjalmarsson, S Gunnarsson, and M Gevers, Optimality and sub-optimality of iterative

identification and control design schemes, Proc Amer Control Conf, Seattle, 1995, pp.

2559-2563.

[23] A Pail and MG Safonov, Model reference adaptive control using multiple controllers and

switching, Proc 42nd IEEE CDC, Hawaii, 2003, pp. 3256-3261.

[24] FB Cabral and MG Safonov, Unfalsified Model Reference Adaptive Control using the el-

lispoid algorithm, Proc 42nd IEEE CDC, Hawaii, 2003, pp. 3250-3255.

[25] BDO Anderson and M Gevers, Fundamental Problems in Adaptive Control, in: Perspectives

in Control, D Normand-Cyrot, Springer, Berlin, 1998, pp. 9-21.

[26] BDO Anderson, Windsurfing Approach to Iterative Control Design, in: Iterative Identification

and Control P Albertos and A Salas (Eds), Springer 2002, pp. 143-166.

[27] F De Bruyne and LC Kammer, Iterative Feedback Tuning with guaranteed stability, Proc

Amer Control Conf, 1999, pp. 3317-3321.

[28] A Lecchini, A Lanzon, and BDO Anderson, Safe adaptive controller changes based on

reference model adjustments, Proc 42nd IEEE CDC, Hawaii, 2003, pp. 4297-4302.

[29] AS Morse, Supervisory Control of Families of Linear Set-point Controllers part 1: Exact

Matching, IEEE Trans Auto Control, 41(1996), pp. 1413-1431.

[30] AS Morse, Control Using Logic-based Switching, in: Trends in Control: A European Perspec-

tive, A Isidori (ed), Springer, 1998, pp. 69-113.

[31] KS Narendra and J Balakrishnan, Adaptive Control Using Multiple Models, IEEE Trans

Auto Control, 42(1997), pp. 171-187.

[32] JF Hespanha, D Liberzon, AS Morse, BDO Anderson, TS Brinsmead, and F De Bruyne,

Multiple Model Adaptive Control. Part 2: Switching, International Journal of Robust &

Nonlinear Control, 11(2001), pp. 479-496.

[33] BDO Anderson, TS Brinsmead, F De Bruyne, J Hespanha, D Liberzon, and AS Morse,

Multiple Model Adaptive Control. Part 1, Finite Controller Coverings, International Jour-



20 BRIAN D. O. ANDERSON

nal of Robust and Nonlinear Control, 10(2000), pp. 909-929

[34] BDO Anderson, TS Brinsmead, and F De Bruyne, The Vinnicombe Metric for Nonlinear

Operators, IEEE Trans Auto Control, 47(2002), pp. 1450-1465.


