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We consider a reversible Rd-valued Markov process fX i; i > 0g with the unique invariant measure

�(dx) ¼ f (x)dx, where the density f is unknown. The large-deviation principles for the nonparametric

kernel density estimator f �n in L1(Rd , dx) and for k f �n � f k1 are established. This generalizes the

known results in the independent and identically distributed case. Furthermore, we show that f �n is

asymptotically efficient in the Bahadur sense for estimating the unknown density f .
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1. Introduction

Let fX n; n > 0g be a reversible Rd-valued Markov chain, defined on the probability space

(�, (F0
n)(n2N), F , (Px)x2Rd ), with (unknown) Markov transition kernel P(x, dy). Assume

that

(H1) P is irreducible (Meyn and Tweedie 1993) and symmetric with respect to the

unique invariant probability measure �, which is absolutely continuous, that is,

d�(x) ¼ f (x)dx, where the density f is unknown.

Given the observed sample fX0, . . . , X ng, consider the empirical measure of the ladder type,

that is,

Ln ¼ 1

n

Xn�1

i¼1

�X i
þ 1

2
(�X0

þ �X n
)

 !
¼ 1

n

Xn�1

i¼0

1

2
�X i

þ �X iþ1

� �
:

Let K : Rd ! R be a measurable function such that

K > 0,

ð
Rd

K(x)dx ¼ 1, (1:1)

and set

Bernoulli 12(1), 2006, 65–83

1350–7265 # 2006 ISI/BS



K h(x) ¼
1

hd
K

x

h

� �
for any h . 0. The kernel density estimator of the unknown function f is defined as follows:

for all x 2 Rd ,

f �n (x) :¼ K hn
� dLn(x) ¼

1

n

Xn�1

i¼0

1

2hd
n

K
x � X i

hn

� �
þ K

x � X iþ1

hn

� �� �
, (1:2)

where h ¼ hn and fhn, n > 0g is a sequence of positive numbers (bandwidth) satisfying

hn ! 0, nhd
n ! þ1 as n ! 1: (1:3)

A natural distance of f �n from the unknown f is the L1-distance,

D�
n ¼

ð
Rd

j f �n (x)� f (x)jdx: (1:4)

The large-deviation behaviour of f �n in (L1(Rd), k � k1 :¼ k � kL1(Rd )) is the subject of our

study. In the independent and identically distributed (i.i.d.) case, due to Devroye (1983), all

types of L1(Rd)-consistency of f �n are equivalent to condition (1.3) on the bandwidth. The

asymptotic normality of D�
n was investigated by Csörgő and Horváth (1988). Louani (2000)

established the large-deviation principle (LDP) for D�
n , and recently Lei et al. (2003) proved

the weak LDP for f �n in L1(Rd), and showed that the corresponding LDP is false. More

recently Gao (2003) obtained the moderate deviation principle for f �n in L1(Rd) and the law

of the iterated logarithm for D�
n . Giné et al. (2003) established a functional central limit

theorem and a Glivenko–Cantelli theorem for the density estimator process in L1-norm.

A natural question is how to extend those results from the i.i.d. case to the dependent

case. Consistency of ar f �n has been studied by Peligrad (1992) and Bosq et al. (1999); see

also the references therein. But little is known about large deviations. Large-deviation

probabilities for f �n in L1 and for D�
n were obtained by Lei and Wu (2005) for uniformly

ergodic Markov processes. Here uniform ergodicity means that there exist 1 < N 2 N� and

C > 1 such that

1

C
�(�) < 1

N

XN

k¼1

Pk(x, �) < C�(�), 8x 2 E,

where E is a measurable subset of Rd . The assumption is not satisfied by many discrete

models with non-compact state space. For example, all real-valued stationary and ergodic

Gaussian Markov processes are reversible but not uniformly ergodic. The purpose of this

work is to establish the LDP for f �n in L1(Rd) and for D�
n in the framework of (H1) and (H2)

below, instead of the strong ‘uniform ergodicity’ assumption.

(H2) For some N > 1, PN is uniformly integrable in L2(�), that is, f(PN f )2;

k f kL2( �) < 1g is uniformly integrable.

Wu (2000a) proved that (H2) is a sufficient condition to obtain the LDP of Ln in the

space M1(R
d) of probability measures on Rd with respect to the �-topology (this condition

is even necessary in the reversible case; see Wu 2002). The rate function is given by
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J �(�) :¼ sup
Ð
log(u=Pu)d�; 1 < u 2 bB

� �
, 8� 2 M1(R

d), � � �,
þ1, otherwise,

	
(1:5)

where bB is the space of bounded and Borel-measurable functions on Rd . We refer the reader

to Wu (2000a) for related references on the subject.

This paper is organized as follows. The main results are stated in the next section. In

Section 3 we present several crucial lemmas which may be of interest in their own right.

We prove the main results in the rest of the paper.

2. Main results

In this paper, we use the following notation:

L p :¼ L p(Rd) :¼ L p(Rd , dx), k f k p ¼ k f kL p(Rd ,dx), L p(�) :¼ L p(Rd , �):

We denote, for any L > 1,

A�,2(L) :¼ � 2 M1(R
d); � � �,






 d�d�







L2( �)

< L

8<
:

9=
;, A�,2 :¼

[
L>1

A�,2(L):

Throughout this paper we assume (H1) and (H2).

When the bandwidth hn ! 0, f �n dx is ‘close’ to Ln in the �-topology, and one may hope

that f �n dx satisfies the same LDP as Ln. This intuition is in fact sound:

Theorem 2.1. Assume hn ! 0 (without (1.3)). Then P�( f �n 2 �) satisfies, uniformly over

initial measures � 2 A�,2(L) for each L > 1, the LDP in L1 with respect to the weak topology

� (L1, L1) with the rate function

J (g) :¼ J (gdx), if gdx 2 M1(R
d) and gdx � f dx;

þ1, otherwise,

	
(2:1)

where J (�) is the Donsker–Varadhan entropy given in (1.5). More precisely, J is inf-compact

on (L1, � (L1, L1)), and for any measurable subset A of L1, for every L < 1,

� inf
g2A��

J (g) < lim inf
n!1

1

n
log inf

�2A�,2(L)
P�( f �n 2 A)

< lim sup
n!1

1

n
log sup

�2A�,2(L)

P�( f �n 2 A) < � inf
g2A�

J (g)

where A�� and A� denote respectively the interior and the closure of A with respect to the

weak topology � (L1, L1).

The LDP with respect to the weak topology on L1 as above is too weak in the sense that

it does not entail consistency, that is, D�
n ! 0 in probability. As far as statistical issues are

concerned, the main objects to be studied are:
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(i) P�(k f �n � gk1 , �), where gdx 2 M1(R
d) is fixed, which is important in testing the

hypothesis H0 : d�(x) ¼ f (x)dx against H1 : d�(x) ¼ g(x)dx; or

(ii) P�(D
�
n . �), whose statistical importance is obvious.

Unfortunately, Theorem 2.1 cannot be applied to these, since f ~gg 2 L1; k ~gg � gk1 , �g is not

open in � (L1, L1) and f ~gg 2 L1; k ~gg � f k1 > �g is not closed in � (L1, L1). Therefore, in

order to deal with objects (i) and (ii), we turn to Theorems 2.2 and 2.3 below.

Theorem 2.2. Assume (1.3). Then for any L > 1 and for each � . 0,

�I(�) < lim inf
n!1

1

n
log inf

�2A�,2(L)
P�(k f �n � f k1 . �)

< lim sup
n!1

1

n
log sup

�2A�,2(L)

P�(k f �n � f k1 > �) < �I(��), (2:2)

where

I(�) ¼ inffJ (g)jg 2 L1, kg � f k1 . �g . 0 (2:3)

and I(��) is the left limit of I at �.

Theorem 2.3. Assume (1.3). Then P�( f �n 2 �) satisfies the weak* LDP with rate function J

on (L1, k � k1) uniformly over initial measures � 2 A�,2(L) for any L > 1, that is, for any

L > 1 and g 2 L1,

lim
�!0

lim inf
n!1

1

n
log inf

�2A�,2(L)
P�(k f �n � gk1 , �)

¼ lim
�!0

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�(k f �n � gk1 , �) ¼ �J (g): (2:4)

With the above results, we have established the deviation estimates of the estimator f �n ,
which are useful in statistics. Now, we claim that f �n is asymptotically optimal in the

Bahadur sense. Let ¨ be the set of unknown data (P, �) satisfying (H1) and (H2). Given a

subset D of the unit ball in bB, we say that an estimator Tn(x) :¼ T n(x; X 0, . . . , X n)

2 L1(Rd , dx) is an asymptotically � (L1, D)-consistent estimator of the density f , if for all

V 2 D,
Ð
Rd Tn(x)V (x)dx !

Ð
Rd f (x)V (x)dx in probability measure P�.

Theorem 2.4. Given (P, �) 2 ¨, let ((X n), (Px)x2Rd ) be the associated Markov process.

(a) (Bahadur-type lower bound) Assume that D is dense in the unit ball of L1 with

respect to the weak* topology � (L1, L1). Then for any � (L1, D)-asymptotically

consistent estimator T n of the unknown density f,
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lim inf
r!0þ

1

r2
lim inf

n!1

1

n
logP�(kT n � f k1 . r)

> � 1

2 supkVk<1� 2(V )
¼ � 1

8 supA2B� 2(1A)
, (2:5)

where

� 2(V ) :¼ 2
X1
k¼0

hV , Pk(V � �(V ))i� � var�(V ): (2:6)

If, moreover, kTn � Tn sŁNk1 < �n ! 0, then (2.5) still holds with P� substituted by P� for

any initial measure � 2 M1(E), where Ł is the shift on �.

(b) (Asymptotic efficiency of f �n in the Bahadur sense) If hn satisfies (1.3), then

lim inf
r!0þ

1

r2
lim inf

n!1

1

n
log inf

�2A�,2(L)
P�(k f �n � f k1 . r)

¼ lim sup
r!0þ

1

r2
lim sup

n!1

1

n
log sup

�2A�,2(L)

P�(k f �n � f k1 . r)

¼ � 1

2 supkVk<1� 2(V )
¼ � 1

8 supA2B� 2(1A)
: (2:7)

Thus f �n is an asymptotically efficient estimator of f in the Bahadur sense. And 1=� 2(V )

can be interpreted as the Fisher information in the direction V of our statistical model ¨.

3. Preliminary lemmas

For every V 2 bB, put

PV (x, dy) :¼ exp
V (x)þ V (y)

2

� �
P(x, dy):

We have the Feynman–Kac formula,

(PV )n f (x) ¼ EPx f (X n)exp
Xn�1

k¼0

V (X k)þ V (X kþ1)

2

 !
,

where EPx is the expectation with respect to Px. Introducing the Cramér functional

¸(2)(V ) :¼ lim
n!1

1

n
logk(PV )nkL2( �)!L2( �), (3:1)

then e¸
(2)(V ) is the spectral radius of PV on L2(�). For the sake of convenience, we will write

¸(V ) for ¸(2)(V ). It is well known (see Wu 2000a) that
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J �(�) ¼ supf�(V )�¸(V )jV 2 bBg, 8� 2 M1(R
d): (3:2)

On the other hand, by the continuity of ¸ on bB with respect to the Mackey topology proved

in Wu (2000a, Theorem 5.1 and Theorem B.5) and by the Fenchel—Legendre theorem, we

have, for all t 2 R,

¸(t[V � �(V )]) ¼ supf�(tV )� t�(V )� J �(�); � 2 M1(E)g ¼ sup
r2R

ftr � JV (r)g, (3:3)

where JV (r) is given by

JV (r) :¼ inffJ �(�); � 2 M1(E), �(V ) ¼ �(V )þ rg: (3:4)

JV is convex. By the LDP of P�(Ln 2 �) in Wu (2000a, Theorem 5.1) (� 2 A�,2) and the

contraction principle, JV : R ! [0, þ1] is inf-compact on R and P�(Ln(V )� �(V ) 2 �)
satisfies the LDP with the rate function JV . Furthermore, by the Fenchel–Legendre theorem

and (3.3), we have

JV (r) ¼ sup
t2R

ftr �¸(t[V � �(V )])g ¼ sup
t2R

ft[r þ �(V )]�¸(tV )g, 8r 2 R,

for ¸(t[V � �(V )]) ¼ ¸(tV )� t�(V ). When r > 0, the supremum above can be taken only

for t > 0. Then we obtain

JV (r) ¼
sup t2R(t[r þ �(V )]�¸(tV )), 8r 2 R,

sup t>0(t[r þ �(V )]�¸(tV )), 8r > 0:

	
(3:5)

Part (b) of the following lemma is crucial and gives us a robust estimate which extends

the well-known inequality of Cramér in the i.i.d. case.

Lemma 3.1. For the positive operator

PV (x, dy) :¼ exp
V (x)þ V (y)

2

� �
P(x, dy):

(a) PV is also symmetric in L2(�) and kPVkL2( �) ¼ e¸(V ), and there exists � 2 L2(�)
�-almost surely strictly positive such that

Ð
E
�2d� ¼ 1 and

PV� ¼ e¸(V )� over Rd , �-a:s:

Moreover, the eigenspace Ker e¸(V ) � PV
� �

of PV associated with the eigenvalue

e¸(V ) in L2(�) is spanned by �.
(b) (A deviation inequality of Cramér type) For any initial measure � 2 A�,2, r . 0,

P� Ln(V ) . �(V )þ rð Þ < e�nJV (r) �





 d�d�







L2( �)

(3:6)

where JV (r) ¼ inffJ �(�); �(V ) ¼ �(V )þ rg.
(c) Define a Markov kernel QV as

QV (x, dy) ¼ �(y)

e¸(V )�(x)
PV (x, dy):
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Then �V :¼ �2� is the unique invariant probability measure for QV, and QV is

symmetric on L2(�V ).

The Cramér type inequality (3.6) was established by Wu (2000b) in the continuous-time case.

Proof. (a) Under (H1) and (H2), PV is again symmetric, uniformly integrable and irreducible

on L2(�). Thus this part follows by Wu (2000a, Theorem 3.1 and Corollary 3.3).

(b) By the symmetry of PV on L2(�), we have k(PV )nkL2( �) :¼
k(PV )nkL2( �)!L2( �) ¼ en¸(V ) for each V 2 bB. Thus for any initial measure � 2 A�,2, 0 <

f 2 L2(�) and any t 2 R,

E� f (X n)e
ntLn(V )

� �
<






 d�d�







L2( �)

� k f kL2( �) � k(PtV )nkL2( �)

¼





 d�d�







L2( �)

� k f kL2( �) � k f kL2( �) � en¸( tV ): (3:7)

By Chebychev’s inequality,

E� 1[Ln(V ).�(V )þr] f (X n)
� �

<






 d�d�







L2( �)

� k f kL2( �) � inf
t>0

e�nt( �(V )þr)þn¸(V )

¼





 d�d�







L2( �)

� k f kL2( �) � e�nJ V (r),

where the second equality follows from (3.5). So (3.6) holds.

(c) It is easy to verify that QV is a Markov kernel, that �V :¼ �2� is an invariant

measure of QV , and that it is symmetric on L2(�V ). As QV is irreducible as well as P, �2�
is the unique invariant measure of QV . h

The following result is technically crucial for all the results in this paper.

Lemma 3.2. (a) ¸(V ) is Gâteaux-differentiable on bB.
(b) If Vn ! V in measure � and supnkVnk < C, then ¸(Vn) ! ¸(V ).

Proof. (a) Under (H2), (PV )N is uniformly integrable on L2(�), and PV is irreducible. Thus

by Wu (2000a, Theorem 3.11), the largest eigenvalue e¸(V ) of PV is isolated in the spectrum

� (PV ) of PV on L2(�), with simple algebraic multiplicity. Consequently, by the theory of

perturbation of linear operators (Kato 1984, Chapter VII, Theorem 1.8), e¸(V ) is real-analytic

on bB, that is, ¸(V þ t ~VV ) is analytic on t 2 R for any V, ~VV 2 bB fixed.

(b) First of all, lim inf n!1 ¸(Vn) > ¸(V ) by (3.3). The converse inequality which is
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equivalent to lim supn!1 e¸(Vn) < e¸(V ), follows by applying Wu (2000a, Proposition 3.8) to

�n :¼ (PVn )N . h

Lemma 3.3 (Gibbs-type principle). Given a function V 2 bB, a probability measure � � �
on Rd satisfies

J �(�) ¼ h�, Vi �¸(V )

if and only if � ¼ �V :¼ �2�, where � is the right eigenfunction of PV associated with e¸(V )

given in Lemma 3.1(a) satisfying �(�2) ¼ 1.

Proof. The proof is identical to that of Lei and Wu (2005, Lemma 3.4). h

Lemma 3.4. Under (H1) and (H2), for each � ¼ gdx 2 M1(R
d) satisfying J �(�) , þ1,

there exists a sequence of (�Vn
¼ �2

nd�) given in Lemma 3.1, such that

k�Vn
� �kTV ! 0 and lim sup

n!1
J (�Vn

) < J �(�):

Here k � kTV means the total variation of a signed measure.

Proof. The proof is omitted; for details, we refer the reader to Lei and Wu (2005, Part 2,

Proof of Theorem 2.2). h

Lemma 3.5. Under (H1) and (H2), we have the following:

(a) For any k > 1, there exists some � . 0 such that

sup
j tj<�

sup
kVk<1

���� dk

dt k
¸(tV )

���� , þ1,

and, for any V 2 bB,

d2

dt2
¸(tV )j t¼0 ¼ � 2(V ),

which is given by (2.6).

(b) Let JV be defined as in (3.4). Then JV is strictly convex on [JV , þ1]0 ¼ (a, b),

where

a ¼ lim
t!�1

d

dt
¸(tV )� �(V ), b ¼ lim

t!þ1

d

dt
¸(tV )� �(V )

(in particular, JV is strictly increasing and continuous in [0, b)); moreover,

lim
r!0þ

JV (r)

r2
¼ 1

2� 2(V )
2 (0, þ1]:

Proof. (a) Under (H1) and (H2), by Wu (2000a, Theorem 3.11), 1 is an isolated point in the

spectrum � (P) in L2(�) (i.e. there exists a spectral gap). We prove the lemma only in the
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case where �1 =2 � (P) (which corresponds to the aperiodicity of the irreducible chain).

Otherwise, one may consider the periodic decomposition as in Lei and Wu (2005).

As in Wu (1995), we apply the analytical perturbation theory in Kato (1984). For each

z 2 C, consider PzV as an operator acting on the complexified space L2(E, �; C), which is

analytical in z in the sense of Kato (1984). Then for any � 2 (0, 1
2
) sufficiently small, there

exist � . 0 and C . 0 such that, for all V 2 bB with kVk < 1,

(1) the eigenvalue ºmax(P
zV ) of PzV with the largest modulus is isolated in � (PzV ) and

jºmax(P
zV )� 1j < � for jzj < 2�;

(2) for all jzj < 2�, the eigenprojection E(z, V ) of PzV associated with ºmax(P
zV ) is

unidimensional and

kE(z, V )1� 1kL2( �) ,
1
2
, k(PzV )n(I � E(z, V ))kL2( �) < C(1� 2�)n, 8n;

(3) z ! ºmax(P
zV ) and z ! E(z, V ) f are analytic in z for jzj < 2� (for each f 2 L2(�));

where properties (1) and (2) follow from Kato (1984, Chapter IV, Theorem 3.16), and

property (3) follows from Kato (1984, Chapter VII, Theorem 1.8).

Then ¸(zV ) :¼ log ºmax(P
zV ) is analytic for jzj < 2� and coincides with ¸(tV ) when

z ¼ t 2 [�2�, 2�] � R.

Let

¸n(zV ) :¼ 1

n
logh1, (PzV )n1i�:

By properties (1) and (2) above, we have

h1, (PzV )n1i� ¼ en¸(zV )h1, E(z, V )1i� þ O((1� 2�)n),

where it follows that ¸n(zV ) ! ¸(zV ) uniformly over z : jzj < 2� and V : kVk < 1. Thus

by Cauchy’s theorem and property (3) above,

sup
kVk<1

sup
jzj<�

���� dk

dz k
¸(zV )

���� , þ1, sup
kVk<1

sup
jzj<�

���� dk

dz k
¸n(zV )� dk

dz k
¸(zV )

����! 0:

Applying the above estimates to k ¼ 2, we obtain

d2

dt2
¸n(tV )j t¼0 ¼

1

n
E�

Xn�1

k¼0

V (X k)þ V (X kþ1)

2
� n�(V )

 !2

! varP� V (X0)ð Þ þ 2
X1
n¼1

covP� V (X 0), V (X n)ð Þ ¼ � 2(V ):

(b) All other properties of JV (r) ¼ sup t2R(tr �¸(t[V � �(V )])) are easy consequences

of (3.5) and part (a) by elementary convex analysis. h
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4. Proof of Theorem 2.1

The desired LDP of f �n in (L1, � (L1, L1)) is equivalent to the LDP of f �n (x)dx on M1(R
d)

with respect to the �-topology � (M1(R
d), bB). We divide its proof into two parts.

4.1. Upper bound

By the abstract Gärtner–Ellis theorem in Wu (1997, p. 290, Theorem 2.7) and (3.2), it is

enough to show that

lim sup
n!1

1

n
log sup

�2A�,2(L)

E� exp n

ð
Rd

f �n (y)V (y)dy

� �
< ¸(V ), (4:1)

and that ¸(V ) is monotonical continuous at 0, that is, if (Vn) is a sequence in bB decreasing

pointwise to 0 over Rd, then ¸(Vn) ! 0.

The second condition is satisfied by Lemma 3.2(b). It remains to verify (4.1). Put

Vn ¼ (K h n
� V ); then kVnk < kVk and

n

ð
Rd

f �n (y)V (y)dy ¼ 1

2

Xn�1

k¼0

(Vn(X k)þ Vn(X kþ1)):

Consequently, we have for each � 2 A�,2(L),

E� exp(n

ð
Rd

f �n (y)V (y)dy) <






 d�d�







L2( �)

� k(PVn )nkL2( �) < L � en¸(Vn):

Thus

lim sup
n!1

1

n
log sup

�2A�,2(L)

E� exp(n

ð
Rd

f �n (y)V (y)dy < lim
n!1

¸(Vn) ¼ ¸(V )

where the last inequality follows from Lemma 3.2(b), for Vn ! V , dx-almost everywhere. So

(4.1) holds.

Remark 4.1. From the upper bound above, we can derive the following exponential

convergence: for any g1, . . . , gm 2 bB and for any � . 0,

lim sup
n!1

1

n
logPx max

1<i<m

����
ð
Rd

[ f �n (x)� f (x)]gi(x)dx

���� > �

� �

< �inf J �(g); max
1<i<m

����
ð
Rd

[g(x)� f (x)]gi(x)dx

���� > �

	 �

, 0, �� a:s: x 2 E: (4:2)

In fact, the last inequality follows from the inf-compactness of J �(�) on (M1(E), �) and the
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fact that J �(�) ¼ 0 if and only if � ¼ � by (H1). For the first inequality, let �c(�) be the non-

positive constant on the right-hand side. For any 	 . 0, using the proved upper bound, we

have ð
E

X1
n¼1

Px max
1<i<m

����
ð
Rd

[ f �n (x)� f (x)]gi(x)dx

���� > �

� �
e�[c(�)þ	]n�(dx) , þ1,

which yields

X1
n¼1

Px max
1<i<m

����
ð
Rd

[ f �n (x)� f (x)]gi(x)dx

���� > �

� �
e�(c(�)þ	))n , þ1, �-a:s: x:

Thus (4.2) holds �-a.s. (for 	 . 0 is arbitrary).

4.2. Lower bound

For the desired uniform lower bound, it is enough to prove that for any �-neighbourhood
N (�, �) :¼ f�9 2 M1(R

d); j(�9� �)(gi)j , �, i ¼ 1, . . . , mg, gi 2 bB with jgij < 1, � . 0,

lim inf
n!1

1

n
logPx( f �n (y)dy 2 N (�, �)) > �J �(�), �-a:s: (4:3)

(the arguments for this reduction, similar to those in the proof of Theorem 5.1 in Wu 2000a,

are left to the reader). The proof of (4.3) is divided into two steps.

Step 1. The case � ¼ �V for some V 2 bB. The idea of this step is borrowed from

Donsker and Varadhan (1975a; 1975b; 1976; 1983). Given V 2 bB, let QV be the transition

kernel defined in Lemma 3.1 and �V ¼ �2�. By Lemma 3.1, QV is symmetric.

Let QV
ø(0) be the law of the Markov process with transition kernel QV and starting point

ø(0), which is �V -a.s. well defined on � ¼ EN, and QV :¼
Ð
Q

V
ø(0)d�V (ø(0)). Denoting by


(ø) the density of Q
V
ø(0) with respect to Pø(0) on � (X1), we have for �-a.s ø(0), on

F n :¼ � (X k ; 0 < k < n),

dQV
ø(0)(dø1, . . . , døn)

dPø(0)

����
F n

¼ exp
Xn�1

k¼0

log 
(Łkø)

 !

and EQ
V

log 
 ¼ J (2)(QV jF1
) ¼ J (�V ) by Lemma 3.3. For any 	 . 0, setting

W n :¼ ø :

����
ð
Rd

gi(x)[ f �n (x, ø)� �2(x)]dx

���� , �, 8i ¼ 1, . . . , m

	 �

Dn,	 :¼ ø :
1

n

Xn�1

n¼0

log 
(Łkø) < J (�V )þ 	

( )
,

we have for �-a.s. ø(0),
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Pø(0)(W n) >

ð
W n

exp �
Xn�1

k¼0

log 
(Łkø)

 !
dQV

ø(0)

> exp[�n(J (�V )þ 	)] �QV
ø(0) W n \ Dn,	ð Þ: (4:4)

So to obtain (4.3), it remains to show that QV
ø(0)(Dn,	) ! 1 and Q

V
ø(0)(W n) ! 1, as n goes to

infinity (for any 	 . 0), for �-a.s. ø(0).
By the ergodic theorem and Fubini’s theorem, we have for �V � �-a.s. ø(0),

1

n

Xn�1

k¼0

log 
(Łkø) ! EQ
V

log 
 ¼ J (�V ), Q
V
ø(0)-a:s:,

which shows Q
V
ø(0)(Dn,	) ! 1. To prove Q

V
ø(0)(W n) ! 1, apply (4.2) in Remark 4.1 to QV

(instead of P) which again satisfies (H1) and (H2); then

QV
ø(0)(W

c
n) ! 0, �V -a:s: ø(0):

The desired convergence holds.

Step 2. The general case. In order to prove (4.3) for general � such that J �(�) , þ1, it

is enough to approximate � by �Vn
as claimed in Lemma 3.4.

5. Proof of Theorem 2.2

The proof is divided into two parts.

Part 1. Lower bound in (2.2). The lower bound is an easy consequence of Theorem 2.1.

Actually, as fg 2 L1; kg � f k1 . �g is open in the weak topology � (L1, L1), by Theorem

2.1, we have for any L > 1,

lim inf
n!1

1

n
log inf

�2A�,2(L)
P�(k f �n � f k1 . �) > � inf

g2L1;k g� f k1.�
J (g) ¼ �I(�):

Part 2. Upper bound in (2.2). The proof of the upper bound is much more difficult, and it is

divided into three steps, the first two similar to Devroye (1983) and the third inspired by

Louani (2000).

Step 1. Approximation of K. As in Lei and Wu (2005), we may approximate K by

K (	) ¼
Xm

j¼1

º j

1A j

jA jj
,

where
Ð m

j¼1
ºj ¼ 1, and A j, j > 1, are disjoint finite rectangles in Rd of the formQd

i¼1[xi, xi þ ai), so it is enough to establish (2.2) only for K ¼ 1A=jAj where

A :¼
Qd

i¼1 [xi, xi þ ai) (for details, see Lei and Wu 2005, step 1, part 2, proof of Theorem

2.3). Here jAj denotes the Lebesgue measure of A.

Step 2. Method of partition. Fix such a rectangle A :¼
Qd

i¼1 [xi, xi þ ai) and K ¼ 1A=jAj,
and let 0 , 	 , �=4 be arbitrary. Since K h n

� f ! f in L1, it is enough to show that
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lim sup
n!1

1

n
log sup

�2A�,2(L)

P� k f �n � K h n
� f k1 . �

� �
< �I(��): (5:1)

Note thatð
j f �n (x)� K hn

� f (x)jdx <

ð���� 1

jAjhd
n

ð
xþhA

Ln(dy)� 1

jAjhd
n

ð
xþh n A

f (y)dy

����dx

<
1

jAjhd
n

ð
jLn(x þ hn A)� �(x þ hn A)jdx:

Consider the partition of Rd into sets B that are d-fold products of intervals of the form

[(i � 1)hn= p, ihn=p), where i 2 Z, and p 2 N� such that miniai > 2=p. Call the partition

�.

Let A� ¼ —d
i¼1[xi þ 1=p, xi þ ai � 1=p). We have

Cx :¼ (x þ hn A)n
[

B2�,B�xþh n A

B � x þ hn(AnA�):

Consequently,ð
j f �n (x)� K h n

� f (x)jdx

<
1

jAjhd
n

ð X
B2�,B�xþhA

jLn(B)� �(B)jdx þ 1

jAjhd
n

ð
f�(Cx)þ Ln(Cx)gdx: (5:2)

Using the fact that for any set C 2 B, h . 0 and any probability measure � on Rd ,ð
�(x þ hC)dx ¼ jhCj ¼ hd jCj

(using Fubini’s theorem), the last term in (5.2) is bounded from above by

1

jAjhd
n

2hd
njAnA�j ¼ 2 1�

Yd

i¼1

1� 2

pai

� � !
< 	

when p is large enough. We fix such p which is independent of n.

For any finite constant R . 0, letting SOR :¼ fx 2 Rd; jxj < Rg, we can bound the first

term on the right-hand side of (5.2) from above byX
B2�,B\SOR 6¼˘

jLn(B)� �(B)j 1

jAjhd
n

ð
B�xþhn A

dx

þ 1

jAjhd
n

ð
B�xþhn A

dxfLn(S
c
OR)� �(Sc

OR)þ 2�(Sc
OR)g:

Clearly, h�d
n

Ð
B�xþh n A

dx < jAj, and �(Sc
OR) , 	=2 for R > R0 large enough.
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By Lemma 3.1, we have for all t . 0,

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�fLn(S
c
OR)� �(Sc

OR) . 	g

< �J1S c
OR

(	) < � t[	þ �(Sc
OR)]�¸(t1Sc

OR
)

� �
:

Since limR!1 ¸(t1Sc
OR
) ¼ 0 by Lemma 3.2, for any M . 0, the left-hand side above is

bounded from above by �M for all R large enough, say R > R1. Fix such R > R0 _ R1

below. Summarizing these estimates, we obtain

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�

ð
j f �n (x)� K hn

� f (x)jdx . �

� �

< (�M) _ lim sup
n!1

1

n
log sup

�2A�,2(L)

P�

X
B2�,B\SOR 6¼˘

jLn(B)� �(B)j . �� 3	

 !
: (5:3)

Step 3. It remains to control the last term in (5.3). Set

~�� ¼ fB; B 2 �, B \ SOR 6¼ ˘g, C :¼
[
B2 ~��

B

 !c

and B( ~��) ¼ �fB; B 2 ~��g, the � -field generated by ~��. Regarding Ln and � as probability

measures on B( ~��), and denoting the total variation of Ln � � on B( ~��) by kLn � �kB( ~��), we

have X
B2�,B\SOR 6¼˘

jLn(B)� �(B)j < kLn � �kB( ~��) ¼ max
V2f�1,1g ~��

Ln(V )� �(V )ð Þ,

where f�1, 1g ~�� denotes the set of all B( ~��)-measurable functions with values in f�1, 1g
(which can be identified as the set of functions from ~�� to f�1, 1g) . Therefore, for any fixed

r . 0,

P�

X
B2�,B\SOR 6¼˘

jLn(B)� �(B)j . r

 !
< P� max

V2f�1,1g ~��
Ln(V )� �(V ) . r

 !

<
X

V2f�1,1g ~��

P� Ln(V )� �(V ) . rð Þ:

By Lemma 3.1(b), for each V 2 f�1, 1g ~�� and for all r . 0,

sup
�2A�,2(L)

P� Ln(V )� �(V ) . rð Þ < sup
�2A�,2(L)

exp �nJV (r)ð Þ





 d�d�







2

< L exp �nJV (r)ð Þ:

Secondly, the number of elements ~�� is no greater than (2Rp=hn þ 2)d þ 1 ¼ o(n) by (1.3),
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and f�1, 1g ~�� has 2#
~�� ¼ 2o(n) elements for n large enough. Consequently, letting B(1) be

the unit ball in L1(�), we have

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�

X
B2�,B\SOR 6¼˘

jLn(B)� �(B)j . r

 !

< lim sup
n!1

1

n
log 2o(n)L sup

V2B(1)
exp �nJV (r)ð Þ ¼ � inf

V2B(1)
JV (r):

Combining with (5.3), we obtain

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�

ð
j f �n (x)� K hn

� f (x)jdx . �

� �

< (�M) _ � inf
V2B(1)

JV (�� 3	)

� �
:

Since JV is convex, non-decreasing and left-continuous on [0, þ1), using k�� �kTV ¼
supkVk<1[�(V )� �(V )] ¼ 2 supA2Bj�(A)� �(A)j and (3.4), we have

I(�) ¼ inf J �(�)j sup
kVk<1

[�(V )� �(V )] . �

( )

¼ inf
kVk<1

inf
r.�

JV (r) ¼ inf
V<1

JV (�þ): (5:4)

As M . 0 is arbitrary and lim	!0þ inf V2B(1)JV (�� 3	) ¼ I(��) by (5.4), we obtain the

desired (5.1) and then complete the proof of the upper bound in (2.2).

6. Proof of Theorem 2.3

The proof is divided into two parts, the first for the upper bound and the second for the

lower bound.

Part 1. Large-deviation upper bound. This is an easy consequence of Theorem 2.1. In fact,

for any g 2 L1 and � fixed, as f ~gg 2 L1; k ~gg � gk1 < �g is closed in the weak topology

� (L1, L1), then by Theorem 2.1,

lim sup
n!1

1

n
log sup

�2A�,2(L)

P�(k f �n � gkL1(Rd ) , �) < � inf
~gg;k ~gg� gk1<�

J ( ~gg):

Letting � ! 0, we obtain the desired result by the lower semi-continuity of J (which follows

from (3.2)).

Part 2. Large-deviation lower bound. It is enough to prove that for all g 2 P(E),
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lim
�!0

lim inf
n!1

1

n
logPx(k f �n � gkL1(Rd ) , �) ¼ �J (g), �-a:s:

(This implies the desired uniform lower bound as in Wu 2000a.) The proof is divided into

two steps.

Step 1. The gdx ¼ �V case. The proof of this case is parallel to that of Step 1 in the

proof of (4.3): the only difference is that we now set

W n :¼ fø : k f �n (ø)� gk1 , �g

and the key point is to prove QV
ø(0)(W n) ! 1, �V -a.s. Applying the upper bound in Theorem

2.2 to QV (instead of P), we have QV (W c
n) ! 0 at exponential rate. Using the Borel–Cantelli

lemma, QV
ø(0)(W

c
n) ! 0 for �V -a.s. ø(0).

Step 2. The general case. To complete the proof, it remains to show the claim that for

all � ¼ gdx 2 M1(R
d) satisfying J (g) , þ1, there exists a sequence (�Vn

) such that

k�Vn
� �kTV ! 0, and lim supn!1 J (�Vn

) < J �(�). This was settled in Lemma 3.4.

7. Proof of Theorem 2.4

Lemma 7.1. Let V 2 bB. If Tn is an asymptotically consistent estimator of hV , f i :¼Ð
E

V (x) f (x)dx, that is, for each (P, �) 2 ¨ (satisfying (H1) and (H2)),

jhTn, Vi � h f , Vij ! 0 in probability P�, then

lim inf
n!1

1

n
logP� hTn � f , Vi . �ð Þ > �inffJ (g); hg � f , Vi . �g: (7:1)

Proof. It is enough to prove that the left-hand side of (7.1) is greater than �J (g) for every

g 2 P which satisfies hg � f i, V . � and J (g) , þ1. By step 2 in the proof of the lower

bound of Theorem 2.1, it suffices to prove this in the case of g ¼ � ~VV where ~VV 2 bB is

arbitrary. The proof, completely parallel to step 1 in the proof of the lower bound of Theorem

2.1, is based on the fact that (Q
~VV , � ~VV ) 2 ¨ again, so it is omitted. h

Lemma 7.2. Under (H1) and (H2), let I(�) be defined as in (2.3). Then

lim
r!0þ

I(r)

r2
¼ 1

2 supkVk<1� 2(V )
¼ 1

8 supA2B(E)� 2(1A)
: (7:2)

Proof. We only prove the first equality in (7.2) (the proof of the second is easy). By (5.4) and

Lemma 3.5(b), for any V 2 bB with kVk < 1,

lim sup
r!0

I(r)

r2
< lim

r!0

JV (rþ)

r2
¼ 1

2� 2(V )
,

so
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lim
r!0þ

I(r)

r2
<

1

2 supkVk<1� 2(V )
:

For the converse inequality, let L . 1 be arbitrary but fixed. For any � . 0 small enough,

we have by Lemma 3.5,

C(L�) :¼ sup
t2[0,L�]

sup
V2B(1)

���� d3dt3
¸(tV )

���� , þ1:

Thus by Taylor’s formula to order 3, we obtain for any V 2 B(1) and r 2 (0, �],

JV (r) > sup
t2[0,Lr]

(tr �¸(t[V � �(V )])) > sup
t2[0,Lr]

tr � t2� 2(V )

2

� �
� (Lr)3

6
� C(L�)

> r2 L ^ � �2(V )� [L ^ � �2(V )]2� 2(V )

2

� �
� (Lr)3

6
� C(L�),

where the last inequality is obtained by taking t ¼ r[L ^ � �2(V )]. Thus by (5.4),

lim inf
r!0þ

I(r)

r2
¼ lim inf

r!0þ
inf

V2B(1)

JV (r)

r2

> min inf
V2B(1):� �2(V )<L

1

2� 2(V ))
; inf

V2B(1):� �2(V ).L
(L � L=2)

	 �

> min inf
V2B(1)

1

2� 2(V )
;

L

2

	 �

where the desired converse inequality follows from letting L ! þ1. h

With these two lemmas we are in a position to prove Theorem 2.4.

(a) By Lemma 7.1, since D is dense in the unit ball of L1 with respect to � (L1, L1),

lim inf
n!1

1

n
logP�(kTn � f k1 . r) > sup

V2D
lim inf

n!1

1

n
logP�(hTn � f , Vi . r)

> � inf
V2D

inffJ (g)jhg � f , Vi . rg

¼ �inf J (g)jsup
V2D

hg � f , V i . r

	 �
¼ � inf

g:k g� f k1.r
J (g) ¼ �I(r):

Thus (2.5) follows from Lemma 7.2. The second claim easily follows from (2.5) by means of

the extra condition on Tn and (H1).

(b) This follows from Theorem 2.3 and Lemma 7.2.
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