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For semi-parametric statistical estimation, when an estimating function exists, it often provides an

e�cient or a good consistent estimator of the parameter of interest against nuisance parameters of

in®nite dimensions. The present paper elucidates the structure of estimating functions, based on the

dual di�erential geometry of statistical inference and its extension to ®bre bundles. The paper studies

the following problems. First, when does an estimating function exist and what is the set of all the

estimating functions? Second, how are the asymptotic variances of the estimators derived from

estimating functions and when are the estimators e�cient? Third, how do we adaptively choose a

practically good (quasi-)estimating function from the observed data? The concept of m-curvature

freeness plays a fundamental role in solving the above problems.

Keywords: dual geometry; dual parallel transport; e�cient score function; estimating function;

Hilbert ®bred structure; m-curvature free; semi-parametric model

1. Introduction

A semi-parametric statistical model treats a family of probability distributions fp�x;�; k�g

speci®ed by a ®nite-dimensional parameter � of interest and an in®nite-dimensional

nuisance parameter k. Estimation of the parameter of interest in such a model has attracted

statisticians for many years, because various important problems are formulated in terms of

semi-parametric models. When the nuisance parameter is ®nite-dimensional, a fundamen-

tal role is played by the e�cient or projected score function, which is the projection of the

score function on the space orthogonal to the score functions of the nuisance parameters.

The CrameÂ r±Rao-type inequality has been established in terms of the e�cient Fisher

information and the bound is asymptotically attainable.

It is not easy to generalize these results to the semi-parametric case. Levit (1978), Begun

et al. (1983) and Small and McLeish (1988; 1989) de®ned the e�cient Fisher information in
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the semi-parametric model by using the projected score, and showed that the CrameÂ r±Rao-

type inequality holds. Only recently has its asymptotic attainability been elucidated under

certain regularity conditions (Bickel et al. 1993) by various e�orts based on functional

analysis (for example, Ritov and Bickel 1990; van der Vaart 1991; see also Groeneboom

andWellner 1992; Pfanzagl 1990). It is also known that there exist cases where the bound is

not asymptotically attainable (see Hasminskii and Ibragimov 1983; Ritov and Bickel 1990).

Estimation procedures are generally very complicated because of the in®nite dimensionality

of the nuisance parameter. Moreover, as is clearly shown in Bickel et al. (1993), the rigorous

analytical foundation involves di�culties, which we do not state in the present paper.

The present paper aims to elucidate the di�erential geometrical structure underlying the

semi-parametric model from the point of view of the dual di�erential geometry of statistical

inference (Amari 1985; Barndor�-Nielsen 1986; Murray and Rice 1993). This may

complement the analytical and geometrical treatments of Bickel et al. (1993). It should

be noted that our mathematical treatments are not rigorous in the sense of pure mathe-

matics, because we do not give rigorous regularity conditions for theorems. Also, we do not

enter into the rigorous formulation of the dual di�erential geometry of the relevant

function space, since the appropriate pure mathematical background has not yet been

developed. The present paper belongs to the ®eld of `theoretical mathematics' in the sense

of Ja�e and Quinn (1993). The paper proposes interesting geometrical ideas and some

heuristic arguments which lead to useful statistical procedures but are not necessarily

mathematically rigorous.

There is a class of estimators obtained by solving a simple equation of the type

Xn

i� 1

y�xi;�� � 0; �1:1�

where x1; � � � ; xn are independent observations from an identical distribution p�x;�; k� of a

semi-parametric model. Here, the vector function y�x;�� should satisfy

E
�; k�y�x;��� � 0

for all k, where E
�; k denotes the expectation with respect to the distribution speci®ed by �

and k. Such a function y�x;�� which does not depend on the unknown nuisance parameter

k is called an estimating function (Godambe 1976) and such an estimator is also called an

M-estimator (Huber 1981; Bickel et al. 1993). It gives a practically tractable method of

estimation (see, for example, McLeish and Small 1988; Godambe 1991; Godambe and

Heyde 1987). Further regularity conditions will be imposed later. The present paper aims to

elucidate estimating functions and their e�ciency from the geometrical point of view by

introducing Hilbert bundles and their dual parallel transports.

The class ofM-estimators does not necessarily include e�cient estimators. This is one of

the points discussed by Pfanzagl (1990), who criticized the method of estimating functions

for this reason. On the other hand, it is widely known that the class includes e�cient

estimators in many practically important cases, and moreover, it gives tractable and robust

estimating procedures. Therefore, it is not wise to ignore this class of estimators. On the

contrary, it is important to study such fundamental problems as the following:
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(1) When does an estimating function exist?

(2) What is the set of all the estimating functions?

(3) What is the best estimator derived from estimating functions?

(4) When does the best estimating function give an e�cient estimator? In the case where

the best one is not e�cient, what is the amount of loss of information caused by using the

estimation function method?

(5) How to choose a good (quasi-)estimating function based on the observed data?

The present paper treats these problems. Here, a quasi-estimating function implies that it is

one obtained from the observed data adaptively. The concept of m-information-curvature

freeness plays a fundamental role.

The method of the present paper is based on informal notes by Amari (1987a) and is an

extension of Amari and Kumon (1988). The theory is motivated by the information

geometry (Amari 1985; Nagaoka and Amari 1982; Barndor�-Nielsen 1986; Murray and

Rice 1993), which studies the structure of the manifold of probability distributions or a

statistical model by introducing a Riemannian metric due to the Fisher information and a

pair of dual a�ne connections. It has been proved to be a powerful method in various ®elds

of information science (Amari 1985; 1987b; Amari and Han 1989; Amari and Kumon 1988;

Okamoto et al. 1991; Amari et al. 1992), although the pure mathematical background has

been established mostly in ®nite-dimensional cases. In®nite-dimensional cases are being

studied by mathematicians. See Friedrich (1991), La�erty (1988) and Kanbayashi (1994).

2. Semi-parametric statistical models and estimating functions

Let p�x;�; k� be a probability density function of a random variable x with respect to a

common dominating measure ��dx�, speci®ed by two kinds of parameters � � ��
1
; � � � ; �

m
�

and k, where � 2 � is a ®nite-dimensional vector, � is an open set of R
m
and k 2 K is an

in®nite-dimensional parameter, typically occupying a space of functions. The set of

distributions S � f p�x;�; k�g is called a semi-parametric statistical model, where � is

called the parameter of interest and k is called the nuisance parameter.

Let y�x;�� � � yi�x;��, i � 1; � � � ;m, be a vector-valued smooth function of �, not

depending on k, of the same dimension as �. Such a function is called an estimating

function when it satis®es the following conditions,

E
�; k�y�x;��� � 0; �2:1�

det jE
�; k�@�y�x;���j 6� 0; �2:2�

E
�; k� ky�x;��k

2
� <1; E

�; k� k@�y�x;��k
2
� <1; �2:3�

for all � and k, where E
�; k denotes the expectation with respect to the distribution

p�x;�; k�, @
�
y is the gradient of y with respect to �, i.e., the matrix whose elements

are �@yi=@�
j
� in the component form, det j�j denotes the determinant of a matrix, and kyk

2

is the squared norm of the vector y; kyk
2
�

P

� yi�
2
. We further need that

�

ypd� is

di�erentiable with respect to � (Godambe 1976). Condition (2.1) is essential, as is shown
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below. Condition (2.2) guarantees that y depends substantially on �. This excludes trivial

functions. Condition (2.3) guarantees the applicability of the law of large numbers and the

central limit theorem shown below.

When a function satisfying (2.1)±(2.3) exists, by replacing the expectation in (2.1) by the

empirical sum, we have an estimator ^

� of � by solving

Xn

i� 1

y�xi;
^

�� � 0; �2:4�

where x1; � � � ; xn are n independently and identically distributed observations. This is called

the estimating equation and such an estimator is called an M-estimator.

The asymptotic behaviour of the M-estimator ^

� is obtained from the expansion

0 �

Xn

i� 1

y�xi;
^

�� �

Xn

i� 1

y�xi;�� �

Xn

i� 1

@
�
y�xi;���

^

�ÿ �� �Op�k
^

�ÿ �k
2
�; �2:5�

by applying the law of large numbers to �1=n�
P

@
�
y�xi;�� and the central limit theorem to

�1=
���

n
p

�

P

y�xi;��,

1

n

X

@
�
y�xi;�� � A; �2:6�

1
���

n
p

X

y�xi;�� � ";

where A � E
�; k�@�y�x;���, " is a normal random variable subject to N�0;V� with

V � E
�; k�yy

T
�; �Vij � E

�; k� yiyj��; �2:8�

y is a column vector and y
T
is its transposition, and � and � denote convergence in

probability and in distribution, respectively. From this, by neglecting higher-order terms,

we have

^

�ÿ � � A
ÿ1
": �2:9�

Condition (2.2) guarantees the existence ofA
ÿ1

and (2.3) guarantees the existence ofV . The

following proposition holds.

Proposition 1. Under the ordinary regularity conditions, the estimator ^

� obtained from an

estimating function y�x;�� is consistent and asymptotically normally distributed, with the

asymptotic covariance matrix

AV�^�; y� � A
ÿ1
E
�; k�yy

T
��A

T
�

ÿ1
; �2:10�

where the asymptotic covariance matrix is de®ned by

AV�^�; y� � lim
n!1

nE
�; k��

^

�ÿ ���
^

�ÿ ��
T
�: �2:11�

Let T��� be a non-singular m�m matrix smoothly depending on �. It should be noted

that y
�

�x;�� � T���y�x;�� gives an estimating function, equivalent to y in the sense of

yielding the same estimates.
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We give some examples of semi-parametric statistical models for later use. See Bickel et

al. (1993) and Groeneboom and Wellner (1992) for many interesting models.

Example 1. Linear dependence.We consider the following simple but interesting example

of linear regression known as one of the Neyman±Scott problems (Neyman and Scott

1948). This example is analysed in Section 7. Let x � ��; �� be composed of two

components � and �. It is supposed that the two variables satisfy the linear relation

� � ��

in the ideal case, but their observations are contaminated by normal noises. Let

�
�

� ��1; �2; . . .� be an unknown in®nite sequence, and we assume that the ith observation

xi � ��i; �i� is a noisy version of ��i; ��i� given by

�i � �i � ni;

�i � ��i � n
0

i

�2:12�

where ni and n
0

i �i � 1; 2; . . .� are independent and are subject to the normal distribution

N�0; �
2
�.

There are many estimators of �. A very simple one is

^

�
0

�

P

�i�i
P

�
2
i

;

which minimizes the regression error along the �-axis
P

��i ÿ ��i�
2
. However, this ^�

0

is not

good, and is not even a consistent estimator. Another estimator is

^

�
1
�

P

�i
P

�i

;

which is the solution of the estimating function

y
1
�x; �� � � ÿ ��:

The estimator given by the estimating function

y0�x; �� � �� ÿ ������ � ��

is the � component of the joint maximum likelihood estimator of all the parameters

��; �1; �2; � � � ; �n� and is known to be equal to the least-squares estimator with respect to the

distance of the observed data to the regression line in the orthogonal direction. Which of

the two latter consistent estimators is better? There is no de®nite answer because it depends

on the sequence ��.

When �� is considered to consist of independently and identically distributed observa-

tions from an unknown distribution k���, the present problem can be written in the semi-

parametric form

p�x; �; k� �

�

q�x; �; ��k���d�;
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where

q�x; �; �� � c exp ÿ

1

2�2
f��ÿ ��

2
� �� ÿ ���

2
g

� �

:

This problem is popular but is still very interesting. We propose later an interesting class of

estimators. It is the class of c-estimators ^

�c, obtained from the following family of

estimating functions

yc�x; �� � �� ÿ ������ � �� c�

where c denotes a real constant. A good estimator is obtained by determining c adaptively

from the observed data.

The problem is a special case of general mixture models discussed in the following.

Example 2. Mixture models. Let fq�x;�; ��g be a regular statistical model, where both the

parameter of interest � and the nuisance parameter � are of ®nite dimensions. Let xi,

i � 1; 2; � � � ; n, be n independent observations from q�x;�; �i�, where � is common but �i
takes a di�erent value at each observation. Moreover, we assume that the unknown �i are

independently generated subject to a common but unknown probability distribution having

a density function k���. Then, the xi are regarded as independent observations from the

semi-parametric model

p�x;�; k� �

�

q�x;�; ��k���d�; �2:13�

where k��� is the in®nite-dimensional nuisance parameter. This model is called the mixture

model. This type of problem was studied by Neyman and Scott (1948) and has attracted

many researchers (among them Andersen 1970; Lindsay 1982; Kumon and Amari 1984;

Amari and Kumon 1988; Pfanzagl 1990). There are a lot of interesting and important

examples in this class. Most researchers have treated the distributions of the following

exponential form as examples,

q�x;�; �� � expf��s�x;�� � r�x;�� ÿ  ��; ��g; �2:14�

where s�x;�� is a vector not depending on � and � is the inner product. Here, the

distribution is of exponential type for � when � is ®xed. Models of this type have the m-

¯at nuisance structure (Amari 1987a) or the convex structure (Bickel et al. 1993), to be

explained later, so that they possess nice properties. The linear dependence model (Example

1) is a special case of this type.

Example 3. Semi-parametric additive regression. Let �x; t� be covariates to which y is

connected by

y � ��x� k�t� � �; �2:15�

where � is the parameter of interest, k�t� is an unknown nuisance smooth function of t, and

� is a noise term. We assume here that � is subject to N�0; 1�. The problem is to estimate �

based on n observations (yi; xi; ti�, i � 1; 2; � � � ; n, where we assume that �x; t� is subject to a
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known joint distribution q�x; t� (see Cuzick 1992). This model is analysed later to show that

our theory is applicable also to non-m-¯at models.

3. Hilbert ®bre space and score function

Given a probability density function p�x�, its small deviation in the direction of a�x� can be

represented by a curve p�x; t� starting from p�x�,

p�x; t� � p�x�f1� ta�x�g; �3:1�

where t�0 � t < �� is the parameter of the curve. Here

E�a�x�� � 0

holds, where E is the expectation with respect to p�x�, because of

�

p�x�f1� ta�x�gd��x� � 1: �3:2�

In order to be speci®c, we consider the linear space of functions which satisfy

E�a�x�� � 0; E�fa�x�g
2
� <1: �3:3�

This set is a Hilbert space Hp, often denoted by L
0

2�p�, with the inner product of a�x� and

b�x� de®ned by

ha�x�; b�x�i � E�a�x�b�x��: �3:4�

We call the random variable

a�x� �
d

dt
log p�x; t�

�
�
�
�
t� 0

�3:5�

the tangent vector of the curve (3.1). This is the score function for the one-dimensional

statistical model (3.1) parametrized by t. Refer to Pfanzagl (1990), van der Vaart (1991),

Groeneboom and Wellner (1992) and Bickel et al. (1993) for mathematical details on the

rigorous construction of the tangent space.

Given a semi-parametric model S � fp�x;�; k�g, the Hilbert space Hp � H
�; k is associ-

ated with each point ��; k�, that is, with each distribution p�x� � p�x;�; k� speci®ed by

��; k�. A collection of such H
�; k is called a ®bred structure, where the ®bres are the Hilbert

spaces.

We ®rst de®ne the tangent directions along the parameter of interest. Let

ui�x;�; k� �
@

@�
i
log p�x;�; k� �3:6�

be the score function with respect to the ith component �
i
of �. Obviously,

E
�; k�ui� � 0 �3:7�
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and we further assume that ui is square-integrable. Then it belongs to H
�; k. We call the

subspace spanned by these ui the tangent subspace T
I

�; k along the parameter of interest. The

vector score function is u � �u1; � � � ; um�.

We next de®ne the tangent directions along the nuisance parameter. Let us assume that,

for any ~k in a small neighbourhood of k in the setK of the nuisance parameter, there exists a

curve c�t� connecting them, such that c�0� � k and c��� � ~k, and that the score function for

the one-dimensional statistical model pfx;�; c�t�g parametrized by t,

v�x;�; k; c� �
d

dt
log pfx;�; c�t�g

�
�
�
�
t� 0

�3:8�

belongs to H
�; k. This v is the tangent vector along c�t� of the nuisance parameter. Let T

N

�; k

be the smallest closed subspace including all such vs. We call it the nuisance tangent space.

Now, let us project the score function ui onto the subspace �T
N

�; k�
?

which is the

orthogonal complement of T
N

�; k. The result is the function u
E

i � ui ÿ v that minimizes

E�jui ÿ vj
2
�, v 2 T

N

�; k. The vector function u
E
� �u

E

i � is called the e�cient score function

and the u
E

i are called the components of the e�cient or projected score functions (see Begun

et al. 1983; Amari and Kumon 1988; Small and McLeish 1989). Let T
E

�; k be the subspace of

H
�; k spanned by the components u

E

i of the e�cient score function.
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Let T
A

�; k be the orthogonal complement of T
N

�; k � T
E

�; k. This is called the ancillary

subspace and spans directions orthogonal to any changes in the parameter of interest and

the nuisance parameter. We thus have the orthogonal decomposition of the Hilbert ®bre

space (Fig. 1; see Amari 1987a; Amari and Kumon 1988; see also Small andMcLeish 1988),

H
�; k � T

E

�; k � T
A

�; k � T
N

�; k: �3:9�

The matrix G
E
� �g

E

ij � de®ned by using the e�cient score function

g
E

ij ��; k� � E
�; k�u

E

i u
E

j � �3:10�

is called the e�cient Fisher information matrix. Begun et al. (1983) proved thatG
E
gives the

CrameÂ r±Rao bound of the asymptotic covariance of estimators ^

�,

lim
n!1

nE�^�ÿ ���
^

�ÿ ��
T
� � �G

E
�

ÿ1
�3:11�

for any asymptotically normally distributed unbiased estimator in a semi-parametric

model. Ritov and Bickel (1990) showed that the bounds may be unattainable in some

cases. However, the above bounds are attainable in many important cases under mild

regularity conditions (Bickel et al. 1993).

4. Invariant decomposition of Hilbert ®bres due to dual parallel

transports

An estimating function y�x;�� satis®es the unbiasedness condition (2.1) for all k. Such a

global structure is elucidated by introducing two parallel transports of the Hilbert ®bres

along the nuisance space.

Let a�x� be a random variable belonging to H
�; k. Let us ®x �, and consider the subset

S
�
� fp�x;�; k�jk 2 Kg. We de®ne two parallel transports of a vector a�x� from H

�; k to

H
�; k 0 (Amari 1987a). Then

Y
�e�

k
0

k a�x� � a�x� ÿ E
�; k 0 �a�x��; �4:1�

Y
�m�

k
0

k a�x� �
p�x;�; k�

p�x;�; k 0

�

a�x� �4:2�

are called the e-parallel transport and them-parallel transport of a�x� from ��; k� to ��; k
0

�,

respectively. It should be noted that the e-parallel transport exists only when the expecta-

tion of a�x� at ��; k
0

� exists. It is easy to show that

E
�; k 0

Y
�m�

k
0

k a�x�

" #

� 0
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always holds, and that

E
�; k 0

Y
�e�

k
0

k a�x�

" #

� 0

holds when E
�; k 0 �a�x�� exists. However, the e- and/or m-parallel transports of a�x� do not

necessarily belong to H
�; k 0 . They belong to H

�; k 0 only when they are square-integrable at

��; k
0

� with respect to p�x;�; k
0

�.

The parallel transports are generalizations of the dual geometrical structures derived

from the underlying e- and m-connections or e- and m-covariant derivatives (Amari 1985;

see also Amari and Kumon 1988), but we will not go into mathematical details of

di�erential geometry.

The following lemma shows the most important property connecting the two parallel

transports. The proof is immediate and hence omitted.

Lemma 1. The two parallel transports are dual in the sense that, for any two

a�x�; b�x� 2 H
�; k, the inner product

ha; bi
�; k �

Y
�e�

k
0

k a;

Y
�m�

k
0

k b

* +

�; k 0

; �4:3�

where the su�x ��; k� denotes that the expectation is taken with respect to p�x;�; k�, is kept

invariant when their parallel transports belong to H
�; k 0 .

It is remarked that an estimating function is e-invariant,

Y
�e�

k
0

k y�x; �� � y�x; ��

because of (2.1) where
Q

�e�
operates componentwise. Let us consider a curve k � k�t�,

k0 � k�0�, in the nuisance space. By di�erentiating (2.1) with respect to t along the curve

k � k�t� and exchanging the integral and di�erentiation, we have

d

dt

�

pfx;�; k�t�gy�x;��d��x�

�
�
�
�
t� 0

�

�

vfx;�; k0gpfx;�; k0gy�x;��d��x�

� hv; y�x;��i
�; k 0

� 0;

where

v �
d

dt
log pfx;�; k�t�g

�
�
�
�
t� 0
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is the nuisance tangent direction at k0. This holds for any k0 so that any estimating function

y�x;�� is orthogonal to v at any point ��; k�. However, from

hv; y�x;��i
�; k 0 �

Y
�m�

k

k 0 v;

Y
�e�

k

k 0 y

* +

�; k

�

Y
�m�

k

k 0 v; y

* +

�; k

;

�4:4�

where v is a nuisance tangent direction at k
0

, the orthogonality condition at k
0

is transferred

to that at k by the m-parallel transports of v at k
0

. This shows that an estimating function y

is orthogonal, not only to the nuisance tangent direction at any k, but to the m-parallel

transports from k
0

to k of the nuisance tangent directions at any k
0

.

Motivated by the above discussion, we now reorganize the decomposition (3.9) of H
�; k

by taking account of the global structure induced by the parallel transports. The

information ®bre space F
I

�; k at ��; k� is constructed from T
E

�; k such that its elements are

orthogonal not only to the nuisance tangent space T
N

�; k at ��; k� but also to the m-parallel

transports from k
0

to k of T
N

�; k 0 at points (�; k
0

� for all k
0

2 K . To this end, we ®rst consider

a vector

r�x� 2 T
E

�; k � T
A

�; k

whose e-transport exists in the Hilbert space H
�; k 0 for every k

0

, that is,

E
�; k 0 �fr�x�g

2
� <1: �4:5�

Suppose its e-transport to ��; k
0

� is orthogonal to T
N

�; k 0 for every k
0

2 K , that is,

v;

Y
�e�

k
0

k r�x�

* +

�; k 0

�

Y
�m�

k

k 0 v; r�x�

* +

�; k

� 0; v 2 T
N

�; k 0 : �4:6�

We express this by saying that r�x� is free of any nuisance tangent directions at every k
0

when it is e-transported. In this case r�x� is a candidate for an estimating function. This

implies that r�x� is orthogonal to not only T
N

�; k but also all the m-transports from k
0

to k

of T
N

�; k 0 . This suggests that we enlarge the nuisance space T
N

�; k to

span

[

k 0

Y
�m�

k

k 0 T
N

�; k 0

( )

;

and de®ne the directions orthogonal to it. Any estimating functions should be orthogonal

to the enlarged subspace.

To de®ne such a space formally, we consider the closed subspace ofH
�; k consisting of the

vectors satisfying the above conditions (4.5) and (4.6) and refer to it tentatively by F
IA

�; k,
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where I denotes the information part and A denotes the ancillary part. Obviously, the

following hold:

F
IA

�; k � T
E

�; k � T
A

�; k:

F
IA

�; k ?

[

k 0

Y
�m�

k

k 0 T
N

�; k 0 :

The nuisance ®bre space F
N

�; k is de®ned as the orthogonal complement of F
IA

�; k in H
�; k.

Obviously

F
N

�; k �

Y
�m�

k

k 0 T
N

�; k 0 : �4:7�
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We have

H
�; k � F

IA

�; k � F
N

�; k: �4:8�

We now decompose F
IA

�; k. Let u
I

i be the projection of the score ui onto F
IA

�; k. This is called

the information score. The information ®bre space denoted by F
I

�; k is the subspace spanned

by the information score functions u
I

i �x;�; k�. The ancillary ®bre space is the orthogonal

complement of F
I

�; k in F
IA

�; k and is denoted by F
A

�; k,

F
IA

�; k � F
I

�; k � F
A

�; k:

We thus have another orthogonal decomposition of H
�; k,

H
�; k � F

I

�; k � F
A

�; k � F
N

�; k; �4:9�

which represents a more global structure ofH
�; k (Fig. 2). The subspace F

N

�; k includes all the

m-parallel transports of T
N

�; k 0 from k
0

to k because of the relation (4.6). It is the information

®bre F
I

�; k that plays an important role.

It is helpful to compare the two decompositions (3.9) and (4.9). F
N

�; k is enlarged from T
N

�; k

to include all them-parallel transports of T
N

�; k 0 . The F
I

�; k is constructed from the projections

of the �-score functions to the orthogonal complement of the enlarged F
N

�; k, while T
E

�; k is

constructed from the projections to the orthogonal complement of smaller T
N

�; k. Therefore,

when T
N

�; k � F
N

�; k holds, F
I

�; k � T
E

�; k holds. This is an important special case.

5. Estimating functions and their e�ciency

Based on the decomposition (4.9) of the Hilbert spaceH
�; k, we can now characterize the set

of all the estimating functions. We ®rst answer the two important questions when an

estimating function exists and what is the set of all the estimating functions. To this end, we

prove the following two important lemmas.

Lemma 2. Any component of an estimating function y�x;�� belongs to F
I

�; k � F
A

�; k for any k.

Let y
I

i �x;�; k� be the projection of the ith component of y�x;�� onto F
I

�; k. Then, the

y
I

i �x;�; k�; i � 1; � � � ;m, span F
I

�; k.

Proof. Let y�x;�� be an estimating function. Then, its e-transport always exists in the

corresponding Hilbert space because of (2.3), and it is e-invariant:

Y
�e�

y�x;�� � y�x;��: �5:1�

We have already shown in (4.4) that

Y
�m�

k

k 0 v�x;�; k
0

�; y�x;��

* +

�; k

� 0 �5:2�
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for all k and k
0

. Therefore, y is included in F
I

�; k � F
A

�; k. Moreover, by di�erentiating (2.1)

with respect to �, we have

E
�; k�@�y�x;��� � hu; y�x;��i � 0; �5:3�

where hu; yi denotes a matrix whose elements are hui; yji. This shows that

E
�; k�@�y� � ÿhu; yi:

Since y belongs to F
I

�; k � F
A

�; k and the projection of u onto the space F
I

�; k � F
A

�; k includes no

F
A

�; k part, we have

hu; yi � hu
I
; yi;

where u
I
is the projection of u onto F

I

�; k. Therefore, (2.2) implies that the determinant of

hu
I

i ; yji does not vanish and that the projections of vectors yi onto F
I

�; k span F
I

�; k. This also

shows that F
I

�; k is non-degenerate, that is, its dimension is the same as that of the parameter

� of interest. h

We now prove what is in essence a converse of Lemma 2.

Lemma 3. Any vector w�x;�� belonging to F
I

�; k � F
A

�; k for some k 2 K is an estimating

function provided F
I

�; k 0 is non-degenerate for every k
0

and the projections of the components wi

of w onto F
I

�; k 0 span F
I

�; k 0 for every k
0

.

Remark. The ®rst part of the proof, for which the conditions of the lemma are not needed,

will show that the space F
I

�; k � F
A

�; k is e-invariant.

Proof. Let c�t� be a curve connecting two points k and k
0

, k � c�0�, and put

f�t� � E
�; c�t��w�x;���:

Since the e-parallel transport of w from k to c�t� is written as

Y
�e�

c�t�

k
w � wÿ f�t�;

w is e-invariant if f�t� � 0 holds. Hence, we need to prove f�t� � 0. Obviously f�0� � 0. By

di�erentiation, we have

d

dt
f�t� �

�

d

dt
pfx;�; c�t�gw�x;��d��x�

� E
�; c�t��v�t�w�x;��� � hv;wi

�; c�t�;

where

v�t� �
d

dt
log pfx;�; c�t�g:
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Since w 2 F
IA

�; k, its e-parallel transport is orthogonal to v�t�, and hence we have

0 � v�t�;

Y
�c�

c�t�

k
w

* +

�; c�t�

� hv�t�;wi
�; c�t� ÿ f�t�E

�; c�t��v�t��;

� hv�t�;wi
�; c�t�:

Hence df�t�=dt � 0, so that f�t� � 0. This proves the e-invariance of w,

Y
�e�

k
0

k w � w

and

E
�; k 0 �w�x;��� � 0

for all k
0

. Since the projections w
I

i of the components wi of w onto F
I

�; k 0 do, by assumption,

span F
I

�; k 0 for any k
0

, then E
�; k 0 �@

�
w�x;��� � ÿhu

I
;wi

�; k 0 � ÿhu
I
;w

I
i
�; k 0 is of full

rank. Therefore, w is an estimating function satisfying (2.1)±(2.3). h

By combining Lemmas 2 and 3, we have the following proposition.

Proposition 2. Any estimating function y�x;�� � fyi�x;��g can be decomposed for any k as a

sum

y�x;�� � T��; k�u
I
�x;�; k� � a�x;�; k�; �5:4�

where the component ai�x;�; k� of a belongs to F
A

�; k and T��; k� is a non-singular matrix.

Conversely, any function y�x;�� de®ned in the form of (5.4) at a ®xed k0 gives an estimating

function provided the projections of the components yi�x;�� onto F
I

�; k 0 span F
I

�; k 0 for every k
0

.

It is possible to choose a basis for the e�cient scores such that T��; k� becomes the

identity at some k. The proposition also gives a simple su�cient condition for the existence

of an estimating function. This is shown by putting a�x;�; k� � 0 in Proposition 2. Lemma

2 gives a necessary condition. We summarize these.

Proposition 3. A necessary condition for the existence of an estimating function is that F
I

�; k is

non-degenerate, that is, m-dimensional. A su�cient condition is that, for a ®xed k0, the

projections of u
I

i �x;�; k0� �i � 1; � � � ;m� onto F
I

�; k 0 span F
I

�; k 0 for every k
0

. The vector

u
I
�x;�; k0� is an estimating function in this case.

Remark. We discuss informally a necessary and su�cient condition. It is clear that any

estimating function can be written in the form

yi�x;�� �

�
Xm

i� 1

'ij�k�u
I

j �x;�; k�d��k� � ai�x;��;

where ai�x;�� is purely ancillary, that is orthogonal to F
I

�; k at any k. Therefore, a necessary

and su�cient condition for the existence of estimating functions is the existence of
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functionals 'ij�k� such that the projections y
I

i �x;�; k� of the above yi onto F
I

�; k

�i � 1; . . . ;m� span y
I

i �x;�; k� for all k. Let us de®ne

�ij�k; k
0

� � hu
I

i �x;�; k�; u
I

j �x;�; k
0

�i
�; k 0 :

Then, the condition is equivalent to the existence of 'ij�k� such that the matrix

Bij �

Xm

n� 1

�

'in�k��nj�k; k
0

�d��k�

is non-degenerate for all k
0

. The su�cient condition of Proposition 3 guarantees the

existence of such 'ij . When u
I

j �x;�; k
0

� �i � 1; . . . ;m� are non-degenerate, because of

continuity, there exists a neighbourhoodNK�k� of k such that the projections of u
I

i �x;�; k�,

�i � 1; . . . ;m� onto F
I

�; k 0 span F
I

�; k 0 for all elements k
0

of NK�k�. If a function y�x;��

satis®es the conditions of estimating functions where the global condition (2.2) is replaced

by the local one,

det jE
�; k 0 �@

�
y�x;���j 6� 0;

at least in a neighbourhood of a point k, such a function is called a local estimating

function. The non-degeneracy of u
I
�x;�; k� is a necessary and su�cient condition of the

existence of local estimating functions at k.

We next calculate the asymptotic covariance matrix of an estimating function. This

calculation leads us to the optimal estimating function. As discussed above, an estimating

function y�x;�� may be decomposed as

y�x;�� � u
I
�x;�; k� � a�x;�; k�;

where u
I
� �u

I

i � 2 F
I

�; k and a � �ai� 2 F
A

�; k. It is easy to show that

E�@
�
a� � ÿhu; ai � 0;

by di�erentiating E
�; k�a�x;�; k�� � 0. Therefore, we have

ÿE�@
�
y� � ÿE�@

�
u
I
� � hu; u

I
i � hu

I
; u

I
i; �5:5�

E�yy
T
� � E�u

I
�u

I
�

T
� � E�aa

T
� � G

I
� G

A
; �5:6�

where we put

G
I
� E�u

I
�u

I
�

T
�; G

A
� E�aa

T
�: �5:7�

So, by Proposition 1, we have the following result.

Proposition 4. The asymptotic covariance matrix derived from an estimating function y�x;��

is given by

AV�^�; y� � �G
I
�

ÿ1
� �G

I
�

ÿ1
G

A
�G

I
�

ÿ1
: �5:8�

The estimating function given by

y�x;�� � u
I
�x;�; k0� �5:9�
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where k0 is a ®xed point in K, is optimal among all the M-estimators when the true distribution

happens to be speci®ed by ��; k0� and u
I

i span F
I

�; k for every k. The optimal asymptotic

covariance is given by �G
I
�

ÿ1
in this case.

It is shown that the information ®bre F
I

�; k plays the fundamental role, being de®ned

through them-parallel transports of T
N

�; k 0 . However, in many important cases, F
I

�; k is equal

to the simpler T
E

�; k, which is easier to obtain. We show when such a simpli®cation occurs.

We ®x �, and consider the statistical submodel S
�
� fp�x;�; k�g, where k 2 K is the only

free parameter. The tangent vectors of S
�
compose the nuisance tangent space T

N

�; k. Let us

consider the m-parallel transport of T
N

�; k 0 from ��; k
0

� to ��; k� and see how it is di�erent

from T
N

�; k. A manifold in general is said to be ¯at or curvature-free when its tangent

directions are the same at all the points. In the present case, we can compare two tangent

spaces T
N

�; k and T
N

�; k 0 by the m-parallel transport of one to the other. We give formal

de®nitions of m-¯atness and m-information-curvature-freeness.

De®nition 1. A semi-parametric statistical model S is said to be m-¯at or m-convex, when

the T
N

�; k 0 are invariant under the m-parallel transports, that is

Y
�m�

k

k 0 T
N

�; k 0 � T
N

�; k

for any k, k
0

and �. When the m-parallel transport of T
N

�; k 0 from ��; k
0

� to ��; k� does not

include the T
E

�; k components for any k, k
0

and �, that is,

Y
�m�

k

k 0 T
N

�; k 0 � T
N

�; k � T
A

�; k; �5:10�

the model S is said to be m-curvature free in the information directions, or for short,

m-information-curvature free.

It is easy to see that, when S is m-¯at, it is m-information-curvature free. When S
�
is not

m-¯at, S
�
is curved in general, because its tangent directions change as k changes. However,

when S
�
is m-information-curvature free, the changes in the tangent directions are

restricted to the T
A

�; k (and T
N

�; k) directions, showing that S� is not curved in the direction

of T
E

�; k. Now, by using m-information-curvature freeness, we show a necessary and

su�cient condition that F
I

�; k coincides with T
E

�; k at every k.

Lemma 4. If and only if S
�
is m-information-curvature free, we have, for every k,

F
I

�; k � T
E

�; k: �5:11�

Proof. By de®nition, when S
�
is m-information-curvature free

[

k 0

Y
�m�

k

k 0 T
N

�; k 0 � T
N

�; k � T
A

�; k �5:12�

holds for every k and vice versa. At any k, (5.12) is equivalent to

F
IA

�; k � �F
N

�; k�
?

� T
E

�; k; �5:13�
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or, in other words,

Y
�m�

k

k 0 v�x; �; k
0

�; u
E

i �x; �; k�

* +

�; k

� 0

holds for every k
0

, v 2 T
N

�; k 0 and for all i � 1; � � � ;m, because of (4.6). The information ®bre

F
I

�; k is constructed by projecting the components of the �-score function u onto F
IA

�; k. It is

easy to show that F
I

�; k is the projection of T
E

�; k onto F
IA

�; k because T
E

�; k � T
A

�; k � F
IA

�; k.

Therefore, (5.13) leads to F
I

�; k � T
E

�; k. The converse is obvious because (5.11) implies (5.13)

which is equivalent to (5.12). h

We can now show the amount of loss of information caused by adopting the simple

method of estimating functions (M-estimators), relative to the CrameÂ r±Rao-type bound.

We also give a necessary and su�cient condition for the best M-estimator to be lossless,

that is, e�cient in the sense that it attains the CrameÂ r±Rao-type bound. Here, we de®ne the

optimal estimating function. Let the true distribution be p�x;�; k0�. An estimating function

y�x;�� is said to be optimal at a point k0 when the asymptotic variance AV�
^

�; y� is minimal

(in the sense of matrices) among the estimators obtained from all the estimating functions.

The optimal estimating function depends on k0, and there is no guarantee that we can ®nd it

because k0 is unknown.

Proposition 5.When S
�
ism-information-curvature free, y�x;�� � u

I
�x;�; k0� � u

E
�x;�; k0�

is the optimal estimating function at k0 and is e�cient at k0. When S
�
is not m-information-

curvature free and u
I
�x;�; k0� is not equal to u

E
�x;�; k0�, the minimal loss of information

by using the M-estimators is

G
E
ÿ G

I
� E

�; k0
��u

E
ÿ u

I
��u

E
ÿ u

I
�

T
�: �5:14�

Proof. When S
�
is m-information-curvature free, we have u

I
� u

E
from (5.11). Therefore,

G
I
� G

E
, showing that u

I
�x;�; k0� is optimal and e�cient at k0. On the other hand,

u
E
� u

I
� �u

E
ÿ u

I
� is an orthogonal decomposition so that the loss of information is given

by (5.14). h

It should be noted that most semi-parametric models so far treated by many researchers

are m-¯at. The important role of m-¯atness in the estimation function method is noted by

Amari and Kumon (1988), Amari (1987a), and also by Bickel et al. (1993) under the name

of convexity. The present result shows that the m-information-curvature freeness is

essential, establishing a necessary and su�cient condition for the estimating function

method to be lossless. We later give an example in which the model is not m-¯at but m-

information-curvature free, and the optimal estimating function is e�cient. However, the

optimal estimating function depends on the true k so that there is still a serious problem of

choosing a good k0 from observed data to derive a good estimating function. It is a merit of

estimating functions that, even if we misspecify the true k and choose an incorrect k0, the

estimator is still
���

n
p

-consistent. The next section proposes a method of choosing a simple

but good quasi-estimating function based on the observed data.
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6. Simple method of choosing good quasi-estimating functions

The ®nal problem is how to choose a good estimating function. It is clear that when

u
I
�x;�; k� does not depend on k, this u

I
�x;�� gives the best estimating function without any

loss of Fisher information. There are many examples belonging to this class (Amari and

Kumon 1988).

When u
I
�x;�; k� includes an unknown k, one orthodox idea is ®rst to ®nd a consistent

estimator ^k � ^k�x1; � � � ; xn;�� of k where � is ®xed. Given x1; � � � ; xn and hence
^k, we have

that u
I
�x;�; ^k� belongs to F

I

�; k � F
A

�; k for any k. This is the optimal estimating function at

k � ^kwhen it is applied to observations xi other than those used for estimating
^k. However,

when we apply this estimating function to xi from which ^k is obtained, we encounter a

problem in analysing the estimating equation

Xn

i� 1

u
I
�xi;�;

^k� � 0;

because the u
I
�xi;�;

^k� are not independent but are dependent through random variables

^k�x1; � � � ; xn;��. We call u
I
�x;�; ^k� a quasi-estimating function. Theoretically, we can often

avoid the di�culty by dividing n observations into
���

n
p

and nÿ
���

n
p

disjoint subsets and by

using
���

n
p

observations for estimating k and the other nÿ
���

n
p

observations for estimating �.

We do not discuss this problem further (see, for example, Pfanzagl 1990; Bhanja and Ghosh

1992). From a practical point of view, computer simulations show that the use of quasi-

estimating functions ui�x;�;
^k� is justi®ed.

It is the point of an estimating function u
I
�x;�; k� that even a misspeci®ed k still gives a

���

n
p

-consistent estimator. Therefore, it is wise for practical purposes to choose a simple but

good k. We propose the following newmethod. Since we know at least in principle the set of

all estimating functions, we choose a parametric family y�x;�;�� of estimating functions,

where � is a ®nite-dimensional parameter. We then obtain an adequate ^� based on

observed data x1; � � � ; xn. There are a number of methods for doing so. There again remains

the problem of justifying the application of the quasi-estimating function y�x;�; ^�� to the

data xi from which ^� is obtained. However, since ^� is ®nite-dimensional, it is easier to

justify this by using expansions similar to (2.5). We do not discuss this point further. In

order to choose ^�, one idea is to use a parametrized subset of K ,

M � fk���g; M � K ;

where � is a ®nite-dimensional parameter that speci®es k. Since the true k is not necessarily

included in the subset M, we have a statistical model

S
�

� fp�x;�;�� � p�x;�; k����g

parametrized by a ®nite number of parameters ��;�� which might not include the true

distribution. It is not di�cult to obtain an estimate �~�; ~��, say, by the maximum likelihood

method. However, this ~� is not consistent in general and the idea of using ~

� was dismissed

long ago. The new idea is to use the quasi-estimating function

u
I
fx;�; k�~��g
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to obtain a good
���

n
p

-consistent estimator ^�. This type of idea is similar to one proposed by

Lindsay (1985).

7. Examples

In order to explain the basic concepts, we use the simple mixture model of (2.13).

Example 2. Mixture model. A mixture model is m-¯at and is hence m-information-

curvature free. In particular, when a model is given by (2.13) and (2.14), the �-score, the

information score u
I
, and the nuisance score in the direction of a��� can be calculated

explicitly.

We ®rst calculate the �-score u,

u �
@

@�

log p

�

1

p�x;�; k�

�

�@
�
s��� @

�
rÿ @

�
 �k��� expf��sÿ rÿ  gd�:

Noting that the conditional distribution p��js� of � conditioned on s is written as

p��js� �
k��� expf��sÿ  g

�

k��� expf��sÿ  gd�

;

the �-score may be written as

u � @
�
s�E��js� � @

�
rÿ E�@

�
 js�;

where E��js� is the conditional expectation. Similarly, the nuisance score in the direction of

a��� is given by

v�a� � E
a���

k���

�
�
�
�
s

� �

:

Therefore, v�a� depends on x only through s so that the nuisance subspace T
N

�; k is generated

by the random variable s�x;��.

It is known that the projection of a random variable t onto the space generated by si is

given by the conditional expectation E�tjsi� and the projection onto the orthogonal

complement is tÿ E�tjsi�. Hence, the e�cient score, which is the same as the information

score in this case, is given by

u
I
� u

E
� uÿ E�ujs�

� f@
�
sÿ E�@

�
sjs�g�E��js� � f@

�
rÿ E�@

�
rjs�g;

where the vector notation should be understood appropriately. This gives the e�cient
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estimating functions. There is an interesting special case when @
�
s is a function of s. In this

case, @
�
s � E�@

�
sjs�. The e�cient score is then given by

u
E
� @

�
rÿ E�@

�
rjs�:

This does not depend on k���, so that u
E
is the optimal estimation function at any k���.

There is no information loss.

Example 1. Linear dependence model. We now apply our general theory to the linear

dependence problem of (2.12), where we put �
2
� 1 for simplicity's sake. We further put

x � ��; ��, and

r�x; �� � ÿ
1

2
��

2
� �

2
�;

s�x; �� � �� ��;

@
�
s�x; �� � �;

 ��; �� �
1

2
�
2
�1� �

2
� � log 2�:

The �-score is

u � �E��js� ÿ �E��
2
js�:

Since

E��js� �
�

1� �
2
s;

we have

u
I
� u

E
�

1

1� �
2
f� ÿ ��gE��js�:

In order to obtain a good quasi-estimating function, we need to estimate E��js�, which

might not be easy.

We study a special case ®rst. When k��� is a normal distribution with mean ��

and variance �
2

�
, we have

p�s; �; �; k� � c�s� exp �sÿ
�� ÿ �

�
�

2

2�2

�

ÿ

1

2
�1� �

2
��

2

( )

:

Hence, after some calculations, we have

E��js� � const: s�
�
�

�
2

�

 !

:

Therefore, the optimal estimating function is

u
I
� s�

�
�

�
2

�

 !

�� ÿ ���

� �� �� �

�
�

�
2

�

 !

�� ÿ ���:
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Motivated by this (see also Pfanzagl 1990), we consider a family of estimating functions

parametrized by c,

y�x; �; c� � ��� �� � c��� ÿ ���:

The estimator obtained from y�x; �; c� is called the c-estimator and is denoted by ^

�c. This

class includes various estimators. When c!1, the estimator is

^

�
1
�

P

�i
P

�i

:

We calculate the maximum likelihood estimators �^�; ^�1;
^

�2; � � � ;
^

�n� of all the parameters.

Here ^

� is the least-squares estimator in the orthogonal direction, and is given by the 0-

estimator ^

�0. This estimator is not optimal. When the sequence ��1; �2; . . .� can be regarded

as a realization from N��
�
; �

2

�
�, the estimator obtained from c � �

�
=�

2

�
is optimal.

The idea of the c-estimator springs from the following observation. Let us temporarily

assume that k��� is subject to a normal distribution N��
�
; �

2

�
�. Then, the nuisance function

k is parametrized by � � ��
�
; �

2

�
�. From the observed data, we have an estimator

^� � ��̂
�
; �̂

2

�
� in which

�̂
�
�

1

n

X

�i

�̂
2

�
�

1

n

X

�
2

i ÿ �̂
2

�
ÿ 1:

We use the ^c-quasi-estimating function, where ^c is given by

^c �
�̂
�

�̂
2

�

:

The estimator ^

�
^c is consistent and improves the maximum likelihood estimator even when

k��� is not normal.

We now analyse the c-estimators. Given a sequence ��1; �2; � � ��, the asymptotic variance

of the c-estimator ^

�c is calculated from

Vc �

�1� �
2
�f�c� �1� �

2
�
�

��
2
� �1� �

2
�

2
��

2
ÿ

�

�
2
� � �1� �

2
�g

fc�� � �1� �
2
��

2
g

2
;

where

�

� �

1

n

Xn

i� 1

�i;

�
2
�

1

n

Xn

i� 1

�
2

i :

The optimal value of c is given by

copt �

�

�

�
2
ÿ �

�

��
2
:
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The unknown �

� and � 2 are estimated by

^

� �

1

n

X

�i;

b
�
2
�

1

n

X

�
2

i ÿ 1:

The estimator ^

�
^c is not necessarily e�cient, but is close to the optimal among the

c-estimators. We show how it improves the maximum likelihood estimator. For example,

when �

� � 1, � 2 � 2, �
2
� 1, and � � 0, the variances of the MLE ^

�0 and of ^

�
1

are,

respectively,

V ���MLE� �

3

4n
;

V �^�
1
� �

1

n
;

while that of the copt estimator is

V �^�c� �
2

3n
:

Computer simulations show that ^

�
^c attains this.

Example 3. Semi-parametric additive regression. This model, given by (2.15), is analysed

here because it is not m-¯at but is m-information-curvature free. The probability density

function is written as

p�y; x; t;�; k� �
1
������

2�
p exp ÿ

1

2
fyÿ ��xÿ k�t�g

2

� �

;

which is not linear in k. The �-score vector at ��; k� is written as

u � xfyÿ ��xÿ k�t�g;

while the nuisance score in the direction of a�t� of a change in function k�t� is

v � a�t�fyÿ ��xÿ k�t�g:

The e�cient score is given by

u
E
� fxÿ E�xjt�gfyÿ ��xÿ k�t�g:

Since the model is notm-¯at, them-parallel transport of the nuisance tangent space T
N

�; k 0

to ��; k� is di�erent from T
N

�; k. The m-parallel transport of v from k
0

to k is given by

Y
�m�

k

k 0 v �
p�y; x; t;�; k

0

�

p�y; x; t;�; k�
v

� a�t�fyÿ ��xÿ k
0

�t�g exp �k
0

ÿ k� yÿ ��xÿ
k� k

0

2

� �� �

:
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This does not belong to T
N

�; k. The information score u
I
is the projection of u onto the space

orthogonal to that spanned by all of
Q

�m� k

k 0 T
N

�; k 0 .

In the present case, we can show that

Y
�m�

k

k 0 T
N

�; k 0 � T
N

�; k � T
A

�; k:

This is proved by showing, for any v 2 T
N

�; k 0 ,

u
E
;

Y
�m�

k

k 0 v

* +

�; k

� E fxÿ E�xjt�ga�t��yÿ ��xÿ k��yÿ ��xÿ k
0

� exp �k
0

ÿ k� yÿ ��xÿ
k� k

0

2

� �� �� �

� 0

To prove this, we ®rst calculate the expectation of the above with respect to y, giving

u
E
;

Y
�m�

k

k 0 v

* +

�; k

� Ex; t �xÿ E�xjt��a�t�E
�
���ÿ k

0

� k� exp �k
0

ÿ k� �ÿ

k
0

ÿ k

2

� �� �� �� �

;

where E
�
is the expectation with respect to the normal random variable

� � yÿ ��xÿ k�t�

and Ex; t is the expectation with respect to q�x; t�. Since the term in E
�
depends on t but not

on x, by taking the conditional expectation Exjt, we have

u
E
;

Y
�m�

k

k 0 v

* +

�; k

� 0

which shows that S
�
is curved only in the direction of T

A

�; k. Hence, we have

u
I
� u

E
:

Any estimating function is equivalently, or to within a matrix T��; k�, written as

y � u
I
� a

� fxÿ E�xjt�gfyÿ ��xÿ k�t�g � a

for any k�t� and a 2 F
A

�; k. From (5.8),G
A
� 0 for the estimator with a � 0, so that this gives

an e�cient estimator. It is noteworthy that, even when k�t� is misspeci®ed, this y gives a
���

n
p

-

consistent estimator provided E�xjt� is known or estimated well from the data. Cuzick

(1992) discussed e�cient estimation of E�xjt� and k�t� by smoothing.
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