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Semi-parametric estimation of the fractional differencing coef®cient d of a long-range dependent sta-

tionary time series has received substantial attention in recent years. Some of the so-called local

estimators introduced early on were proved rate-optimal over relevant classes of spectral densities. The

rates of convergence of these estimators are limited to n2=5, where n is the sample size. This paper

focuses on the fractional exponential (FEXP) or broadband estimator of d. Minimax rates of con-

vergence over classes of spectral densities which are smooth outside the zero frequency are obtained,

and the FEXP estimator is proved rate-optimal over these classes. On a certain functional class which

contains the spectral densities of FARIMA processes, the rate of convergence of the FEXP estimator is

(n=log(n))1=2, thus making it a reasonable alternative to parametric estimators. As usual in semi-

parametric estimation problems, these rate-optimal estimators are infeasible, since they depend on an

unknown smoothness parameter de®ning the functional class. A feasible adaptive version of the

broadband estimator is constructed. It is shown that this estimator is minimax rate-optimal up to a

factor proportional to the logarithm of the sample size.

Keywords: fractional differencing; Gaussian processes; log-periodogram regression; minimax and

adaptive estimation

1. Introduction

Let fX kgk2Z be a covariance stationary process whose spectral density f may be written as

f (x) � j1ÿ eÿixjÿ2d f �(x), x 2 [ÿð, ð], (1:1)

for some jdj , 1
2

and a continuous even positive function f �. The restriction jdj , 1
2

ensures

that the process is stationary and invertible. If d � 0 and if f � is suf®ciently regular, the

process is said to be short-range (or weakly) dependent. If 0 , d , 1
2
, the process is said to

be long-range dependent. Its covariance function is not summable and many of its properties

differ fundamentally from those of a short-range dependent process (see, for example, Beran

1994). When ÿ1
2

, d , 0, the spectral density has a zero at the zero frequency, yet the

process is still invertible: such a situation occurs, for instance, when dealing with the ®rst

difference of a less than unit root process (Robinson 1994).

The parameter of greatest interest in such a model is the fractional differencing or

memory parameter d. There are two natural approaches to estimating d. In the parametric
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approach, a ®nite-dimensional model is assumed to hold for f �. A key example is the

FARIMA( p, d, q) process, introduced by Granger and Joyeux (1980), in which f � is

the spectral density of a stationary invertible ARMA( p, q) process. Another example is the

fractional exponential model of order p (FEXP( p)) introduced by Robinson (1994) and

Beran (1993), where f � is the exponential of a ®nite-order trigonometric polynomial. The

parameters of f , including d, may then be estimated using Gaussian maximum likelihood

(Dahlhaus 1989) or the Whittle likelihood (Fox and Taqqu 1986; Giraitis and Surgailis

1990). In all these cases, the parametric estimator of d based on a sample of size n has

been shown to be asymptotically normal with the usual parametric rate
���
n
p

, if the

parametric model (including the model order) is correctly speci®ed. But such a parametric

estimator may be inconsistent when the model is misspeci®ed. This drawback provides

motivation for semi-parametric estimation of the memory parameter d. The short-memory

parameter f � is assumed to belong to an in®nite-dimensional class of functions, speci®ed

either by its behaviour in a neighbourhood of the zero frequency, or by some regularity

condition over the whole frequency range. The former provides motivation for local

methods, while the latter calls for global methods.

Examples of local semi-parametric estimators of d include the log-periodogram (GPH)

estimator of Geweke and Porter-Hudak (1983) (see also Robinson 1995b; Hurvich et al.

1998), and the Gaussian semi-parametric estimator (KuÈnsch 1987; Robinson 1995a). These

estimators have the advantage that, under appropriate technical conditions, they are

consistent and asymptotically normal, without any assumption on f � (apart from

integrability) outside a neighbourhood of the zero frequency. The main drawback of these

methods is that the typical rate of convergence of the mean square error of the memory

parameter is O(nÿá), where á < 4
5
, no matter how smooth the spectral density f � is in a

neighbourhood of the zero frequency (see Giraitis et al. 1997; Hurvich et al. 1998).

The global (or broadband) approach aims at constructing an estimator of f � over the

entire frequency range. To that purpose, the use of a truncated Fourier series estimate of

log( f �) was suggested by Robinson (1994), and was later investigated by Moulines and

Soulier (1999) and Hurvich and Brodsky (2001). Under an appropriate regularity condition,

the short-memory component may be expressed as f � � exp(
P1

j�0è j hj), where h0(x)

� 1=
������
2ð
p

and hj(x) � cos( jx)=
���
ð
p

, j > 1. This expansion has, in general, an in®nite

number of non-zero coef®cients. A nonparametric estimate of f � is obtained by truncating

this Fourier series and thus estimating only a ®nite number of Fourier coef®cients. A simple

solution in practice is to estimate these parameters by linear regression of the log-

periodogram, yielding the so-called FEXP estimator proposed by Robinson (1994) and

Beran (1993) (see Section 3).

The truncated Fourier series estimator exploits the fact that if the Fourier coef®cients of a

given function decay rapidly to zero, then this function will be accurately approximated by

a low-order trigonometric polynomial. In the present context, it has been shown in Moulines

and Soulier (1999) that the rate of convergence of the mean square error of the memory

coef®cient achieved by the FEXP estimator is L2=(2â�1) nÿ2â=(2â�1) wheneverX
j>p

jè jj < L(1� p)ÿâ, for some â . 0, L ,1: (1:2)
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As outlined by Efromovich (1998a) in the related context of spectral estimation of a short-

range dependent process, it is of interest to consider situations where the Fourier coef®cients

are rapidly decaying at in®nity. It has been shown in Moulines and Soulier (1999) that under

the assumption

X1
j� p

jè jj < Leÿâ p, for some â . 0, L ,1, (1:3)

the rate nÿ1log(n) can be achieved. This property is of interest since it holds for the

FARIMA model, by far the most popular long-memory model. In the latter case, the FEXP

semi-parametric estimator is asymptotically nearly as ef®cient as an estimator based on a

fully speci®ed parametric model, while avoiding the theoretical and practical pitfalls of

using a misspeci®ed model. Recall also that for these models, local estimators cannot

achieve a rate of convergence better than O(nÿ4=5). Thus, in situations where f � is smooth,

the FEXP estimator not only signi®cantly surpasses the local estimator, but should also be

preferred to a parametric estimator. The optimality of these rates of convergence is proved

in Section 2, where Theorem 2.1 provides a lower bound for the mean square error of any

estimator of the memory parameter when the Fourier coef®cients of log( f �) satis®es one of

the above conditions, as well as more general ones. In Section 3, we generalize the results

of Moulines and Soulier (1999) on the mean square error of the FEXP estimator to these

general classes, thus showing that it is minimax rate-optimal on a wide range of classes of

spectral densities.

Of course, these rates are obtained under the assumption that the smoothness of f � is

known, which allows the truncation number p to be selected in an asymptotically optimal

way, that is, by balancing the bias and the variance of the estimate for a given sample size

n. It is not reasonable in practice to assume such prior information is available on the

spectral density. For instance, if the process X is a causal invertible FARIMA( p, d, q)

process, then the Fourier coef®cients of log( f �) satisfy condition (1.3) for any positive real

â such that all the zeros of the AR and MA polynomials fall outside the disc jzj < eâ. This

clearly cannot be assumed in practice.

The alternative to such arbitrary assumptions on the spectral density is adaptive

estimation, which amounts in the present context to selecting the truncation order using a

data-driven procedure. This procedure should yield a rate of convergence as close as

possible to the optimal minimax rate. To be more speci®c, it is assumed that log( f �)
belongs to a scale of functional classes indexed by a parameter, but the exact value of this

parameter is unknown. To each value of the parameter there corresponds a theoretical

optimal cut-off sequence pn, but since it is unknown, the cutoff must be chosen auto-

matically from the data. One procedure for achieving this goal was suggested by Lepski

(1990). We adapt this method to select the truncation number of the trigonometric

regression estimate of the short-memory part of the spectral density. The estimator obtained

by this method is nearly rate-optimal in the minimax sense, up to a logarithmic loss, which

in some cases can be proved unavoidable. This adaptive estimator is presented in Section 4,

and upper and lower bounds for adaptive estimation are obtained.
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2. Minimax lower bounds

Let H be the space of even square-integrable functions on [ÿð, ð] endowed with the

Lebesgue measure. For u 2 H, de®ne û( j) � � ðÿð u(x)hj(x)dx, where h0(x) � 1=
������
2ð
p

and

hj(x) � cos( jx)=
���
ð
p

, j > 1. Let w � fw( p)g p2N be a non-increasing sequence of positive

numbers such that lim p!1w( p) � 0. For such a sequence, we de®ne the functional class

C(w) as follows

C(w) � u 2 H : 8p 2 N,
X
j> p

jû( j)j < 2
���
ð
p

w( p)

( )
:

The sequence w controls the rate at which the remainder of the series
P

j> pjû( j)j of the

Fourier coef®cients goes to zero as p goes to 1. Based on the functional class C(w), we may

®nally de®ne a class of spectral densities. For a sequence w, and ä 2 (0, 1
2
), de®ne

F (w, ä) � f : f (x) � j1ÿ eixjÿ2d exp(l�(x)), l� 2 C(w), jdj , ä
� 	

:

To be able to prove the minimax rates of convergence, it is necessary to make assumptions on

the sequence w.

Assumption 1. w is a positive non-increasing sequence, and there exists a constant ô(w) such

that

ô(w) :� max
p>2

max
1<q< pÿ1

w( p)
Xpÿ1

j�q

jÿ1

w(q)
,1:

For a sequence satisfying Assumption 1, de®ne

aw( p) � ô(w)

w( p)
inf

1<q< pÿ1

w(q)Xpÿ1

j�q

jÿ1

, (2:1)

pn(w) � minfp < n : aw( p)w2( p) pÿ1 < nÿ1g ÿ 1: (2:2)

Assumption 1 implies that aw( p) > 1 for all p, lim p!1w( p) � 0 and

lim p!1w( p)aw( p) � 0. Thus pn(w) is well de®ned, at least for large enough n, and tends

to in®nity with n. The following technical assumption will be needed.

Assumption 2.

lim sup
n!1

nw2( pn(w))

pn(w)
,1;

8ä . 0, lim
n!1 nÿäaw( pn(w)) � 0;
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9r . 0 such that lim
n!1

p1�r
n (w)

n
� 0:

Theorem 2.1 Under Assumptions 1 and 2, there exists a non-negative constant b(w) which

vanishes if lim p!1aw( p) � 1 and such that, for any 0 , ä , 1
2
,

lim inf
n

inf
d̂ n

sup
f 2F (w,ä)

n

pn(w)
E f [(d̂ n ÿ d)2] > (1� b(w))ÿ1,

where the in®mum inf d̂ n
is taken over all possible estimators d̂ n of d based on n observations

fX 1, . . . , X ng of a covariance stationary process X � (X t) t2Z with spectral density

f 2 F (w, ä), and E f denotes the expectation with respect to the distribution of the process

X .

Proof. Theorem 2.1 is proved by a standard method. A `hardest' one-dimensional parametric

family is constructed, to which the so-called van Trees Bayesian information bound (Gill and

Levit 1995) is applied. This inequality provides a lower bound for the Bayes risk for any

prior distribution verifying some technical conditions (see below). The Bayesian information

bound provides a lower bound for the minimax risk. A proper choice of the prior distribution

leads to the required minimax rate and lower bound.

For the sake of brevity, write pn :� pn(w) and de®ne dn :� dn(w) � w( pn)aw( pn)=ô(w).

For n > 1, de®ne the one-dimensional parametric family

F n � fè � exp è
X1
j� pn

á j hj

 !
, è 2 [ÿdn, dn]

( )
,

where á j � 2
���
ð
p

= j. Since g(x) � ÿ2 logj1ÿ eixj �P1j�1á j hj(x) for x 6� 0, we obtain that

8x 6� 0, fè(x) � j1ÿ eixjÿ2è exp ÿè
Xpn
ÿ1

j�1

á j hj(x)

( )
:

By construction, dn

P pnÿ1
j�q á j < 2

���
ð
p

w(q) for all q < pn ÿ 1, and, for any 0 , ä , 1
2
, there

exists nä ,1, such that, for all n > nä, jdnj < ä, so that F n � F (w, ä). Now let q be a

continuously differentiable probability density function on the interval [ÿ1, �1] such that

q(ÿ1) � q(1) � q9(ÿ1) � q9(1) � 0. Assume in addition that q has a ®nite Fisher

information I q �
� 1

ÿ1
(q9(è))2=q(è)dè ,1. De®ne qn(è) � dÿ1

n q(dÿ1
n è). Then, by the

Bayesian information bound, we obtain

inf
d̂ n

sup
f 2F (w,ä)

E f [(d̂ n ÿ d)2] > inf
è̂n

sup
è2[ÿdn,dn]

Eè[(è̂n ÿ è)2]

> inf
è̂n

�dn

ÿdn

Eè[(è̂n ÿ è)2)]qn(è)dè >

�dn

ÿdn

I n(è)qn(è)dè� I qdÿ2
n

� �ÿ1

,

where the in®mum is taken over all the possible estimators of è; I n(è) denotes the Fisher

information of n consecutive samples (X 1, . . . , X n) of a Gaussian stationary sequence with

spectral density fè and Eè denotes the expectation under the probability distribution of a
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zero-mean Gaussian process with spectral density fè. To conclude, we need to evaluate the

Fisher information I n(è).

Lemma 2.1. Under the assumptions of Theorem 2.1,�dn

ÿdn

qn(è)I n(è)dè � n

pn

(1� o(1)):

The proof of Lemma 2.1 is postponed to Section 5. It follows from the de®nitions of dn

and pn that

pn nÿ1dÿ2
n < ô2(w)aÿ1

w ( pn):

Plugging this bound into the Bayesian information bound yields

inf
d̂ n

sup
f 2F (w,ä)

n

pn

E f [(d̂ n ÿ d)2] > (1� o(1)� I q pndÿ2
n nÿ1)ÿ1

> (1� o(1)� I qô
2(w)aÿ1

w ( pn))ÿ1:

This concludes the proof of Theorem 2.1. h

Remark. It is interesting to note that the hardest one-dimensional family coincides with the

family of spectral densities that cancel exactly the pn(a, w) ®rst coef®cients of the Fourier

expansion of the function g. This is quite natural since this choice of the short-memory

component maximally compensates the singularity of g which carries the useful information

on the memory parameter d.

To illustrate the results above, we now give two examples of bounding sequences w.

Example 2.1 Hyperbolically decaying coef®cients.

For any â . 0 and L ,1, de®ne wâ,L( p) � L(1� p)ÿâ. A straightforward application of the

Cauchy±Schwarz inequality shows that there exists a constant câ such that, for all

1 < q , p,

Xpÿ1

j�q

jÿ1 <
Xpÿ1

j�q

jÿ1�2â

 !1=2 Xpÿ1

j�q

jÿ1ÿ2â

 !1=2

< câ(q� 1)ÿâ( p� 1)â:

It follows that Assumption 1 holds with ô(wâ,L) < câ. The sequence awâ, L
is then bounded.

Indeed, by de®nition, for all p > 2,

awâ, L
( p) <

ô(wâ,L)wâ,L([ p=2])

wâ,L( p)
Xpÿ1

j�[ p=2]

jÿ1

< 2:3âô(wâ,L):

Finally, it is easily shown that
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0 , lim inf
n

nÿ1=(1�2â) pn(wâ) < lim sup
n

nÿ1=(1�2â) pn(wâ) , �1:

Thus, Assumption 2 holds, and we obtain the lower bound

lim inf
n

inf
d̂ n

sup
f 2F (wâ, L,ä)

n2â=(2â�1)E f [(d̂ n ÿ d)2] . 0: (2:3)

The class C(wâ,L) is related to the more classical (in the framework of functional estimation

problems) Sobolev classes, de®ned as

S(ã, M) � u 2 H :
X1
j�0

( j� 1)2ã û2( j) < M

( )
, ã . 0, M ,1:

The relation

X
j> p

jû( j)j <
X
j> p

( j� 1)ÿâÿ1

 !1=2 X
j> p

( j� 1)â�1 û2( j)

 !1=2

shows that C(wâ,L) � S(â� 1
2
, M), for large enough M . The lower bound obtained here

(which will be proved to be the minimax rate of convergence) over the classes C(wâ,L) and

S(â� 1
2
, M) is nÿ2â=(2â�1). This coincides with the rate recently obtained in the related

context of pointwise density estimation (Butucea 1999). Note, ®nally, that similar statements

can be obtained if one chooses w( p) to be a sequence of regular variation of index â at

in®nity (see Lepski and Levit 1998).

This class is also related to the class F(â, C0, K0, ä) de®ned in Giraitis et al. (1997) as

follows:

F(â, C0, K0, ä)

� f f : f (x) � Cjxjÿ2d(1� Ä(x)), Cÿ1
0 < C < C0, jdj < ä, jÄ(x)j < K0jxjâ, x 2 [ÿð, ð]g:

It is shown in Section 7 that, for 0 , â , 2, if l� 2 C(wâ,L, ä), then f �
exp(d g � l�) 2 F(â, C0, K0, ä), for suitably chosen C0 and K0. Moreover, for any

â9 . â, there exist functions in C(wâ,L) which are not in F(â9, C90, K90) for any values of

C90 and K90. Thus, the lower bound proved in Giraitis et al. (1997) can be inferred from the

bound derived from Theorem 2.1. For â � 2, there is no such inclusion.

Example 2.2 Exponentially decaying coef®cients.

As outlined in Section 1, it is of interest to consider functions whose Fourier coef®cients

typically decrease faster than a function of regular variation at in®nity ± see, for example,

Efromovich (1998b) and Lepski and Levit (1998) for related problems in functional

estimation. To keep the discussion simple, set, for any á, â . 0 and L ,1,

wá,â,L( p) � Leÿâ pá

for all p 2 N. Using the same trick as above,
P pÿ1

j�q jÿ1 can be bounded by
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Xpÿ1

j�q

jÿ1 <
Xpÿ1

j�q

jÿ1e2â já

 !1=2 Xpÿ1

j�q

jÿ1eÿ2â já

 !1=2

,

Xpÿ1

j�q

jÿ1eÿ2â já < qÿá
�1

q

xáÿ1eÿ2âxádx � qÿáeÿ2âqá

2âá
<

eÿ2âqá

2âá
,

Xpÿ1

j�q

jÿ1e2â já <

� p

0

xáÿ1e2âxádx <
e2â pá

2âá
:

Thus Assumption 1 holds with ô(wá,â,L) < (2âá)ÿ1. We now give a lower and an upper

bound for the sequence awá,â, L
. The last bound above can be improved by considering

separately the cases q . p=2 and q < p=2. Let cá,â denote a generic positive constant which

depends only on á and â and can take different values upon each appearance. If q . p=2,

then Xpÿ1

j�q

jÿ1e2â já < cá,â
p

2

� �ÿá� p

p=2

xáÿ1e2âxádx < cá,â pÿáe2â pá :

If q < p=2, then the sum is split into two parts:Xpÿ1

j�q

jÿ1e2â já <
X[ p=2]

j�q

jÿ1e2â já �
Xpÿ1

j�[ p=2]�1

jÿ1e2â já < cá,âe2â( p=2)á � cá,â pÿáe2â pá

< cá,â pÿáe2â páf1� páeâ pá (2ÿá ÿ 1)g:
For all á . 0 and â . 0, lim p!1 páeâ pá(1ÿ2ÿá) � 0, thus we also obtain, if q < p=2, thatXpÿ1

j�q

jÿ1e2â já < cá,â pÿáe2â pá :

Altogether, we have proved that awá,â, L
( p) > cá,â pá=2. Now, by de®nition, we also have that

awá,â, L
( p) < ô(wá,â,L) peâ( páÿ( pÿ1)á):

It is thus easily seen that

lim
n!1

2â pn(wá,â,L)á

log(n)
� 1,

and thus Assumption 2 holds. Since lim p!1aw( p) � 1, b(w) � 0 and we obtain not only

the minimax rate but also an explicit minimax lower bound,

lim inf
n

n logÿ1=á(n)inf
d̂ n

sup
f 2F (wá,â)

E f [(d̂ n ÿ d)2] > (2â)ÿ1=á:

Of particular importance are the classes F (w1,â,L) since they contain the best-known family

of parametric fractional models, namely the FARIMA( p, d, q) models. A causal stable in-
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vertible FARIMA( p, d, q) process is a stationary process with spectral density f (x) �
j1ÿ eixjÿ2d jP(eix)=Q(eix)j2, where P and Q are polynomials of degree p and q respectively,

without common roots and without roots inside the closed unit disc. If, moreover, P and Q

have no roots inside a disc of radius eã for some ã . 0, then f 2 F (w1,â,L) for all â , ã and

a suitably chosen constant L. Indeed, if P is a polynomial of degree k with complex roots

z1, . . . , zk (not necessarily pairwise distinct) such that P(0) � 1, then it is well known that

log(P(z)) �
Xk

i�1

X1
j�0

z
ÿ j
i

j
z j,

the series being convergent for all z such that jzj , inf i�1,...,k jzij.
It might be dif®cult to think of a simple model that similarly yields a spectral density

with hyperbolically decaying coef®cients è j, but such a spectral density might arise as a

consequence of the perturbation of a fractionally differenced process by an independent

Gaussian white noise. Indeed, if the observed process is actually Y � X � E, where X is a

stationary invertible FARIMA( p, d, q) process with d . 0 and with spectral density

f X (x) � j1ÿ eixjÿ2d f �X (x), and E is Gaussian white noise with variance ó 2, then the spectral

density of Y is f Y (x) � j1ÿ eixjÿ2d f �Y (x), with,

f �Y (x) � f �X (x)� ó 2

2ð
j1ÿ eixj2d ,

and the regularity of f �Y then depends on d. More precisely, log( f �Y ) 2 S(â, L) for any

â , 1
2
� 2d and a suitable choice of L.

3. Minimax upper bounds: the FEXP estimator

We present in this section the so-called FEXP estimator of the fractional differencing

parameter presented in Robinson (1994) and Beran (1993), and later studied by Moulines and

Soulier (1999) and Hurvich and Brodsky (2001). We will then determine an upper bound for

the mean square error of the FEXP estimator of the memory parameter in the restricted case

of a Gaussian process. Using Theorem 2.1, we will then show that the FEXP estimator is

always rate-optimal and in certain cases quasi-ef®cient.

Let (ht,n)1< t<n be a triangular array of complex numbers. The tapered discrete Fourier

transform (DFT) and the tapered periodogram of (X1, . . . , X n) are respectively de®ned as

dn(x) � 2ð
Xn

t�1

jht,nj2
 !ÿ1=2Xn

t�1

ht,n X te
i tx, I n(x) � jdn(x)j2:

Note that the dependence of dn and I n on the data taper is implicit. These quantities are

evaluated at Fourier frequencies, de®ned as xt � 2ðt=n, 1 < t < [(nÿ 1)=2]. Setting

ht,n � 1, for all t and n, yields the ordinary periodogram. For the purpose of adaptive

estimation (see Section 4), it is necessary to reduce the correlation among DFT ordinates. It

has already been observed that tapering is a way to partially achieve this goal; see, for
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instance, Velasco (1999a; 1999b). Here we will use the data taper introduced by Hurvich and

Chen (2000) (which we refer to as Hurvich's taper) de®ned as

ht,n � 1ÿ eixt :

For both these choices of the coef®cient ht,n,
Pn

t�1 ht,n exp(itxj) � 0 for 1 < j < [n=2]. This

is very important since it implies that the mean of fXtg need not be estimated. This is an

advantage of this data taper with respect to Kolmogorov's taper used by Velasco (1999b),

which does not share this property.

De®ne Hn(x) �Pn
t�1 ht,nei tx and pk, j �

� ð
ÿð Hn(xÿ xk)Hn(xÿ xj)dx. It is well known

that if no taper is used (ht,n � 1 for all t and n), then pk, j � 0 if k 6� j. Unfortunately, if

Hurvich's taper is used, we obtain pk, j � 0 if k , jÿ 1 and pk,k�1 � ÿn. This implies that

the aim of decorrellation of tapered DFTs is not achieved for adjacent Fourier frequencies.

It is shown in Theorem 6.1 below that for non-adjacent Fourier frequencies, the correlation

between tapered DFTs is signi®cantly less than between non-tapered DFTs. Thus, when the

tapered periodogram is used, we will drop half of the frequencies in the regression ± see

Hurvich et al. (2000) for other solutions. This results in a loss of asymptotic ef®ciency

which can be partially compensated by aggregation or pooling of periodogram ordinates.

The pooled tapered periodogram is de®ned as

I n,k �

Xmk

t�m(kÿ1)�1

I n(xt) 1 < k < [(nÿ 1)=2m] (ordinary periodogram),

Xmk

t�m(kÿ1)�1

I n(x2 t), 1 < k < [(nÿ 1)=4m] (tapered periodogram):

8>>>>><>>>>>:
For the sake of simplicity, we will let Kn � [(nÿ m)=2m] when the ordinary periodogram is

used and Kn � [(nÿ 2m)=4m] when the tapered periodogram is used. For 1 < k < Kn, let

Yn,k � log(I n,k)ÿ ø(m),

where ø(z) � Ã9(z)=Ã(z) is the digamma function (see, for instance, Johnson and Kotz 1970).

It is well known that if ÷2
2m denotes a random variable distributed as a central chi-square with

2m degrees of freedom, then E(log(÷2
2m)) � log(2)� ø(m) and var(log(÷2

2m)) � ø9(m). Let

d̂ p,n, è̂0, è̂ pÿ1 be the least-squares estimator of d, è0, . . . , è pÿ1:

d̂ p,n � arg min
d,è0,... , èpÿ1

XKn

k�1

Yn,k ÿ d g(yk)ÿ
Xpÿ1

j�0

è j hj(yk)

 !2

,

where, as above, g(x) � ÿ2 logj1ÿ eixj and yk � (2k ÿ 1)ð=2Kn are the so-called discrete

cosine frequencies. Note that d̂ p,n might be outside the interval ]ÿ 1
2
, 1

2
[. Being quadratic in

the unknown coef®cients, this minimization problem can be solved in closed form. De®ning

~g�p � g ÿP pÿ1
j�0 ~á j hj, ~á j � (2ð=Kn)

PKn

k�1 hj(yk)g(yk) and ~ãp � (2ð=Kn)
PKn

k�1( ~g�p(yk))2, it is

easily seen that d̂ p,n may be expressed as
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d̂ p,n � 2ð

Kn ~ãp

XKn

k�1

~g�p(yk)Yn,k : (3:1)

This expression in particular indicates that when the memory parameter is the sole parameter

of interest, there is no need to actually compute (è̂0, . . . , è̂ pÿ1), thus reducing the overall

computational burden and memory requirements. This is in sharp contrast with Gaussian

maximum likelihood or Whittle approximate likelihood techniques, where it is not possible to

estimate d independently of the other parameters.

Recall that the spectral density f is given by f � exp(d g � l�) with l� �P1j�0è j hj and

de®ne En,k � Yn,k ÿ log( f (yk)). Note that for j � 0, . . . , p, 2ðKÿ1
n

PKn

k�1 ~g�p(yk)hj(yk) � 0,

thus (3.1) implies

d̂ p,n ÿ d � în, p � bn, p(l�) :� 2ð

Kn ~ãp

XKn

k�1

~g�p(yk)En,k � 2ð

Kn ~ãp

XKn

k�1

~g�p(yk)l�p(yk), (3:2)

where l�p �
P1

j� p�1è j hj. The term în, p represents a stochastic ¯uctuation and the bias term

bn, p(l�) assesses the accuracy of the approximation by the trigonometric regression method.

This bias term depends upon the unknown spectral density f only through l�p, but does not

depend on d. Provided that the Fourier coef®cients of l� are summable, it is possible to

obtain an upper bound for the bias.

Proposition 3.1. Assume that
P1

j�0jè jj ,1 and de®ne è�p �
P1

j� pjè jj. Then there exists a

numerical constant c (independent of the sequence (è j) j2N and of n) such that, for all

p < Kn=5,

jbn, p(l�)j < 2
���
ð
p

(1� c
������������
p=Kn

p
)è�p:

If l� belongs to some functional class C(w), then the above bound obviously holds with

è�p replaced by w( p). The proof of Proposition 3.1 is in Section 6.

The stochastic term is much more dif®cult to handle than in the traditional nonparametric

regression setting with i.i.d. noise. Here the En,k are neither zero-mean nor independent, as

originally observed by KuÈnsch (1986), and their joint distribution depends on the unknown

spectral density f .

However, it is possible to derive minimax and adaptive results when the spectral density

f can be expressed as f (x) � j1ÿ eixjÿ2d f �(x) under appropriate smoothness assumptions

for the short-memory component f �. For M . 0, de®ne

G(M) � u 2 C([ÿð, ð]), u 2 D([ÿð, ð]n0), max
x2[ÿð,ð]n0

ju(x)j � jxu9(x)j < M

� �
:

where C([ÿð, ð]) denotes the set of continuous functions on [ÿð, ð] and D([ÿð, ð]nf0g)
denotes the set of functions which are differentiable on [ÿð, ð]nf0g. The assumption that

xu9(x) is bounded was originally introduced by Robinson (1995b). It can actually be

weakened to a Lipschitz condition (see Hurvich et al. 2000). This class is of interest since it

contains the smooth part of the spectral density of an ARFIMA process X observed with
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noise. Recall that the spectral density of such a process can be expressed as f �î (x) �
f �(x)� (ó 2=2ð)j1ÿ eixj2d , where f � is a positive and smooth function, say at least twice

continuously differentiable. It is then easily seen that log( f �î ) 2 G(M) for a suitable M .

Since, moreover, log( f �î ) 2 S(â, L) for any â , 1
2
� 2d , 3

2
, it is clear that this functional

class is well suited to our purpose. It is also easily seen that for â . 3
2
, í > 1, á . 0, ã . 0

and L . 0, the classes S(â, L), C(wí,L) and C(wá,ã,L) are all included in the class G(M) for a

suitable choice of the constant M . Now de®ne

ó 2
p :� 2ðø9(m)

Kn ~ãp

: (3:3)

ó 2
p would be the exact variance of the stochastic term în, p if the noise En,k were i.i.d. centred

with variance ø9(m). The next result states that in spite of the strong correlation between

low-frequency periodogram ordinates, ó 2
p is a good approximation of the variance of în, p

when log( f �) 2 G(M), and that this approximation is uniform if, moreover log( f �) 2 C(w)

for some non-increasing sequence w. Hence we introduce the following class of spectral

densities. For any sequence w, for any real number M . 1 and ä 2 (0, 1=2), de®ne

H(M , ä, w) � f � exp(dg � l�), l� 2 G(M) \ C(w), jdj < ä
� 	

:

Proposition 3.2. For any sequence w such that limn!1w(n) � 0, for any real numbers

M . 1 and ä 2 (0, 1
2
), there exists a constant C(M , ä, w) such that

sup
f 2H(M ,ä,w)

jE f [în, p]j < C(M , ä, w)ó 2
p logs(n), (3:4)

sup
f 2H(M ,ä,w)

E f [î2
n, p] < C(M , ä, w)ó 2

p log2s(n), (3:5)

with s � 3 for the ordinary periodogram and s � 2 for the tapered periodogram. Let

fpngn2N be a sequence such that

limn!1 pn log6(n)Kÿ1
n � 0 if the ordinary periodogram is used,

limn!1 pn log4(n)Kÿ1
n � 0 if the tapered periodogram is used:

Then

lim
n!1 sup

f 2H(M ,ä,w)

jóÿ2
pn

E f [î2
n, pn

]ÿ 1j � 0:

Here, the supremum is evaluated over all Gaussian stationary process (X t) t2Z with spectral

density f 2 H(M , ä, w).

The proof is in Section 6. Propositions 3.1 and 3.2 and the fact, for any sequence pn

such that limn!1 pn � 1 and limn!1 pn=n � 0 that limn!1 pn ~ãpn
� 4ð yield the following

Theorem.

Theorem 3.1 (Upper bound). Let w be a sequence satisfying Assumptions 1 and 2. Let
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pn(w) be de®ned as in Theorem 2.1 and d̂ pn
(w) be the FEXP estimator of the fractional

differencing parameter, based either on the tapered or non-tapered periodogram. Recall that

B(w) :� lim supn nw2( pn(w))=pn(w) is ®nite under Assumption 2. If B(w) . 0, then

lim sup
n!1

n

pn(w)
sup

f 2H(M ,ä,w)

E f [(d̂ pn
(w)ÿ d)2] < ñmø9(m)(1� B(w)):

If B(w) � 0, then

lim
n!1

n

pn(w)
sup

f 2H(M ,ä,w)

E f [(d̂ pn(w)ÿ d)2] � ñmø9(m):

In both cases, ñ is a constant depending on the data taper: ñ � 1 if the ordinary

periodogram is used and ñ � 2 if the tapered periodogram is used, and the supremum is

evaluated over all Gaussian stationary process (Xt) t2Z with spectral density f 2 H(M , ä, w).

Remarks.

(i) The increased value of the constant ñ when Hurvich's taper is used, re¯ects the fact

that in this case, half of the\ Fourier frequencies are dropped from the regression; weaker

loss (but at the expense of some additional technicalities) can be obtained by modifying the

pooled periodogram (see Hurvich et al. 2000).

(ii) The upper bounds presented above hold for smaller classes of spectral density than

the lower bounds of Theorem 2.1. Nevertheless, the lower bounds on these classes are the

same, since the one-dimensional parametric family F n used to obtain the lower bound

belongs to H(w, ä, M) for all M . 1 and suf®ciently large n. Thus the FEXP estimator

is minimax rate-optimal in all classes H(M , ä, w), for all sequences w( p) satisfying

Assumptions 1 and 2.

(iii) By de®nition of pn(w), nw2( pn(w))=pn(w) > aÿ1
w ( pn(w)). Thus B(w) � 0 implies

that b(w) � 0. Moreover, the function mø9(m) decreases in m, taking values ð2=6 at

m � 1, 1:289 at m � 2 and 1:185 at m � 3, etc., and tends to 1 as m!1. Thus, we have

also proved that the lower bounds obtained in Theorem 2.1 for these classes are sharp in

any class F (w, ä) such that B(w) � 0. Over such a class the FEXP estimator (with a

rectangular taper) is not only rate-optimal but also quasi-ef®cient in the sense that, choosing

the pooling number m appropriately, its loss of ef®ciency can be arbitrarily close to 1. This

is the case, for instance, for the classes F (wá,â,L, ä) where we have, choosing

pn � (log(n)=2â)1=á and for the rectangular taper:

lim
n!1

n

log1=á(n)
sup

f 2F (wá,â, L,ä)

E f [(d̂pn
ÿ d)2] � mø9(m)(2â)ÿ1=á:

For these classes, as mentioned above, the restriction log( f �) 2 G(M) is not needed to obtain

the upper bounds.

More generally, we have proved the following corollary.

Corollary 3.1. Let w be a sequence such that Assumptions 1 and 2 hold and

limn!1nw2( pn(w))=pn(w) � 0. Then
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lim
n!1 inf

d̂ n

sup
f 2H(M ,ä,w)

n

pn(w)
E f [(d̂ n ÿ d)2] � 1:

We conclude this section with a brief discussion of when the GPH estimator (Geweke

and Porter-Hudak 1983) should be preferred to the FEXP estimator. Since we proved above

that for 0 , â < 2, F (wâ,L, ä) � F(â, C0, K0, ä), the GPH estimator, being rate-optimal

over the whole class F(â, C0, K0, ä), is thus also rate-optimal over the class F (wâ,L, ä).

The rate alone cannot thus help to decide which estimator should be preferred. This ob-

viously depends upon the kind of assumptions the practitioner is willing to accept to model

the data at hand. If one suspects that the spectral density outside a neighbourhood of zero

frequency is likely to be very irregular, then the local method should be privileged. On the

other hand, if one is ready to accept a parametric model for f � (which usually implies

smoothness of f � over all the frequency range), then the FEXP estimator is more appro-

priate, because it can adapt to a much wider class of regularity, especially in its adaptive

version described below.

4. Adaptive estimation

The rate-optimal estimators of the previous section are infeasible, since they depend on an

unknown smoothness parameter de®ning the functional class. Thus it is necessary to select a

truncation order p̂ automatically from the data. Classical model selection techniques have

been adapted in the context of estimation of d. In the parametric framework, Beran et al.

(1998) have proposed a method to select the order of a FARIMA( p, d, q) model, and

Kokoszka and Bhansali (1999) have empirically studied a semi-parametric estimator of d

which is related to the FEXP estimator in that it ®ts a parametric model of order p, then lets

p tend to in®nity with the sample size, and uses Akaike's information criterion (AIC) to

select p from the data. In our opinion, these methods have two important shortcomings. The

main one is perhaps that one has to decide a priori if the model is parametric or semi-

parametric to choose the order selection criterion. The AIC criterion should be used in the

semi-parametric setting, provided that the model is `truly' nonparametric ± for example, does

not belong to any ®nite-order parametric class. On the other hand, the AIC yields inconsistent

estimates of the order in the parametric setting; in this case the Bayesian information

criterion (BIC) or other order selection techniques should be used. The second shortcoming is

that these methods do not provide risk bounds such as the mean square error for the estimator

of d.

The method of adaptive estimation under consideration in this paper is due to Lepski

(1990). It was ®rst developed in the context of a signal perturbed by white noise and was

later extended to many statistical situations. This method has none of the above mentioned

shortcomings. No prior assumption has to be made on the true order of the model (®nite or

in®nite) and it provides a risk bound for the estimator. The theoretical cost of this method

is that it necessitates an exponential inequality (Lemma 4.1 below) which can be proved (at

the time of writing) only for a Gaussian process. We now describe this method.

Recall that ó 2
p � 2ðø9(m)=(Kn ~ãp) is the leading term in the variance of d̂ p. Let En �
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logÿ4(n). For 1 < p < En Kn, we determine the estimators d̂ p � d̂ p,n using the FEXP

estimator based on the tapered periodogram. Let k . 0 (the value of which is speci®ed in

the statement of Theorem 4.1). Following the terminology introduced by Lepski (1990), the

truncation index p is said to be admissible if

for all q such that p < q < En Kn, jd̂q ÿ d̂ pj < k
���������������
log(Kn)

p
ó q:

Let p̂ be the smallest admissible integer. The adaptive estimator is de®ned as

~d n � d̂ p̂: (4:1)

For a spectral density f � exp(d g � l�) such that l� �P1j�0è j hj with
P1

j�0jè jj ,1, recall

that è�p �
P1

j� pjè jj and de®ne

p�n ( f ) � maxfp : 1 < p < Kn, ó p

���������������
log(Kn)

p
< 2

���
ð
p

è�pg � 1: (4:2)

The key result of this section is the following theorem.

Theorem 4.1. Let k . 6, M . 1 and 0 , ä , 1
2
, and let w be a sequence such that

limn!1w(n) � 0. For any f 2 H(M , ä, w), there exists a constant C(M , ä, k, w) such that

E f [(d̂ p̂ ÿ d)2] < 2(1� k)2 log(Kn)ó 2
p�n ( f ) � C(M , ä, k, w)Kÿ1

n :

Since p�n ( f ) depends upon the spectral density f , this proves that this estimator is adaptive to

the target function f (cf. Barron et al. 1999, pp. 360ff.). In particular, if the true spectral

density has only ®nitely many coef®cients, say p�, then, for suf®ciently large n,

p�n < p� � 1 and the mean square error of the adaptive FEXP estimator is of order

log(n)=n. The above bound can be extended to a functional class de®ned by a sequence w.

De®ne

p�n (w) � maxfp : 1 < p < En Kn, ó p

���������������
log(Kn)

p
< w( p)g � 1:

Obviously, if f 2 H(M , ä, w), then p�n ( f ) < p�n (w), thus we have:

Corollary 4.1. Let k . 6, M . 1 and 0 , ä , 1
2
, and let w be a sequence such that

limn!1w(n) � 0. There exists a constant C(M , ä, k, w) such that

sup
f 2H(M ,ä,w)

E f [(d̂ p̂ ÿ d)2] < 2(1� k)2 log(Kn)ó 2
p�n (w) � c(M , ä, k, w)Kÿ1

n :

For the classes de®ned by the sequences wâ,L and wá,â,L, we obtain the following

asymptotic upper bounds.

lim sup
n

sup
f 2H(wâ, L,ä,M)

n

log(n)

� �2â=(2â�1)

E f [(d̂ p̂ ÿ d)2] < C(â, L),

lim sup
n

sup
f 2F (wá,â, L,ä)

n

log1�1=á(n)
E f [(d̂ p̂ ÿ d)2] < C(á, â, L):
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It appears that the adaptive FEXP estimator achieves the optimal rate on the classes

F (wâ,L, ä) and F (wá,â,L, ä) up to a factor log(n). The next theorem shows that this loss is

unavoidable in the case F (wâ0, L, ä).

Theorem 4.2. Let â0 . â . 0. Assume that d̂ n is a data-driven estimator of d that achieves

the minimax rate of convergence on the class F (wâ0
, L, ä). Then

lim inf
n

inf
d̂ n

sup
f 2F (wâ, L,ä)

n

log(n)

� �2â=(2â�1)

E f [(d̂ n ÿ d)2] . 0:

We have not been able either to prove that this loss is unavoidable in the classes

F (wá,â,L, ä), or to obtain a better rate of convergence for an adaptive estimator. Thus it is

still an open question to ®nd the optimal adaptive rate of convergence in the classes

F (wá,â,L, ä).

In spite of this extra logarithmic loss, which anyhow is shared by the adaptive version of

the GPH estimator (Giraitis et al. 2000), our conclusion is that if the data show no evidence

of a singularity in the spectral density outside the zero frequency, the FEXP estimator

should be preferred to the GPH estimator, since it can take advantage of the smoothness of

the spectral density outside a neighbourhood of the zero frequency. In any case, it should be

preferred to a parametric estimator, since it avoids any assumptions on the order of the

model, and it is still consistent in the case of a misspeci®ed model. Simulations (not

reported here) support this claim. When the underlying model is truly parametric (say

FARIMA( p, d, q), with known p and q), a parametric estimator such as Whittle's minimum

contrast estimator is better than any semi-parametric estimator. The differences are,

however, in general rather small when the order of the parametric model is large. When the

model order is unknown and is determined automatically by using, say, the AIC or BIC

criterion, as usually suggested in the literature (without theoretical justi®cations), parametric

and semi-parametric approaches yield comparable results (with a slight advantage to

the semi-parametric model when the upper bound ± used in the AIC and the BIC ± for the

model order is large). In the presence of even a small amount of additive noise, the

parametric estimator is inconsistent.

We now prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. For brevity, we write p�n � p�n ( f ). Write E f [(d̂ p̂ ÿ d)2] � M2
ÿ � M2

�,

with

M2
ÿ � E f [(d̂ p̂ ÿ d)21f p̂< p�ng],

M2
� � E f [(d̂ p̂ ÿ d)21f p̂. p�ng]:

Since by de®nition p̂ is admissible, if p̂ < p�n , then jd̂ p̂ ÿ d p�n j < k
���������������
log(Kn)
p

ó p�n . Thus we

obtain the following bound for Mÿ:
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Mÿ < E
1=2
f [(d̂ p̂ ÿ d p�n )21f p̂< p�ng]� E

1=2
f [(d̂ p�n ÿ d)2]

< k
���������������
log(Kn)

p
ó p�n � E

1=2
f [(d̂ p�n ÿ d)2]:

Applying Propositions 3.1 and 3.2 and the de®nition of p�n , we obtain that

E
1=2
f [(d̂ p�n ÿ d)2] < ó p�n

���������������
log(Kn)

p
(1� O(

�����
En

p
)),

and thus

Mÿ < (1� k)ó p�n
���������������
log(Kn)

p
(1� O(

�����
En

p
)): (4:3)

The term M� requires substantially more attention. By de®nition, p̂ÿ 1 is not ad-

missible. Thus, there exists an integer p > p̂ such that

k
���������������
log(Kn)

p
ó p , jd̂ p ÿ d̂ p̂ÿ1j < jd̂ p ÿ dj � jd ÿ d̂ p̂ÿ1j,

and this implies that either jd̂ p ÿ dj . k
���������������
log(Kn)
p

ó p=2 or jd ÿ d̂ p̂ÿ1j . k
���������������
log(Kn)
p

ó p=2.

Since, for each ®xed n, ó p increases with p, the last inequality implies that jd ÿ d̂ p̂ÿ1j
> k

���������������
log(Kn)
p

ó p̂ÿ1=2. If p̂ . p�n , then p̂ÿ 1 > p�n , and we obtain

Pf ( p̂ . p�n ) < Pf 9p > p�n , jd̂ p ÿ dj . k
2

���������������
log(Kn)

p
ó p

� �
<
XE n Kn

p� p�n
Pf jd̂ p ÿ dj . k

2

���������������
log(Kn)

p
ó p

� �
:

Since d̂ p ÿ d � în, p � bn, p, jd̂ p ÿ dj . (k=2)
���������������
log(Kn)
p

ó p implies that jîn, pj .
(k=2)

���������������
log(Kn)
p

ó p ÿ jbn, pj. Applying Proposition 3.1 and the de®nition of p�n , we obtain,

for p > p�n and for all f 2 F (w, ä),

jbn, pj < (1� O(
�����
En

p
))ó p

���������������
log(Kn)

p
:

Above and in the following, the term O(
�����
En

p
) is uniform with respect to 1 < p <

�����
En

p
Kn.

Thus, for p > p�n , jd̂ p ÿ dj . k
���������������
log(Kn)
p

ó p=2 implies that jîn, pj > (k=2ÿ 1ÿ
O(

�����
En

p
))
���������������
log(Kn)
p

ó p. This yields

Pf ( p̂ . p�n ) <
XE n Kn

p� p�n
P jîn, pj > k

2
ÿ 1ÿ O(

�����
En

p� �� � ���������������
log(Kn)

p
ó p):

We now bound separately the probabilities in the above sum. Let ân,k �
�������������������
2ð=Kn ~ãp

p
~g�p(yk),

1 < k < Kn. Then
PKn

k�1â
2
n,k � 1 and, applying (6.11) in Section 6 below, we obtain

sup
1< p<En Kn

max
1<k<Kn

jân,k j < Cg logÿ1(Kn), (4:4)

where C g depends only on the function g. With this notation, we can write

în, p � (ø9(m))ÿ1=2ó p

XKn

k�1

ân,kEn,k ,

Adaptive estimation of the fractional differencing coef®cient 715



and

Pf jîn, pj . k
2
ÿ 1ÿ O(

�����
En

p
)

� � ���������������
log(Kn)

p
ó p

� �
� Pf

����XKn

k�1

ân,kEn,k

���� .
k
2
ÿ 1ÿ O(

�����
En

p
)

� � ���������������
log(Kn)

ø9(m)

s !
:

Set x � (k=2ÿ 1ÿ O(
�����
En
p

))
������������������������������
log(Kn)=ø9(m)

p
. For any á . 0, the Markov inequality yields

Pf

����XKn

k�1

ân,kEn,k

���� . x

 !
2 < eÿáxE f exp á

XKn

k�1

ân,kEn,k

 !" #
(4:5)

We now need the following exponential inequality.

Lemma 4.1. Let r . 0, ä 2 (0, 1
2
), M . 1 and let w be a sequence such that limn!1w(n)

� 0. There exist a real ç(r) . 0 which depends only on r, and a constant C(M , ä, r, w),

such that, for any real number á and any triangular array of real numbers (âk)1<k<K n

satisfying
PKn

k�1â
2
k � 1 and jájmax1<k<Knjâk j < ç(r),

sup
f 2H(M ,ä,w)

E f exp á
XKn

k�1

âkEn,k

 !" #
< C(M , ä, r, w)eá

2ø9(m)(1�r)=2:

Using Lemma 4.1 and setting á � x=ø9(m)(1� r), (4.5) becomes

Pf

����XKn

k�1

ân,kEn,k

���� . x

 !
< C(M , ä, r, w)eÿx2=2ø9(m)(1�r):

This choice of á is valid for large enough n thanks to (4.4). Thus we obtain, for any r . 0,

for n large enough (depending on M , ä, r and w) and for all f 2 H(M , ä, w),

Pf jîn, pj . k
2
ÿ 1ÿ O(

�����
En

p
)

� � ���������������
log(Kn)

p
ó p

� �
< C(M , ä, r, w)Kÿ(k=2ÿ1ÿO(

����
En
p

))2=2(1�r)
n :

Applying HoÈlder's inequality, we obtain, for a, b . 0 such that aÿ1 � bÿ1 � 1,

E f [(d̂ p̂ ÿ d)21f p̂. p�ng] <
X

p�n < p,E n Kn

E f [(d̂ p ÿ d)2a]

0@ 1A1=a

P
1=b

f ( p̂ . p�n ):

Lemma 4.2. For any real a > 1, there exists a constant C(M , ä, a) such that

sup
1< p<En Kn

sup
f 2H(ä,M ,w)

E f [(d̂ p ÿ d)2a] < C(M , ä, a, w): (4:6)

We ®nally obtain that for large enough n (still depending on M , ä, r and k)
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sup
f 2H(ä,M ,w)

E f [(d̂ p̂ ÿ d)21f p̂. p�ng] < c(M , ä, r, k, b, w)K1ÿ(k=2ÿ1ÿ ����En
p

)2=2b(1�r)
n :

Since it has been assumed that k . 6, the choice of r and b can be made in such a way that

(k=2ÿ 1ÿ O(
�����
En

p
))2=2b(1� r) . 2. Such a choice ®nally yields M� < C(M , ä, k, w)Kÿ1

n

for all f 2 H(ä, M , w) and for n greater than some n0(M , ä, k, w) which depends only on

M , ä, k and w. Gathering the bounds for Mÿ and M� concludes the proof of Theorem 4.1.h

Proof of Theorem 4.2. The proof of Theorem 4 is a straightforward application of the fol-

lowing constrained risk inequality:

Proposition 4.1. (Brown and Low 1996). Let Z have distribution with density fè0
or fè1

with respect to a measure ì. De®ne q � fè1
= fè0

and I � Eè0
[q2(Z)]. Let R(ä, èi)

� Eèi
[(èi ÿ ä)2] be the risk of an estimator ä based on Z. If R(è0, ä) < E2 and

IE2=(è1 ÿ è0)2 , 1, then

R(è1, ä) > (è1 ÿ è0)2(1ÿ I1=2Ejè1 ÿ è0jÿ1)2:

Let C0 be a class of spectral densities that contains the spectral density of white noise

and upon which the optimal rate of convergence for the estimation of d is En. Let (qn)n2N

be a non-decreasing sequence of integers and (èn)n2N be a decreasing sequence of reals,

and de®ne f n � expfèn

P1
j�qn

á j hjg. Let X be a Gaussian process with spectral density f n

and let pn be the density of X1, . . . , X n. Let gn be the density of n independent N (0, 1)

random variables Z1, . . . , Z n. Let I n � E[fpn(Z1, . . . , Z n)=gn(Z1, . . . , Z n)g2] and assume

that î :� lim supn I nE2
nè
ÿ2
n , 1. Let d̂ n be a data-driven estimator (based on X 1, . . . , X n)

which achieves the optimal minimax rate of convergence on the class C0. Then, applying

Proposition 4.1, we obtain, for large enough n,

E[(d̂ n ÿ èn)2] > è2
n(1ÿ En I1=2

n èÿ1
n )2:

Consider now a class of spectral densities C such that for large enough n, f n 2 C. Then

lim inf
n

sup
f 2C

èÿ2
n E f [(d̂ n ÿ d)2] > (1ÿ

���
î

p
)2:

We now set C0 � F (wâ0, L, ä) and C � F (wâ,L, ä), with â0 . â . 0. Note that in that case,

En � nâ0=(2â0�1). De®ne qn as the smallest integer greater than (n=log(n))1=(2â�1) and

èn � ã(log(n)=n)â=(2â�1), where ã will be chosen later. Using the same kind of computations

as in the proof of Theorem 2.1 and Lemma 2.1, it is easily shown that f n 2 F (wâ,L, ä) for

large enough n and for small enough ã . 0, and that I n � expf2nè2
nqÿ1

n (1� o(1))g �
n2ã2

(1� o(1)). Thus

I nE2
n

è2
n

� n2ã2ÿ2â0=(2â0�1)�2â=(2â�1) log(n)ÿ2â=(2â�1)(1� o(1)):

Choosing 0 , ã2 < 2â0=(2â0 � 1)ÿ 2â=(2â� 1) yields lim supn I nE2
nè
ÿ2
n � 0. This con-

cludes the proof of Theorem 4.2. h
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5. Proof of Lemma 2.1

In the rest of this paper, c, C, . . . , c(:) denote generic constants that may take different

values at each appearance and depend only on their arguments when any. For brevity, write

pn :� pn(w). The Fisher information quantity for n consecutive samples fX 1, . . . , X ng of a

zero-mean Gaussian process, under a regular parametric model ( fè, è 2 R) may be expressed

as

I n(è) � 1
2
tr((Óÿ1

è Ó9è)2),

where Óè � (Óè(i, j))1<i, j<n is the Toeplitz matrix associated with fè, that is,

Óè( j, k) �
�ð
ÿð

fè(x)ei( jÿk)x dx �
������
2ð
p

f̂è(0) if j � k,���
ð
p

f̂è(j jÿ kj) if j 6� k,

(
and Ó9

è is its derivative with respect to è.

Recall now that fè � exp(èg�pn(a,w)), where g�p �
P1

s� pás hs. Note that with this

normalization, we have Óè � 2ðJ n � Än, where J n is the n 3 n identity matrix, and we

must prove that the spectral radius of Än, say r�n, tends to zero as n tends to in®nity.

Standard results on the spectral radius of Toeplitz matrices yield the bound

r�n < 2j
������
2ð
p

f̂è(0)ÿ 2ðj � 2
���
ð
p Xn

k�1

j f̂è(k)j:

Since the functions hj form an orthonormal sequence, the Parseval±Bessel identity implies

kg�pk2
2 �

�ð
ÿð

(g�p(x))2 dx �
X
j� p

á2
j < 8ðpÿ1:

Since g 2 Lq([ÿð, ð]) for all q > 1, it follows from Katznelson (1968, Theorem 11.1.5, p.

50), that lim p!1kg�pkq � 0 (where k:kq denotes the Lq-norm). Let q . 2 and 0 , E , 1
2
.

Applying HoÈlder's inequality, we obtain�ð
ÿð
jg�p(x)jq dx �

�ð
ÿð
jg�p(x)j2ÿ2Ejg�p(x)jq�2Eÿ2 dx

<

�ð
ÿð
jg�p(x)j2 dx

� �1ÿE �ð
ÿð
jg�p(x)j(q�2Eÿ2)=E dx

� �E

< c1(q, E) pÿ1�E: (5:1)

Now, for large enough n, jèj < dn and p < n, we also have

jèg�pj < dn g � 2dn

Xp

j�1

jÿ1 <
g

4
� 1: (5:2)

Equations (5.1), (5.2) and the Cauchy±Schwarz inequality imply that, for all E . 0 and all

integers k . 1, there exists a constant c2(k, E) such that, for large enough n, for all jèj < dn

and for all p < n,
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�ð
ÿð
jg�p(x)jkeè g�p(x)dx < c2(k, E) pÿ1=2�E: (5:3)

We now have all the necessary ingredients to determine an upper bound for r�n. For

r 2 N, write ön,r :� [g�pn
]r. Using����ex ÿ

Xk

j�0

x j

j!

���� < emax(x,0) jxjk�1

(k � 1)!
,

together with (5.2) and (5.3), we obtain, for large enough n, for all jèj < dn and p < n,

r�n < 2
Xn

k�0

�����ðÿð(eè g�pn
(x) ÿ 1)eikx dx

����
< 2

Xs

r�1

èr

r!

Xn

k�0

�����ðÿðön,r(x)eikx dx

����� 2
c2(s� 1, E)nès�1 pÿ1=2�E

n

(s� 1)!

< 4
���
ð
p

dn

Xn

k� pn

ák � 2
Xs

r�2

���
ð
p

d r
n

r!

Xn

k�0

jö̂n,r(k)j � 2
c2(s� 1, E)nès�1 pÿ1=2�E

n

(s� 1)!
:

Applying the Cauchy±Schwarz and Parseval±Bessel inequalities and using (5.1), we obtain,

for any E . 0,

Xn

k�0

jö̂n,r(k)j < ���
n
p Xn

k�0

[ö̂n,r(k)]2

 !1=2

<
���
n
p �ð

ÿð
ön,2r(x)dx

� �1=2

< c
1=2
1 (2r, E)

���
n
p

pÿ1=2�E
n ):

As a result, we obtain

r�n � O(dn log(n)� ���
n
p

d2
n pÿ1=2�E

n � nds�1
n pÿ1=2�E

n ):

Assumption 2 implies that, for all ä . 0, there exists a constant c(a, w, ä) such that, for large

enough n, dn < c(a, w, ä) p1=2
n nÿ1=2�ä. Assumption 2 now yields

dn log(n) < c(a, w, ä, r)nÿ1=2�(1�r)=2�ä,���
n
p

d2
n pÿ1=2�E

n < c(a, w, ä, r)nÿ1=2�2ä�E=(1�r),

nds�1
n pÿ1=2�E

n < c(a, w, ä, r)nÿs=2�1=2�ä(s�1)�E=(1�r):

If E and ä are chosen small enough and s is chosen large enough, then all the above terms are

o(1) and thus r�n � o(1).

For large enough n, r�n :� r(Än) , 2ð (where r(�) denotes the spectral radius), and

Óè
ÿ1 � (2ð)ÿ1 J n � En, with En :�P1k�1(2ð)ÿkÄk

n. Hence, r(En) < cr�n , for some ®nite

constant c. Using the bound for symmetric matrices jtr(A2 B)j < r(B)(tr(A2), we obtain
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8ð2 I n(è) � 1

8ð2
tr[(Ó9è � 2ðÓ9èEn)2] � ftr(Ó92

è)� 4ðtr(Ó92
èEn)� 4ð2tr(Ó92

èE2
n)g

� tr(Ó92

è )(1� O(r�n )):

We now compute the entries of Ó9è. Using the same technique as above, we obtain

Ó9è(i, j) � ���
ð
p

ájiÿ jj1fjiÿ jj. png �
Xs

r�1

���
ð
p

èr

r!
ö̂n,r�1(jiÿ jj)� O(ds�1

n pÿ1=2�E
n ),

where the O(ds�1
n pÿ1=2�E

n ) term is uniform with respect to jèj < dn. Using straightforward

algebra, we may show thatX
jiÿ jj. pn

á2
jiÿ jj � 2n

Xnÿ1

k� pn

�1
1ÿ k

n

� �
á2

k � 8ðn pÿ1
n (1� o(1)):

Applying the Parseval±Bessel inequality, we haveX
1<i, j<n

ö̂2
n,r�1(jiÿ jj) < 2n

Xnÿ1

s�0

ö̂2
n,r�1(s) < 2n

�ð
0

ön,2(r�1)(x)dx < 2c1(2(r � 1), E)n pÿ1�E
n :

Hence, for all jèj < dn,

X
1<i, j<n

Xs

r�1

���
ð
p

èr

r!
ö̂n,r(jiÿ jj)

 !2

< cnpÿ1
n

Xs

r�1

d2r
n pE

n

for some ®nite constant c. Choosing, as above, E suf®ciently small and s suf®ciently large, we

obtain

tr(Ó92
è) � 2ðn

Xn

k� pn

(1ÿ k=n)á2
k

 !
(1� o(1)) � 8ð2 n pÿ1

n (1� o(1)),

where the o(1) is uniform for jèj < dn. This concludes the proof of Lemma 2.1.

6. Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. For notational convenience, we use the following convention. We

identify any function j with the Kn-dimensional vector (j(y1), . . . , j(yK n
))T. We de®ne a

scalar product on RKn as follows: for any vectors u, v in RKn ,

hu, vi � 2ð

Kn

XKn

k�1

ukvk :

With this notation, we have hhj, h9ji � ä j, j9 for all 0 < j, j9 , Kn, where ä is the Kronecker

delta. De®ne g�p �
P1

j� pá j hj. Then ~g�p � g�p ÿ
P pÿ1

j�0 hhj, g�Kn
ihj. It is easily seen that
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h ~g�p, l�pi � hg�p, l�pi ÿ
Xpÿ1

j�0

hhj, g�Kn
ihhj, l�pi

�
XKnÿ1

j� p

á jhhj, l�pi � hg�Kn
, l�pi ÿ

Xpÿ1

j�0

hhj, g�Kn
ihhj, l�pi, (6:1)

�
XKnÿ1

j� p

á jhhj, l�pi �
XKnÿ1

j� p

hg�Kn
, hjihhj, l�pi: (6:2)

For j 2 f1, . . . , Kng and j9 > Kn,

hhj, h j9i �
1 jÿ j9 � 0 mod 2Kn,

ÿ1 j� j9 � 0 mod 2Kn,

0 otherwise:

8<:
This implies the bounds

jhhj, g�Kn
ij < á2K n

ÿ j < áK n
, j 2 f0, . . . , Kn ÿ 1g, (6:3)XKnÿ1

j�0

jhhj, l�pij < è�p: (6:4)

Plugging these bounds into (6.2) yields

jh ~g�p, l�pij < 2
���
ð
p

pÿ1 1� p

Kn

� �
è�p:

We must now give a lower and an upper bound and an asymptotic equivalent for p~ãp. Note

that ~g p �
PKnÿ1

j� p á j hj �
PKnÿ1

j� p hg�Kn
, hjihj. Thus,

XKnÿ1

j� p

á2
j

 !1=2

ÿ
XKnÿ1

j� p

hg�Kn
, hji2

 !1=2

< k ~g pk <
XKnÿ1

j� p

á2
j

 !1=2

�
XKnÿ1

j� p

hg�Kn
, hji2

 !1=2

:

Applying (6.3), we have
PKnÿ1

j� p hg�Kn
, hji2 < 4ð=Kn and

p
XKnÿ1

j� p

á2
j

 !1=2

ÿ2
���
ð
p p

Kn

� �1=2

< ( p~ãp)1=2 < p
XKnÿ1

j� p

á2
j

 !1=2

�2
���
ð
p p

Kn

� �1=2

:

This yields, for 1 < p < Kn,

4ð 1ÿ 2

������
p

Kn

r� �
< p~ãp < 4ðp

X1
j� p

jÿ2 � 12ð
p

Kn

: (6:5)

Both bounds always hold, but the lower bound is meaningful only if p < Kn=4. This implies

that if p is a non-decreasing sequence of integers such that pn < Kn and limn!1(1=pn

� pn=Kn) � 0, then limn!1 pn ~ãpn
� 4ð. The proof of Proposition 3.1 ®nally follows from

~ãpbn, p � h ~g�p, l�pi. h
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To prove Proposition 3.2 and Lemmas 4.1 and 4.2, we need covariance bounds for the

ordinary and tapered discrete Fourier transforms computed at the Fourier frequencies. These

bounds were obtained in Moulines and Soulier (1999) in the case of the ordinary DFTs and

in Hurvich et al. (2000) in the case of the tapered DFTs.

Theorem 6.1. Let M . 1 and ä 2 (0, 1
2
). Let fXtg t2Z be a stationary Gaussian process with

spectral density f � edg� l�, where l� 2 G(M) and jdj < ä. For k � 1, . . . , ~n, de®ne æn,k �
dn(xk)=

�����������
f (xk)
p

. Then, there exists a constant C(M , ä) such that

jE f [æn,kæn,k]ÿ 1j � jE f [æn,kæn,k]j < C(M , ä) p(k), (6:6)

jE f [æn,kæn, j]j � jE f [æn,kæn, j]j < C(M , ä) p(d, k, j), (6:7)

with p(k) � log(1� k)=k and p(d, k, j) � log( j)kÿjdj jjdjÿ1 for j . k and for the ordinary

DFTs, and with p(k) � kÿ1 and p(d, k, j) � kÿ1( jÿ k)ÿ2( j=k)jdj for j . k � 1 and for the

tapered DFTs.

Since the log-periodogram ordinates are functionals of the Gaussian vector

[æn,1, . . . , æn,K ], moment bounds for log-periodogram ordinates can be obtained from

expressions for the moment bounds of functions of Gaussian vectors, such as the covariance

inequality of Arcones (1994, Lemma 1) later extended by Soulier (1998, Theorem 1).

Noting that the function de®ned on R2m as x! log(jxj2=2) has Hermite rank 2 (as de®ned

in Arcones 1994), we obtain the following corollary.

Corollary 6.1. Let M . 1, ä 2 (0, 1
2
) and let w be a sequence such that limn!1w(n) � 0.

Let fX tg t2Z be a stationary Gaussian process with spectral density f 2 H(M ,ä, w). Then

there exists a constant C(M ,ä, w) such that, for all 1 < k , j < Kn,

jE f [Ek]j � jE f [E2
k]ÿ ø9(m)j < C(M , ä, w) p(k), (6:8)

jcovf (Ek , E j)j < C(M , ä, w) p2(d, k, j): (6:9)

We will make also repeated use of the following technical result which is easily checked

and whose proof is omitted.

Lemma 6.1. For all ä 2 (0, 1
2
), there exists a constant C(ä) such that, for any integers

K . L . 0 and any real jdj , ä,

XK

j�L

Xjÿ1

k�L

p2(d, j, k) <
C(ä)log3(K), for the ordinary DFTs

C(ä)Lÿ1, for the tapered DFTs:

�
(6:10)

Proof of Proposition 3.2. We ®rst need to obtain an upper bound for ~g�p(yk). Recall that

~g�p � g�p ÿ
P pÿ1

j�0 hhj, g�Kihj and that jhhj, g�Kij < áK . Hence,

j ~g�p(yk)j < jg�p(yk)j � 2 pKÿ1:
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Since g�p � g ÿP pÿ1
j�1 á j hj, we obtain, for all 1 < p < K,

max
1<k<K

jg�p(yk)j < max
1<k<K

jg(yk)j � 2
Xpÿ1

j�1

jÿ1 < c log(K),

for some ®nite constant c. Combining these two bounds yields, under the stated assumptions,

max
1< p<En K

max
1<k<K

j ~g�p(yk)j < c log(K): (6:11)

De®ne ík � 2ð ~g�p(yk)=(Kn ~ãp). Then
PKn

k�1í
2
k � ó 2

p=ø9(m) and (6.11) implies that jík j <
c log(Kn)ó 2

p=ø9(m). With this notation, we obtain

E f [î2
n, p] � (E f [în, p])2 � varf (în, p)

� (E f [în, p])2 �
XKn

k�1

í2
k var f (En,k)� 2

X
1<k, j<Kn

íkí j cov f (En,k , En, j):

Applying (6.8) and (6.11), we obtain

jE f [în, p]j < C(M , ä, w)ó 2
p log(Kn)

XKn

k�1

p(k) < C(M , ä, w)ó 2
p logí(n),

with í � 6 for the ordinary periodogram and í � 4 for the tapered periodogram. Applying

(6.8) again, we obtain

XKn

k�1

í2
k var(En,k) � ó 2

p � C(M , ä, w)ó 4
p log2(Kn)

XKn

k�1

p(k) � ó 2
p(1� C(M , ä, w)ó 2

p logí(Kn))

with í � 4 (í � 3) when the ordinary (tapered) periodogram is used. Finally, applying (6.9),

Lemma 6.1 and (6.11), we obtain

X
1<k, j<Kn

íkí j cov f (En,k , En, j) < C(M , ä, w)ó 4
p log2(Kn)

X
1<k, j<Kn

p2(d, k, j) < C(M , ä, w)ó 4
p logí(n):

with í � 5 (í � 2) when the ordinary (tapered) periodogram is used. This concludes the

proof of Proposition 3.2. h
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7. Proofs

Proof of Lemma 4.1. Let a 2 (1, 2] and suppose b is such that 1=a� 1=b � 1. For brevity,

denote jâj1 � maxk2f1,... , K ngjâk j. By HoÈlder's inequality, we have, for any positive integer

L < Kn,

E f á exp
XKn

k�1

âkEk

( )" #
< E

1=b

f exp bá
XL

k�1

âkEk

( )"
E

1=a

f exp aá
XKn

k�L�1

âkEk

( )" #

�: B(á)1=b A1=a(á)

We bound these two terms separately. If 2bjáj jâj1 < 1, Lemma 7.3 below implies that

B(á) < C(M , ä, w, L): (7:1)

For î 2 R2m, de®ne ö(î) � log(jîj2=2)ÿ ø(m) and

Ö(îL�1, . . . , îK n
) � exp á

XKn

k�L�1

âkö(îk)

( )
:

Set dn(xk) :� Cn(xk)� iSn(xk) and let Ãn be the covariance matrix of the 2m(Kn ÿ L)-

dimensional Gaussian vector

Un � Cn(xmL�2)����������������
f (yL�1)
p ,

Sn(xmL�2)����������������
f (yL�1)
p , . . . ,

Cn(xmK n
)��������������

f (yK n
)

p ,
Sn(xmK n

)��������������
f (yK n

)
p !T

:

Theorem 6.1 and Lemma 6.1 imply that, for any 1 , a < 2 and E � 1
2
, say, we can choose

L � L(M , ä) large enough for the assumptions of Lemma 7.1 below to hold. Hence, we

obtain

A(á) � E f [Ö(Un)] < C(a, E)
YKn

k�L�1

keaáâ köka,

where the norm k:ka is de®ned in Lemma 7.1. Now applying Lemma 7.2 below, we obtain,

for all á such that a2jáj jâj1 < ç0(a),

kexp(aáân,kö)ka
a � exp(ÿa2áø(m))E[Y a2áâ k ] < exp(á2â2

kø9(m)a5=2),

where ç0 and Y are de®ned in Lemma 7.2. We now obtain that

A(á) < C(a)
YKn

k�L�1

eá
2â2

k
ø9(m)a4=2 < C(a)eá

2ø9(m)2 a4=2, (7:2)

where the last inequality is a consequence of the fact that
PKn

k�1â
2
k � 1. In conclusion, if

jáj jâj1 < (1=2b) ^ (ç0(a)=a2), gathering (7.1) and (7.2), we obtain
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E f á exp
XKn

k�1

âkEk

( )" #
< C(M , ä, w, a)exp(á2ø9(m)2a4=2):

Setting a4 � 1� r and ç(r) � (1=2b) ^ (ç0(a)=a2) concludes the proof of Lemma 4. h

Lemma 7.1. Let X be a k-dimensional centred Gaussian vector with covariance matrix Ã.

Let Ö : Rk ! R be a function such that
�

R kÖ2(x)exp(ÿ1
2
xTx)dx ,1; and, for 1 , a < 2,

write kÖka
a � (2ð)ÿk=2

�
R kÖa(x)exp(ÿ1

2
xTx)dx. If tr(fÃÿ Ikg2) < (aÿ 1)2(1ÿ E), then there

exists a constant c(a, E) which depends only on a and E but not on k, such that

jE[Ö(X )]j < c(a, E)kÖka

Proof. The proof of Lemma 7.1 is an adaptation of the proof of Lemma 4.2 in Giraitis et al.

(2000). For a 2 (1, 2], denote by b the real number in [2, 1[ such that aÿ1 � bÿ1 � 1.

Applying HoÈlder's inequality, we obtain

E[Ö(X )] � (2ð)ÿk=2jÃjÿ1=2

�
R k

Ö(x)exp(ÿ 1
2a

xTx)exp(ÿ1
2
xT(Ãÿ1 ÿ Ik=a)x)dx, (7:3)

jE[Ö(X )]j < jÃjÿ1=2kÖka

����(2ð)ÿk=2

�
R k

exp(ÿb
2
xT(Ãÿ1 ÿ Ik=a)x)dx

����1=b

: (7:4)

The last term on the right-hand side of the latter equation is ®nite provided that Ãÿ1 ÿ Ik=a

is invertible. Let Ä � Ãÿ Ik . Then

Ãÿ1 ÿ Ik

a
� Ãÿ1 Ik ÿ Ã

a

� �
� Ãÿ1 1ÿ 1

a

� �
Ik ÿ Ä

a

� �
� bÿ1Ãÿ1(Ik ÿ (bÿ 1)Ä):

Under the assumptions in the statement of the lemma, Ik ÿ (bÿ 1)Ä is invertible and thus

(Ãÿ1 ÿ Ik=a)ÿ1 � bÃ(Ik ÿ (bÿ 1)Ä)ÿ1. Thus

(2ð)ÿk=2

�
R k

exp(ÿb
2
xT(Ãÿ1 ÿ Ik=a)x)dx � bÿk=2

����Ãÿ1 ÿ Ik

a

����ÿ1=2

:

Finally, we obtain

jE[Ö(X )]j < jÃjÿ1=2bÿk=2b

����Ãÿ1 ÿ Ik

a

����ÿ1=2b

kÖka � jÃjÿ1=2ajIk ÿ (bÿ 1)Äjÿ1=2bkÖka

� jIk � Äjÿ1=2ajIk ÿ (bÿ 1)Äjÿ1=2bkÖka:

Let ëi, 1 < i < k denote the eigenvalues of Ä. Then
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jlog(jIk � Äjÿ1=2ajIk ÿ (bÿ 1)Äjÿ1=2b)j �
����ÿ 1

2a

Xk

i�1

log(1� ëi)ÿ 1

2b

Xk

i�1

log(1ÿ (bÿ 1)ëi)

����
< c(E)

Xk

i�1

ë2
i < 2c(E)(bÿ 1)2tr(fÃÿ Ikg2) < 2c(E),

since by assumption (bÿ 1)2tr(fÃÿ Ikg2) < 1. This concludes the proof of Lemma 7.1. h

Lemma 7.2. Let Y be a Ã(m, 1) random variable. For any a . 1, there exists a real

ç0(a) . 0 depending only on a such that, for all s > ÿç0(a),

log(E[Y s]) < sø(m)� aø9(m)
s2

2
: (7:5)

Proof. By concavity of the digamma function, we obtain, for s . ÿm,

log(E[Y s]) < sø(m)� s2

2
ø9((m� s) _ m):

If s . 0, then (7.5) holds. If s , 0, then ø9(m� s) . ø9(m). Nevertheless, by continuity, for

any a . 1, there exists an ç0(a) . 0 such that if s . ÿç0(a), then ø9(m� s) < aø9(m). h

Lemma 7.3. Let M . 1, ä 2 (0, 1
2
), w be a sequence such that lim nw(n) � 0 and L be a

positive integer. There exists a constant C(M , ä, w) such that if r1, . . . , rL are real numbers

satisfying max1<k<Ljrk j < 1
2
, then

sup
f 2H(M ,ä,w)

E f exp
XL

k�1

rkEk

( )" #
< C(M , ä, w, L): (7:6)

Proof. Pooling creates a technical dif®culty due to the fact that the regression is based on

the frequencies yk . We ®rst get rid of this problem. Let Jk � f2m(k ÿ 1)� 2, . . . , 2mkg
(1 < k < L), us � Cn(xs)= f (xs) and vs � Sn(xs)= f (xs) (1 < s < 2mL), and Tn,L �
expfPL

k�1 rkEkg. With this notation, we can write

Tn,L �
YL

k�1

eÿø(m)
X
s2Jk

f (xs)

f (yk)
(u2

s � v2
s)

 !rk

:

Thus it is easily seen that there exists a constant C(M , ä, L) such that

Tn,L < C(M , ä, L)
YL

k�1

X
s2Jk

(u2
s � v2

s)

 !rk

:

Since the weights rk satisfy jrk j < 1=2, it also holds that
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Tn,L < C(M , ä, L)
YL

k�1

X
s2Jk

(u2
s � v2

s)

 !1=2

�
X
s2Jk

(u2
s � v2

s)

 !ÿ1=2
0@ 1A:

Let Vn,L be the 2mL-dimensional Gaussian vector Vn,L � (u2s, v2s)1<k<L. For z �
(zÿ 1, . . . , z2m) 2 R2m, write kzk2 �Pm

i�1z2
i , and for z1, . . . , zL, de®ne

Ö(z1, . . . , zL) �
YL

i�1

kzik � 1

kzik
� �

:

What we must now prove is that

sup
n

sup
f 2H(M ,ä,w)

E f [Ö(Vn,L)] < C(M , ä, w): (7:7)

Let
P

n,L( f ) be the covariance matrix of Vn,L. Since E[Ö(î)] ,1 if î is a 2mL-

dimensional vector with i.i.d. standard Gaussian components, to prove (7.7), it is suf®cient to

prove that

inf
n

inf
f 2H(M ,ä,w)

ëmin(
P

n,L( f )) � ë� . 0, (7:8)

where ëmin(A) denotes the smallest eigenvalue of the matrix A. Basically, the argument for

proving (7.8) is that it holds for any f 2 H(M , ä, w), and that H(M , ä, w) is isomorphic to

[ÿä, ä] 3 C(w) \ G(M) which is a compact set for the product topology on R 3 C([ÿð, ð]).

We now give some details. We follow the arguments in the proof of Lemma 3 in Moulines

and Soulier (1999), which hold for one function f , and mention where uniformity with

respect to f is used.

We ®rst prove that
P

n,L( f ) converges uniformly to a positive de®nite matrix
P

L(d).

Recall that Hn(x) �Pn
t�1 ht,nei tx and æn,k � dn(xk)=

�����������
f (xk)
p

. Since
Pn

t�1jht,nj2 � 2n, we

obtain

E f [æn,kæn, j] � 1

4ðn
��������������������
f (xk) f (xj)

p �ð
ÿð

Hn(x� xk)Hn(xj ÿ x) f (x)dx

� j1ÿ eixk jd j1ÿ eix j jd

4ð
��������������������������
f �(xk) f �(xj)

q � nð

ÿnð
nÿ1 Hn xk � y

n

� �
nÿ1 Hn xj ÿ y

n

� �
j1ÿ ei y=njÿ2d f � y

n

� �
dy:

Note that nÿ1jHn(x=n)j < C(1� jxj)ÿ1 for all x 2 [ÿ3nð=2, 3nð=2], and that, for all

x 2 [ÿnð, nð],

lim
n!1nÿ1 Hn

x

n

� �
�
�1

0

(1ÿ e2iðs)eisx ds � 2ð(1ÿ eix)

x(x� 2ð)
�: ĥ(x):

Applying the dominated convergence theorem, we thus have, uniformly with respect to

f 2 H(M , ä, w),

lim
n!1E f [æn,kæn, j] � 22dÿ2ð2dÿ1 kd jd

�1
ÿ1

ĥ(2ðk � y) ĥ(2ð jÿ y)jyjÿ2d dy �: ò k, j(d):
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The non-singularity of the matrix
P

L(d) � (òk, j(d))1<k, j<L now follows from the fact that

the functions ĥk : x! ĥ(2kð� x), k 2 Z, are linearly independent. Moreover, by continuity

and compactness, inf jdj<äëmin(
P

L(d)) . 0. Thus there exists an integer n0(M , ä, w) such

that

inf
n>n0

inf
f 2H(M ,ä,w)

ëmin(
P

n,L( f )) . 0:

For each n < n0(M , ä, w), and each f 2 H(M , ä, w), it is clear that ëmin(
P

n,L( f )) . 0 (cf.

Lemma 3 in Moulines and Soulier 1999). Hence by compactness we also have,

inf
n<n0

inf
f 2H(M ,ä,w)

ëmin(
P

n,L( f )) . 0:

This proves that (7.8) holds, and this concludes the proof of Lemma 7. h

Proof of Lemma 4.2. Using the previous notation, d̂ p ÿ d can be decomposed as

d̂ p ÿ d � ó p�������������
ø9(m)

p XKn

k�1

ân,kEn,k � bn, p(l�) �:
ó p�������������
ø9(m)

p æn, p � bn, p(l�):

Hence there exists a constant C(a) such that, for all p < En Kn,

E1=a[jd̂ p ÿ dja] <
ó p�������������
ø9(m)

p E1=a[jæn, pja]� jbn, p(l�)j < C(a)E1=2a[eæn, p ]� jbn, p(l�)j:

Applying Proposition 3, we obtain jbn, p(l�)j < cè�0 . For large enough n, (4.4) implies that

the assumptions of Lemma 4.1 hold, thus

E[eæ n, p ] < C(M , ä, w):

This concludes the proof of Lemma 4. h

For the sake of completeness, and because we did not ®nd a relevant reference, we give a

proof of the fact that a function h in C(wâ,L) is HoÈlder continuous with exponent â, for

0 , â , 2. Let h be an even function with summable Fourier coef®cients è j, j > 0. By

de®nition, h 2 C(wâ,L) implies that è�p < L(1� p)ÿâ. For 0 , x < 1, let nx be the greatest

integer smaller than or equal to 1=x. Then we can write

h(x)ÿ h(0) �
X1
j�1

è j(cos( jx)ÿ 1) �
Xnx

j�1

è j(cos( jx)ÿ 1)�
X1

j�nx�1

è j(cos( jx)ÿ 1):

The last term above is easily bounded:����X1
j�1

è j(cos( jx)ÿ 1)

���� < 2è�nx
< 2L(1� nx)ÿâ < 2Lxâ:

To bound the ®rst term, note that if 0 , j , nx, then 0 , 1ÿ cos( jx) < ( jx)2=2 < jx=2. If

0 , â , 1, we then obtain
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����Xnx

j�1

è j cos( jx)

���� <
x

2

Xnx

j�1

jjè jj < x

2

Xnx

j�1

è�j <
Lx

2

Xnx

j�1

(1� j)ÿâ <
Lxn1ÿâ

x

2(1ÿ â)
<

Lxâ

2(1ÿ â)
:

If 1 < â , 2, then����Xnx

j�1

è j cos( jx)

���� < x2
Xnx

j�1

j2

2
jè jj < x2

Xnx

j�1

jè�j < Lx2
Xnx

j�1

(1� j)1ÿâ <
Lx2 n2ÿâ

x

2ÿ â
<

Lxâ

2ÿ â
:

For 0 , â < 2, let H(â, C) denote the class of even functions h such that, for all x 2 [0, 2ð],

jh(x)ÿ h(0)j < Cjxjâ for some constant C. To prove that C(wâ,L) is not included in H(â9, C)

for any â9 . â and any C, and that the class C(w2,L) is strictly greater than the class H(2, C),

we need only consider the Weierstrass-type functions hâ de®ned as hâ(x) �P1
k�02ÿâk cos(2k x). It is easily checked that, for all 0 , â , 2, hâ 2 C(wâ,L) for

L � (1ÿ 2ÿâ)ÿ1. Thus hâ 2 H(â, C) for some constant C. It can be also easily checked

that, for 0 , â , 2, limx!0xÿâhâ(x) . 0, which implies that hâ =2 H(â9, C) for any â9 . â
and any C. For â � 2, it can be shown that

lim
x!0

h2(x)

x2 log(1=x)
. 0,

which implies that h2 =2 H(2, C) for any C.
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