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A technique based on minimum distance, derived from a coef®cient of determination and

representable in terms of Greenwood's statistic, is used to derive an estimator of the end-point of a

distribution. It is appropriate in cases where the actual sample size is very large and perhaps unknown.

The minimum-distance estimator is compared with a competitor based on maximum likelihood and

shown to enjoy lower asymptotic variance for a range of values of the extremal exponent. When only

a small number of extremes is available, it is well de®ned much more frequently than the maximum-

likelihood estimator. The minimum-distance method allows exact interval estimation, since the version

of Greenwood's statistic on which it is based does not depend on nuisance parameters.

Keywords: central limit theorem; coef®cient of determination; domain of attraction; extreme value

theory; goodness of ®t; Greenwood's statistic; least-squares maximum-likelihood order statistic; Pareto

distribution; sporting records; Weibull distribution

1. Introduction

In some very large data sets, only extreme values are readily accessible. For example, in the

case of data on athletics or similar sporting events, it can be the case that only the fastest

times, in major meetings such as the Olympic Games, are straightforward to obtain.

Likewise, with machine-recorded data only the k largest extreme values may be retained, in

order to minimize the amount of data storage. There, the recorded data are updated if and

only if a new record is observed. Meteorological data recorded automatically in remote

locations are sometimes of this type.

In such cases it is often of interest to estimate the end-point or threshold of the

distribution from which the data came, e.g. the fastest possible time in an athletic event, or

the highest possible wind velocity in the case of meteorological data. Although the number

n of potential trials is usually unknown, it would be very large. Hence, if the sampling

distribution were in the domain of attraction of an extreme value type, then the joint
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distribution of the k largest extremes would probably be very close to its limit as n!1.

The most widely applicable extreme value type, in the context of approach to a threshold, is

arguably the Weibull.

In the present paper we discuss two approaches to inference in this context. The ®rst,

based on maximum likelihood, is not infrequently outperformed by the second, which is

founded on minimum-distance methods. We use a measure of distance related to a quadratic

form for order statistics, proposed by Hartley and Pfaffenberger (1972). It is based on

Greenwood's statistic, which measures the distance of an empirical distribution from

uniformity, and is more commonly used for spacings-based tests of the hypothesis that a

sampling distribution is uniform. The minimum-distance estimator of the end-point enjoys

lower asymptotic variance, for a range of values of the extremal exponent, than its

counterpart derived using maximum likelihood. In addition, in small samples it is well

de®ned much more often than the maximum-likelihood estimator.

If data are recorded over an extended period, and one wishes to avoid having to model

the manner in which the sampling distribution evolves in time, then it can be necessary to

restrict attention to relatively short sequences of extremes. For example, in the case of times

in a sporting event it is to be expected that improvements in training methods or changes in

the way rules are enforced will produce changes in distribution. This means that the fastest

possible time in one period may be rather different from that in the next and implies that a

relatively small value of k should be employed. In this context the minimum-distance

estimator is well de®ned (in the sense of taking a ®nite value) more often than its

competitor based on maximum likelihood.

The poorer performance of the maximum-likelihood estimator, relative to the minimum-

distance estimator, derives from the greater reliance of the former on estimation of the

extremal exponent. At one point in the derivation of the maximum-likelihood estimator, the

extremal exponent is replaced by its maximum-likelihood estimate, given the end-point.

However, the maximum-likelihood estimate of the extremal exponent has much larger

variance, for large values of the exponent, when the end-point is unknown than it does

when the end-point is known. By way of comparison, the minimum-distance estimator is

constructed using an argument which is invariant under alterations to the extremal exponent.

This is re¯ected in the fact that the distribution of the minimum distance criterion (G(è) in

Section 2.2) does not depend on the extremal exponent, whereas the distribution of the

likelihood criterion (l(è) in Section 2.1) depends on the exponent.

Early work on estimation of an end-point includes that of Peto and Lee (1973), who

treated the problem in the context of ®tting a Weibull distribution. Weissman (1978)

conducted inference based on the asymptotic joint distribution of the k largest order

statistics; Weissman (1981) also addressed interval estimation when the shape parameter is

unknown. In our work the shape is also unknown and is regarded as a nuisance parameter.

Cooke (1979, 1980) proposed estimators based on linear combinations of a ®xed number of

extreme values. Maximum-likelihood methods in related settings, where the effective sample

size is generally assumed known, go back at least to the work of Hall (1982) and Smith

(1985, 1987). Smith and Weissman (1985) suggested a local maximum-likelihood estimator,

and discussed the existence of solutions of the likelihood equations. Related extreme value

methods have been suggested by de Haan and Resnick (1994) for estimating the `̀ home
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range'' of an animal. Plotting methods for extreme value data, among other matters, have

been discussed in a book by Embrechts et al. (1997).

Section 2 introduces maximum-likelihood and minimum-distance methods and describes

their theoretical properties. Numerical performance is studied in Section 3, in the case of

both real and simulated data. We show there that minimum-distance methods lead to

con®dence intervals as well as point estimates, with exactly known coverage when the data

enjoy an exact extreme value distribution. Technical arguments behind the work in Section 2

are outlined in Section 4. We address only the case of a lower bound to the sampling

distribution, since that of an upper bound is readily treated by making the obvious trans-

formation.

2. Methods for estimation

2.1. Maximum-likelihood estimation

Let X1 , . . . , X k have an extreme value distribution of Weibull type, referred to as `̀ type

II'' in the notation of Galambos (1978) and David (1981), and `̀ type III'' by Smith (1985).

Denote the lower limit of this distribution by è. Then, there exist positive constants á and a

such that (X1 ÿ è)=a has the distribution function 1ÿ exp (ÿxá) for x > 0.

We may represent the joint distribution of X � (X 1, . . . , X k) in terms of independent

random variables, as follows. Put

Yi � iflog (X i�1 ÿ è)ÿ log (X i ÿ è)g, Y � log (X k ÿ è)ÿ log a: (2:1)

If è is at its true value, then Y1, . . . , Ykÿ1, Y are independent, each áYi has an exponential

distribution with unit mean, and áY has the density function

f (y) � f(k ÿ 1)!gÿ1 exp (kyÿ exp y):

The likelihood L of X equals the product over 1 < i < k ÿ 1 of the density of X i given

X i�1, . . . , X k , multiplied by the density of X k . Therefore,

L �
Ykÿ1

i�1

(exp [ÿáiflog (X i�1 ÿ è)ÿ log (X i ÿ è)g]ái(X i ÿ è)ÿ1)

 !

3 f [áflog (X k ÿ è)ÿ logág]á(X k ÿ è)ÿ1:

Hence, up to an additive constant the negative log-likelihood of X equals

l1 � á
Xkÿ1

i�1

Yi ÿ káY � exp (áY )ÿ k logá�
Xk

i�1

log (X i ÿ è),

in which Y1, . . . , Ykÿ1 and Y have the functional form given in (2.1). This is also the log-

likelihood of points è, X 1 , X2 , . . . from a Poisson process with cumulative intensity

f(xÿ è)=agá, for x . 0.

Estimating the end-point 179



Differentiating l1 with respect to a and equating to zero we may express the maximum-

likelihood estimator of a as a function of those of è and á: á log a �
á log (X k ÿ è)ÿ log k. With this substitution we obtain Y � áÿ1 log k, and, up to an

additive constant, the negative log-likelihood

l2 � á
Xkÿ1

i�1

Yi ÿ k logá�
Xk

i�1

log (X i ÿ è): (2:2)

Differentiating with respect to á and equating to zero we obtain the maximum-likelihood

estimator of á, which on substituting back into the formula for l2 shows that, up to an

additive constant, kÿ1 l2 equals

l(è) � log
Xkÿ1

i�1

Yi

 !
� kÿ1

Xk

i�1

log (X i ÿ è):

Maximum-likelihood estimation of è proceeds by minimizing l(è). This may be shown to be

identical with the `̀ approximate'' criterion suggested by Smith and Weissman (1985).

Next we elucidate performance of the maximum-likelihood estimator. Let E 2 (0, 1) be

arbitrary but ®xed, let è0 be the true value of è, and let è̂ denote any value of è in the

range jèÿ è0j, min f(1ÿ E) exp (ÿã=á), X1 ÿ è0g which produces a local minimum of

l(è), where ã � 0:577 2 . . . is Euler's constant. De®ne ó 2
1 � áÿ1(áÿ 1)2(áÿ 2).

We shall assume, here and in Theorem 2.2, that a � 1; in the contrary case, all

asymptotic variances are multiplied by a2. Note too that the estimator è̂ is not consistent for

è0 when á, 2.

Theorem 2.1.

(a) If á > 2, then with probability tending to 1 as k !1, è̂ is well de®ned.

(b) If á � 2, then (log k)1=2(è̂ÿ è0) is asymptotically normal N (0, 4 exp (ÿã)) and, if

á. 2, then k(1=2)ÿ(1=á)(è̂ÿ è0) is asymptotically normal N (0, ó 2
1).

2.2. Estimation via minimum distance

The coef®cient of determination D(è)2 is de®ned as the ratio of the regression sum of

squares to the total sum of squares in the linear model Z � Mr� error, where

Z � (Z1, . . . , Z k)T, Zi � log (X i ÿ è), M is the k 3 2 matrix (E(U ), 1), the vector

U � (U1, . . . , Uk)T has the density

exp
Xk

i�1

ui ÿ exp (uk)

 !
for ÿ1, u1 , . . . , uk ,1

(see, for example, Weissman (1978)), 1 is the k 3 1 column vector of 1s, and r � (r1, r2)T is

a 2 3 1 vector of scalars. Writing V for the variance matrix of U, r̂ for the minimizer of the

quadratic form (Z ÿ Mr)Vÿ1(Z ÿ Mr), Ẑ � M r̂ and Z � kÿ1
P

i<k Zi, we may show that

D(è)2 equals
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(Ẑ ÿ Z1)TVÿ1(Ẑ ÿ Z1)

(Z ÿ Z1)TVÿ1(Z ÿ Z1)
:

Wang (1995) has proved that this quantity equals

k2ó 2
k � k ÿ 1

(k ÿ 1)fk2ó 2
k G(è)� 1g ,

where ó 2
k � var (Uk) and G(è) is Greenwood's statistic, here given by

G(è) �
Xkÿ1

i�1

Y 2
i

 !� Xkÿ1

i�1

Yi

 !2

,

with Yi having the meaning ascribed to it in Section 2.1. Thus, è would be estimated as the

minimizer of G.

Next we describe theoretical performance of è̂, de®ned to be that value of è in the range

jèÿ è0j, min f(1ÿ E) exp (ÿã=á), X1 ÿ è0g which minimizes G(è). Put

ó 2
2 � 8áÿ1(áÿ 1)2(áÿ 2)(2á2 ÿ 4á� 1)ÿ2 � ó 2

18(2á2 ÿ 4á� 1)ÿ2:

Theorem 2.2. The results of Theorem 2.1 hold in the case where è̂ is the minimum-distance

estimator, except that ó 2
1 there should here be replaced by ó 2

2.

Comparing Theorems 2.1 and 2.2 we see that the minimum-distance estimator has lower

variance than the maximum-likelihood estimator whenever á. (21=2 � 1
2
)1=2 � 1 � 2:384.

In the next section we shall suggest an exact interval estimator of è, based on the

statistic G(è). Such an estimator is possible because the distribution of G(è0) does not

depend on á; that quantity cancels from the numerator and denominator. This property is

not shared by l(è0), which is another reason why the minimum-distance approach is

preferable. Con®dence intervals whose coverage is asymptotically correct, as k !1, may

be constructed using the maximum-likelihood method, however (Smith and Weissman

1985).

More general models may also be put into the minimum-distance and maximum-

likelihood frameworks. They include regression models of the form X i � ø(è, i)� aWi,

where ø(è, i) is a known function of a vector parameter è and the index i, a is a scalar,

and W1 , W2 , . . . have the multivariate extreme value distribution ascribed earlier to

(X 1 ÿ è)=a , (X2 ÿ è)=a , . . . (at the true values of the parameters è and a). Examples

include ø(è, i) � è1 � è2 i, where è � (è1, è2). Maximum-likelihood and minimum-distance

estimators may be derived as before, the only change being that now

Yi � i[log fX i�1 ÿ ø(è, i� 1)g ÿ log fX i ÿ ø(è, i)g],

Y � log fX k ÿ ø(è, k)g ÿ log a,

in place of the earlier de®nitions (2.1). Thus, it is again necessary to minimize l(è) or G(è),
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this time with respect to the vector parameter è. Since the minimum-distance method again

avoids explicit estimation of á it can be expected to produce improved performance for large

á values, although of course the de®nition of `̀ suf®ciently large á'' will depend on the model

and on the values of non-intercept parameters.

3. Applications to real and simulated data

It should be noted at the outset that in a minority of cases, neither the maximum-likelihood

nor the minimum-distance estimator is well de®ned. Smith and Weissman (1985) observe that

a graph of l(è) can assume one of three forms, illustrated in their Figure 1. (Note that the

®gure depicts ÿl, in our notation.) In each case, the global minimum occurs at the smallest

order statistic X 1 where it equals ÿ1. Only for the ®rst of Smith and Weissman's three types

of curve does a local minimum occur at a è value strictly less than X 1; in the third, a

minimum occurs at ÿ1. Following Smith and Weissman we shall say that the maximum-

likelihood estimator `̀ does not exist'' unless the data produce a curve of the ®rst type. Smith

and Weissman (1985) point out that, when the maximum-likelihood estimator of è is taken

equal to X 1, inconsistent estimation of the shape parameter á results.

On the other hand, a graph of the function G seems always to be one of only two types,

illustrated in Figure 1. The ®rst has a well-de®ned global minimum at a value strictly less

than X 1, and a global maximum at X 1. The second is monotonic increasing on (ÿ1, X1)

and so has its minimum at ÿ1. In this case we shall say that the minimum-distance

estimator does not exist. Note particularly that X1 always produces a global maximum of G

and a global minimum of l.

Figure 1. Two different forms of the graph of G, (a) one where the minimum is unique and ®nite, and

(b) the other where there are no local minima and the global minimum occurs at ÿ1.

g

θθ̂

(a)

x1 x1

g

θ

(b)

182 P. Hall and J.Z. Wang



Table 1 compares performance of the maximum-likelihood and minimum-distance

estimators for small values of k. The data were generated from the limiting extremal

distribution, and thus the end-point is è0 � 0 (Weissman 1981). In the case of the

maximum-likelihood estimator, again following Smith and Weissman (1985), biases and

mean squared errors are given only for those cases where a local minimum of l occurs on

(ÿ1, X1) and, for the minimum-distance estimator, only in cases where the minimum of G

is ®nite. Note particularly that the minimum-distance estimator is well de®ned more often

than the maximum-likelihood estimator is and that, in those cases where it is well de®ned,

it generally has less bias and less variance. Each value in the table was computed as the

average over 1000 samples, and in particular the values of N are the numbers of the times

out of 1000 that the respective estimator was well de®ned. We considered a range of values

of á less than the minimum, 2, for which the estimators are consistent, in order to check

Table 1. Comparison of performance of maximum-likelihood and minimum-distance estimators, where

N denotes the number of times, out of 1000, for which the respective estimator is well de®ned (see

text for details)

k á Minimum-distance estimator Maximum-likelihood estimator

Mean

(è̂)

Standard

deviation

(è̂)

Mean

squared

error (è̂)

N Mean

(è̂)

Standard

deviation

(è̂)

Mean

squared

error (è̂)

N

5 5 0.15 2.01 2.022 594 ÿ0.20 3.39 3.402 94

4 0.07 2.11 2.112 601 ÿ0.69 3.97 4.032 81

3 ÿ0.10 2.12 2.122 637 ÿ1.71 4.56 4.872 72

2 ÿ0.04 2.19 2.192 682 ÿ2.04 4.73 5.152 66

1.25 0.20 1.97 1.972 726 ÿ1.74 5.63 5.892 61

10 5 0.11 1.85 1.852 661 ÿ0.23 2.94 2.952 402

4 0.12 1.91 1.912 703 ÿ0.75 3.11 3.202 385

3 0.09 1.96 1.962 755 ÿ1.11 3.56 3.732 356

2 0.05 1.99 1.992 797 ÿ1.24 4.07 4.252 296

1.25 0.02 1.85 1.852 834 ÿ2.52 5.25 5.822 146

15 5 0.19 1.59 1.602 682 ÿ0.26 2.81 2.822 625

4 0.08 1.69 1.692 781 ÿ0.45 3.00 3.032 613

3 ÿ0.09 1.81 1.812 840 ÿ0.51 3.05 3.092 591

2 ÿ0.18 1.88 1.892 855 ÿ0.71 3.20 3.282 554

1.25 0.08 1.77 1.772 898 ÿ0.95 3.04 3.182 242

25 5 0.04 1.59 1.592 752 ÿ0.29 2.75 2.772 828

4 0.05 1.60 1.602 835 ÿ0.25 1.84 1.862 817

3 ÿ0.11 1.77 1.772 891 ÿ0.32 1.95 1.972 805

2 ÿ0.12 1.83 1.832 900 ÿ0.08 1.81 1.812 798

1.25 0.18 1.51 1.532 921 0.10 1.52 1.522 383
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that neither method performs in an aberrant way. They do not, and the case á � 1:25

illustrated in the table is typical.

Comparison of maximum-likelihood and minimum-distance methods on the basis of

interval estimates, rather than point estimates, is awkward for at least two reasons. First,

maximum-likelihood interval estimates are cumbersome to compute, because the distribution

of l(è) at the true parameter value è0 depends on the unknown á. The distribution could be

approximated by simulation, with á set equal to its maximum-likelihood estimate, and an

interval estimate computed by reference to this Monte Carlo approximation. However, the

coverage of such an interval would be only approximately correct. As a result, the relative

performance (e.g. in terms of length) of minimum-distance and maximum-likelihood

intervals would be confounded by the level inaccuracy of the latter. The second dif®culty

derives from the relative complexity of the function l(è), noted in the ®rst paragraph of this

section. In particular, con®dence regions of the form fè: l(è) < constantg are generally not

connected. This problem can be overcome by imposing restrictions on the nature of the

region, but that approach is not attractive.

Our next example uses data from Kimball (1960), also employed by Smith and Weissman

(1985) and given there in enough detail for the analyses reported in that paper and ours.

The data are of the survival times of 208 mice exposed to radiation, and our aim is to

estimate the threshold, or lower end-point, of the distribution of survival time. When

maximum likelihood is employed, the estimator based on the k shortest survival times is

well de®ned only for k > 8 (although not including k � 9), but for the minimum-distance

estimator it is well de®ned whenever k > 4. The minimum-distance estimator is also

less variable than that based on maximum likelihood, as evidenced by the comparison in

Table 2. The estimator of á obtained by either method lies between 2 and 3, depending on

Table 2. Comparison of maximum-likelihood and minimum-

distance estimators of è based on the k smallest survival

times, for the data of Kimball (1960), where asterisks denote

cases where the estimator is not well de®ned

k Minimum-distance

estimator

Maximum-likelihood

estimator

4 22.4 �
6 24.9 �
8 26.0 37.0

10 33.6 36.5

12 32.2 35.3

15 31.6 31.9

20 34.8 35.5

25 34.2 34.5

30 33.6 26.3

35 33.0 24.0

40 33.8 33.1
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the value of k. (An estimator of á based on minimum-distance methods may be computed

from r̂, de®ned in Section 2.2 (Weissman 1978).)

Our ®nal example is included partly to demonstrate that the minimum-distance estimator

is well de®ned even in cases where the estimate of á is a less than 1. By way of

comparison, the maximum likelihood estimator is not well de®ned in this context. Table 3

lists the men's 100 m records, in seconds, in the 1988 and 1992 Olympic Games (Estadi

OlõÂmpic 1992, Wallechinsky 1992). We consider only the best performance of each

individual. For example, Christie's best time of 9.96 s is the fastest of his 1988 and 1992

times of 9.97 s and 9.96 s, respectively. We suggest that it is unwise to include more than

two consecutive Olympic Games, owing to the tendency for distributions to change with

time. Furthermore, the two previous Olympics, in 1980 and 1984, were subject to boycotts.

In general, there is potential for training regimes and competition to lead to athletic

recods that might not realistically arise from independent and identically distributed data. A

test of goodness of ®t is a valuable aid to assessing the signi®cance of this problem. For the

data in Table 3, the W statistic of Hasofer and Wang (1992) gives a p value of less than

0.01, supporting our particular approach to analysing these data.

Figure 2 depicts the function G for these data. It is minimized at è � 9:91. The

corresponding estimate of á is 0.82. The maximum-likelihood estimator is not well de®ned

for these data, unless we admit X 1 � 9:92; then, the maximum-likelihood estimator of á
is 0.

An á-level con®dence interval for è0 may be de®ned as the set of values of è such that

G(è) < g, where g is the upper á-level point of the distribution of G(è0). Critical points

are available from Burrows (1979) when 4 < k < 12. Stephens (1981) gives points for

larger k. Depending on the data, the con®dence interval may be either semi-in®nite, of the

form (ÿ1, è̂1), or bounded. In the case of the mice data, and for k � 10, the interval was

(ÿ1, 39:9), or more correctly (0, 39:9), taking into account the physical character of

survival times. For the athletic data the con®dence interval was (9:80, 9:92). Regardless of

Table 3. Times in men's 100 m event at 1988 and 1992 Olympic Games

Competitor Time (s) Year, Place

(1) C. Lewis 9.92 1988 Seoul

(2) L. Christie 9.96 1992 Barcelona

(3) C. Smith 9.99 1988 Seoul

(4) F. Fredericks 10.02 1992 Barcelona

(5) D. Mitchell 10.04 1992 Barcelona

(6) B. Surin 10.09 1992 Barcelona

(7) L. Burrell 10.10 1992 Barcelona

(8) R. da Silva 10.11 1988 Seoul

(9) D. Williams 10.11 1988 Seoul

(10) O. Adenniken 10.12 1992 Barcelona

(11) R. Stewart 10.22 1992 Barcelona

(12) D. Ezinwa 10.26 1992 Barcelona

Estimating the end-point 185



the value of á, but assuming that the data enjoy exactly an extreme value distribution, these

are exact con®dence intervals for è0.

It might be argued that, when the maximum-likelihood estimate fails to exist, i.e. takes

the value in®nity, the data support the value è0 � 1 more strongly than they do any ®nite

value of á. While è0 � 1 is often not plausible on physical grounds, this type of argument

is common in statistics and can be helpful. For example, when using high-order kernel

methods, one sometimes obtains a negative density estimate which, while physically

implausible, may be interpreted as implying that there is not strong evidence to support the

hypothesis that the true density is non-zero at the point of estimation.

4. Technical arguments

Proof of Theorem 2.2.

(i) Taylor expansion of G. In the de®nition of Yi at (2.1), interpret è as an algebraic

variable, and let the true value of è be è0 � 0. For j > 1 put d1 ji � (i= j)(X
ÿ j
i ÿ X

ÿ j
i�1),

Y0i � i(log X i�1 ÿ log X i), Al �
P

1<i<kÿ1Y l
0i,

d2 ji �
XX

( j1, j2): j1� j2� j

d1 j1 id1 j2 i � 2Y0id1 ji, alj �
Xkÿ1

i�1

d lji,

for l � 1, 2. In this notation we have, by Taylor expansion and provided that jèj, X 1,

0.26

0.24

0.22

0.20

0.18

g

9.70 9.75 9.80 9.85 9.90 9.92 θ

Figure 2. Graph of G(è) for data on times in men's 100 m Olympic event.
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Yi � Y0i �
X1
j�1

d1 jiè
j,

Xkÿ1

i�1

Y l
i � Al �

X1
j�1

aljè
j

and

A2
1G(è) � A2 � èB1 � è2 B2 � R, (4:1)

where

B1 � a21 ÿ 2Aÿ1
1 A2a11, (4:2)

B2 � a22 ÿ 2Aÿ1
1 A2a12 ÿ 2Aÿ1

1 a11a21 � 3Aÿ2
1 A2a2

11, (4:3)

and the remainder term R represents contributions from powers of è higher than the second.

(ii) Properties of B1. We may write áY0i � Zi, where Z1, . . . , Z k are independent,

exponentially distributed random variables. In that notation, and with â � 1=á,

X i � exp ÿâ
X1
j�i

jÿ1(Z j ÿ 1)� ãÿ
Xiÿ1

j�1

jÿ1

0@ 1A8<:
9=; � iâf1� O p(iÿ1=2)g, (4:4)

uniformly in i, where ã denotes Euler's constant (Hall 1978). Therefore, de®ning

S j �
P

i<kÿ1(Z
j
i ÿ j) � O p(k1=2), we have, by (4.2),

1
2
á2 A1 B1 � (k ÿ 1� S1)

Xkÿ1

i�1

d11i(Zi ÿ 2)� (2S1 ÿ S2)
Xkÿ1

i�1

d11i: (4:5)

It may be proved from (4.4) and (4.5) that, for â � 1
2
, 1

2
á2 A1 B1 is asymptotically normal

N (0, 2k2 log k) while, for â, 1
2
, it is asymptotically normal Nf0, 8â4(1ÿ â)ÿ2(1 ÿ

2â)ÿ1 k3ÿ2âg. Combining these results and noting that áA1=k ! 1 in probability, we may

show that

(a) if â � 1
2
, B1 � d N (0, 2 log k),

(4:6)

(b) if â, 1
2
, B1 � d N (0, 32â6(1ÿ â)ÿ2(1ÿ 2â)ÿ1 k1ÿ2â),

where � d denotes `̀ is asymptotic in distribution to''.

(iii) Properties of B2. Observe that each alj > 0, and that a11 � p (1ÿ â)ÿ1âk1ÿâ,

a12 � p â
P

1<i<k iÿ2â, a21 � p 2âa11, a22 � p 3â2
P

1<i<k iÿ2â, where � p means that the ratio

of the left- and right-hand sides converges to 1 in probability. Therefore, by (4.3) and since

á j A j=k ! 1 in probability for j � 1, 2,

B2 � p â
2
Xk

i�1

iÿ2â � (1ÿ â)ÿ2 k1ÿ2â

 !
: (4:7)

(iv) Properties of R. Note that

d1 ji <
i(X i�1 ÿ X i)

X
j
i X i�1

, (4:8)
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whence XX
( j1, j2): j1� j2� j

d1 j1 id1 j2 i < ( jÿ 1)
i(X i�1 ÿ X i)

X i�1

� �2

X
ÿ j
i :

Hence,

0 < a2 j < ( jÿ 1)
Xkÿ1

i�1

i(X i�1 ÿ X i)

X i�1

� �2

X
ÿ j
i � 2â

Xkÿ1

i�1

Zi

i(X i�1 ÿ X i)

X i�1

X
ÿ j
i : (4:9)

More simply, by (4.8),

0 < a1 j <
Xkÿ1

i�1

i(X i�1 ÿ X i)

X i�1

X
ÿ j
i : (4:10)

For a constant C1 . 0,

Xÿ1
i < (1� C1 iÿ1)iÿâ exp â

X1
j�i

jÿ1(Z j ÿ 1)

 !
, (4:11)

and
P

j>i jÿ1(Z j ÿ 1)! 0 almost surely as i!1. It follows from (4.9)±(4.11) that

jRj � O p

X1
j�3

fjèj(1� 1
2
E)g j

 !Xk

i�1

iÿ2â

8<:
9=; (4:12)

uniformly in jèj < 1ÿ E, for arbitrary ®xed E 2 (0, 1). The theorem follows on combining

(4.1), (4.6), (4.7) and (4.12). u

Proof of Theorem 2.1. In analogy to (4.1),

l(è) � log A1 � kÿ1
Xk

i�1

log X i

 !
� B1è� B2è

2 � R,

where B1 � Aÿ1
1 a11 ÿ kÿ1

P
1<i<k Xÿ1

i ,

B2 � Aÿ1
1 a12 ÿ 1

2
Aÿ2

1 a2
11 ÿ 1

2
kÿ1

Xk

i�1

Xÿ2
i ,

and R represents terms in è3, è4, . . . . If â, 1
2

then, as k !1,

B1 � d N (0, â2(1ÿ â)ÿ2(1ÿ 2â)ÿ1 kÿ1ÿ2â),

B2 � p
1
2
â2(1ÿ â)ÿ2(1ÿ 2â)ÿ1 kÿ2â, and R may be bounded as in the proof of Theorem 2.2

while, if â � 1
2
, B1 � d N(0, kÿ2 log k) and B2 � p

1
2

kÿ1 log k, from which the theorem follows

as before. u
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