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Semi-parametric estimation of the fractional differencing coefficient d of a long-range dependent sta-
tionary time series has received substantial attention in recent years. Some of the so-called local
estimators introduced early on were proved rate-optimal over relevant classes of spectral densities. The
rates of convergence of these estimators are limited to n?/°, where n is the sample size. This paper
focuses on the fractional exponential (FEXP) or broadband estimator of d. Minimax rates of con-
vergence over classes of spectral densities which are smooth outside the zero frequency are obtained,
and the FEXP estimator is proved rate-optimal over these classes. On a certain functional class which
contains the spectral densities of FARIMA processes, the rate of convergence of the FEXP estimator is
(n/log(n))'/?, thus making it a reasonable alternative to parametric estimators. As usual in semi-
parametric estimation problems, these rate-optimal estimators are infeasible, since they depend on an
unknown smoothness parameter defining the functional class. A feasible adaptive version of the
broadband estimator is constructed. It is shown that this estimator is minimax rate-optimal up to a
factor proportional to the logarithm of the sample size.

Keywords: fractional differencing; Gaussian processes; log-periodogram regression; minimax and
adaptive estimation

1. Introduction

Let {X}rez be a covariance stationary process whose spectral density /' may be written as

f@=1—e™f*w, xel[-mal (1.1)

for some |d| <1 and a continuous even positive function f *. The restriction |d| < 1 ensures
that the process is stationary and invertible. If d = 0 and if /™ is sufficiently regular, the
process is said to be short-range (or weakly) dependent. If 0 < d < %, the process is said to
be long-range dependent. Its covariance function is not summable and many of its properties
differ fundamentally from those of a short-range dependent process (see, for example, Beran
1994). When —j < d <0, the spectral density has a zero at the zero frequency, yet the
process is still invertible: such a situation occurs, for instance, when dealing with the first
difference of a less than unit root process (Robinson 1994).

The parameter of greatest interest in such a model is the fractional differencing or
memory parameter d. There are two natural approaches to estimating d. In the parametric
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approach, a finite-dimensional model is assumed to hold for f™. A key example is the
FARIMA(p, d, q) process, introduced by Granger and Joyeux (1980), in which f™ is
the spectral density of a stationary invertible ARMA(p, ¢g) process. Another example is the
fractional exponential model of order p (FEXP(p)) introduced by Robinson (1994) and
Beran (1993), where f™ is the exponential of a finite-order trigonometric polynomial. The
parameters of f, including d, may then be estimated using Gaussian maximum likelihood
(Dahlhaus 1989) or the Whittle likelihood (Fox and Taqqu 1986; Giraitis and Surgailis
1990). In all these cases, the parametric estimator of d based on a sample of size n has
been shown to be asymptotically normal with the usual parametric rate +/n, if the
parametric model (including the model order) is correctly specified. But such a parametric
estimator may be inconsistent when the model is misspecified. This drawback provides
motivation for semi-parametric estimation of the memory parameter d. The short-memory
parameter /¥ is assumed to belong to an infinite-dimensional class of functions, specified
either by its behaviour in a neighbourhood of the zero frequency, or by some regularity
condition over the whole frequency range. The former provides motivation for local
methods, while the latter calls for global methods.

Examples of local semi-parametric estimators of d include the log-periodogram (GPH)
estimator of Geweke and Porter-Hudak (1983) (see also Robinson 1995b; Hurvich et al.
1998), and the Gaussian semi-parametric estimator (Kiinsch 1987; Robinson 1995a). These
estimators have the advantage that, under appropriate technical conditions, they are
consistent and asymptotically normal, without any assumption on f* (apart from
integrability) outside a neighbourhood of the zero frequency. The main drawback of these
methods is that the typical rate of convergence of the mean square error of the memory
parameter is O(n~ %), where a < %, no matter how smooth the spectral density /™ is in a
neighbourhood of the zero frequency (see Giraitis et al. 1997; Hurvich et al. 1998).

The global (or broadband) approach aims at constructing an estimator of /™ over the
entire frequency range. To that purpose, the use of a truncated Fourier series estimate of
log(f™) was suggested by Robinson (1994), and was later investigated by Moulines and
Soulier (1999) and Hurvich and Brodsky (2001). Under an appropriate regularity condition,
the short-memory component may be expressed as f™ :exp(z_?ioejhj), where /p(x)
=1/V2mn and hi(x) = cos(jx)/y/m, j=1. This expansion has, in general, an infinite
number of non-zero coefficients. A nonparametric estimate of f™ is obtained by truncating
this Fourier series and thus estimating only a finite number of Fourier coefficients. A simple
solution in practice is to estimate these parameters by linear regression of the log-
periodogram, yielding the so-called FEXP estimator proposed by Robinson (1994) and
Beran (1993) (see Section 3).

The truncated Fourier series estimator exploits the fact that if the Fourier coefficients of a
given function decay rapidly to zero, then this function will be accurately approximated by
a low-order trigonometric polynomial. In the present context, it has been shown in Moulines
and Soulier (1999) that the rate of convergence of the mean square error of the memory
coefficient achieved by the FEXP estimator is L2/A+1,=28/CF+1) \whenever

> 16l < L+ p)F, for some > 0, L < oc. (1.2)

J=p
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As outlined by Efromovich (1998a) in the related context of spectral estimation of a short-
range dependent process, it is of interest to consider situations where the Fourier coefficients
are rapidly decaying at infinity. It has been shown in Moulines and Soulier (1999) that under
the assumption

> 16) < Le e, for some B > 0, L < oo, (1.3)
j=p

the rate n 'log(n) can be achieved. This property is of interest since it holds for the
FARIMA model, by far the most popular long-memory model. In the latter case, the FEXP
semi-parametric estimator is asymptotically nearly as efficient as an estimator based on a
fully specified parametric model, while avoiding the theoretical and practical pitfalls of
using a misspecified model. Recall also that for these models, local estimators cannot
achieve a rate of convergence better than O(n~*/%). Thus, in situations where f* is smooth,
the FEXP estimator not only significantly surpasses the local estimator, but should also be
preferred to a parametric estimator. The optimality of these rates of convergence is proved
in Section 2, where Theorem 2.1 provides a lower bound for the mean square error of any
estimator of the memory parameter when the Fourier coefficients of log( /™) satisfies one of
the above conditions, as well as more general ones. In Section 3, we generalize the results
of Moulines and Soulier (1999) on the mean square error of the FEXP estimator to these
general classes, thus showing that it is minimax rate-optimal on a wide range of classes of
spectral densities.

Of course, these rates are obtained under the assumption that the smoothness of ™ is
known, which allows the truncation number p to be selected in an asymptotically optimal
way, that is, by balancing the bias and the variance of the estimate for a given sample size
n. It is not reasonable in practice to assume such prior information is available on the
spectral density. For instance, if the process X is a causal invertible FARIMA(p, d, gq)
process, then the Fourier coefficients of log( f™) satisfy condition (1.3) for any positive real
B such that all the zeros of the AR and MA polynomials fall outside the disc |z| < ef. This
clearly cannot be assumed in practice.

The alternative to such arbitrary assumptions on the spectral density is adaptive
estimation, which amounts in the present context to selecting the truncation order using a
data-driven procedure. This procedure should yield a rate of convergence as close as
possible to the optimal minimax rate. To be more specific, it is assumed that log(f™)
belongs to a scale of functional classes indexed by a parameter, but the exact value of this
parameter is unknown. To each value of the parameter there corresponds a theoretical
optimal cut-off sequence p,, but since it is unknown, the cutoff must be chosen auto-
matically from the data. One procedure for achieving this goal was suggested by Lepski
(1990). We adapt this method to select the truncation number of the trigonometric
regression estimate of the short-memory part of the spectral density. The estimator obtained
by this method is nearly rate-optimal in the minimax sense, up to a logarithmic loss, which
in some cases can be proved unavoidable. This adaptive estimator is presented in Section 4,
and upper and lower bounds for adaptive estimation are obtained.
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2. Minimax lower bounds

Let H be the space of even square-integrable functions on [—d, ] endowed with the
Lebesgue measure. For u € H, define u(j) = f - W(X)hj(x)dx, where ho(x) = 1 /V/2m and
hi(x) = cos(jx)/v/m, j = 1. Let w={w(p)} en be a non-increasing sequence of positive
numbers such that lim,_w(p) = 0. For such a sequence, we define the functional class
C(w) as follows

C(w) = {u eH:VpeN, ) ()| < 2\/Ew(p)}.

J=p

The sequence w controls the rate at which the remainder of the series > [u(j)| of the
Fourier coefficients goes to zero as p goes to co. Based on the functional class C(w), we may
finally define a class of spectral densities. For a sequence w, and 0 € (0, %), define

Fw, 0)={f: f(x) = |1 — " *exp(I*(x)), I" € C(w), |d| <6}

To be able to prove the minimax rates of convergence, it is necessary to make assumptions on
the sequence w.

Assumption 1. w is a positive non-increasing sequence, and there exists a constant ©(w) such
that

p—1
w(p) Y _j"
7(w) := max max — 1 <.

p=2 1=<q<p-1 w(q)

For a sequence satisfying Assumption 1, define

) L )

aw(p) =—— > (2.1
w(p) I<g<p-1 p-1
27"
J=
pa(w) =min{p < n: a (P (p)p ' <n '} -1 (2.2)

Assumption 1  implies that a,(p)=1 for all p, lim,_.w(p)=0 and
lim oo w(p)a,(p) = 0. Thus p,(w) is well defined, at least for large enough »n, and tends
to infinity with n. The following technical assumption will be needed.

Assumption 2.

<0

>

o P 00)
im sup —————=
n—o0 Pa(W)

¥0 >0, lim n~°ay(pu(w)) = 0;
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14p
3 > 0 such that Tim 22 _

n—oo n

Theorem 2.1 Under Assumptions 1 and 2, there exists a non-negative constant b(w) which
vanishes if lim ,_.a,(p) = 0o and such that, for any 0 <0 < %,

liminfinf sup ——E[(d, — d)*]= (1 + b(w)) ",

nd, feFwd) Pn(W)

where the infimum inf ; is taken over all possible estimators d, of d based on n observations
{X1, ..., X,} of a covariance stationary process X = (X,)wcz with spectral density
f € F(w, d), and E; denotes the expectation with respect to the distribution of the process
X.

Proof. Theorem 2.1 is proved by a standard method. A ‘hardest’ one-dimensional parametric
family is constructed, to which the so-called van Trees Bayesian information bound (Gill and
Levit 1995) is applied. This inequality provides a lower bound for the Bayes risk for any
prior distribution verifying some technical conditions (see below). The Bayesian information
bound provides a lower bound for the minimax risk. A proper choice of the prior distribution
leads to the required minimax rate and lower bound.

For the sake of brevity, write p, := p,(w) and define d, := d,(w) = w(p,)a,(p,)/T(w).
For n =1, define the one-dimensional parametric family

Fu= {f@ = exp<9§: ajhf)» 0 €[—dy, dn]}a

J=Pn

where a; = 2/7/j. Since g(x) = —2log|l —e™| = > 1ahi(x) for x # 0, we obtain that
' !
Vx £ 0, fo(x) = [1 — ™| eXP{—GZajhj(x)}
=

By construction, d, _f;;'a ;=< 2y/7mw(q) for all ¢ < p, — 1, and, for any 0 < <, there
exists ny < 0o, such that, for all n = ns, |d,| <9, so that F, C F(w, 6). Now let ¢ be a
continuously differentiable probability density function on the interval [—1, 4+1] such that
q(—1)=q(1)=¢'(—1) =¢'(1) = 0. Assume in addition that ¢ has a finite Fisher
information 1, = [ (¢'(8))*/q(0)d6 < co. Define ¢,(0) = d,'q(d,'6). Then, by the
Bayesian information bound, we obtain

inf sup E/[(d, —d)?’]=inf sup Eg[(6,— 0)]

d, feF(w0) 0, 0€[—d,.d,]
dy ) d, -1
= ir}fJ Eo[(0, — 6)*)]g.(0)d6 = <J 1,(0)q,(6)d6 + qu;2> ,
6, J-a, —d,

where the infimum is taken over all the possible estimators of 6; 7,(6) denotes the Fisher
information of »n consecutive samples (X, ..., X,) of a Gaussian stationary sequence with
spectral density fp and Ey denotes the expectation under the probability distribution of a
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zero-mean Gaussian process with spectral density fy. To conclude, we need to evaluate the
Fisher information 7,(6).

Lemma 2.1. Under the assumptions of Theorem 2.1,
d, .

| im0 =+ o).
—d, n

The proof of Lemma 2.1 is postponed to Section 5. It follows from the definitions of d,
and p, that

pan”'d? < P (w)a, ().
Plugging this bound into the Bayesian information bound yields

inf sup B [(dy— d)*1= (1 + 0(1) + I, pad 2n )
d, feF(wo) Pn =

= (1+ o(1) + I,72(w)a;, (pa) "

This concludes the proof of Theorem 2.1. O

Remark. 1t is interesting to note that the hardest one-dimensional family coincides with the
family of spectral densities that cancel exactly the p,(a, w) first coefficients of the Fourier
expansion of the function g. This is quite natural since this choice of the short-memory
component maximally compensates the singularity of g which carries the useful information
on the memory parameter d.

To illustrate the results above, we now give two examples of bounding sequences w.

Example 2.1  Hyperbolically decaying coefficients.

For any 8 > 0 and L < oo, define wg ;(p) = L(1 + p)~P. A straightforward application of the
Cauchy—Schwarz inequality shows that there exists a constant cg such that, for all
l=sg<np,

1

_ p—1 1/2 p—1 1/2
j71 < (Zj1+2ﬂ> (Z,leﬁ) < Cﬁ(q + l)*ﬁ(p + l)ﬁ
J=q J=q

q

bS]

J

It follows that Assumption 1 holds with 7(wg 1) < cg. The sequence a,,, is then bounded.
Indeed, by definition, for all p = 2,

t(wp,)wp,([p/2])
p—1

wpr(p) Y J

J=lr/2]

ay,, (p) < < 2.3 7(wg 1)

Finally, it is easily shown that
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0< limninf nil/(lﬁﬁ)pn(wﬁ) < lim sup nil/(lﬁﬂ)pn(wﬁ) < +00.
n

Thus, Assumption 2 holds, and we obtain the lower bound

liminfinf sup  #n??/®FDE,[(d, — d)*] > 0. (2.3)
mdy fEF(Wp10)

The class C(wg 1) is related to the more classical (in the framework of functional estimation
problems) Sobolev classes, defined as

S(y, M) = {u EH:Y (j+DYir(j) < M}, y >0, M < oo.
J=0

The relation

1/2 1/2
> la)l = (Z(j + 1)“) (Zu + l)ﬁ“#(j))
J=p

J=p J=p

shows that C(wg ) C S(8 +%, M), for large enough M. The lower bound obtained here
(which will be proved to be the minimax rate of convergence) over the classes C(wg ;) and
S(B+1L, M) is n=%/C6+D This coincides with the rate recently obtained in the related
context of pointwise density estimation (Butucea 1999). Note, finally, that similar statements
can be obtained if one chooses w(p) to be a sequence of regular variation of index j at
infinity (see Lepski and Levit 1998).

This class is also related to the class F (8, Cy, Ko, 0) defined in Giraitis et al. (1997) as
follows:

F(ﬂ’ CO: KO: 6)
={f: f(x) = Clx|(1 + Ax)), Cy' < C < Cy, |d| <0, |AX)| < Kolx|P, x € [-m, @]}

It is shown in Section 7 that, for 0<p<2 if [*e C(wgr,0), then f =
exp(dg + l*) € F(B, Cy, Ko, 0), for suitably chosen C; and K. Moreover, for any
B’ > p, there exist functions in C(wg ;) which are not in F(f’, Cp, Kg) for any values of
Cy and K. Thus, the lower bound proved in Giraitis ef al. (1997) can be inferred from the
bound derived from Theorem 2.1. For § = 2, there is no such inclusion.

Example 2.2 Exponentially decaying coefficients.

As outlined in Section 1, it is of interest to consider functions whose Fourier coefficients
typically decrease faster than a function of regular variation at infinity — see, for example,
Efromovich (1998b) and Lepski and Levit (1998) for related problems in functional
estimation. To keep the discussion simple, set, for any a, § > 0 and L < oo,

Wap1(p) = Le PP

for all p € N. Using the same trick as above, Zf;ql j~! can be bounded by
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ol 12 1/2
>t (Z]‘lezﬂ ’ ) <Zj‘1e‘2ﬁ-’“> ,
= J=q

J=q

-1 IRy PR
pz:jflefzm" < q*“me"‘*le’zﬁx"dx _q“e e <€ 2
: p 2Ba 2Ba

e2Br”

p—1
—1 2% — a—1 Zﬂx dx <
E (§] =
j:q] J 2Ba

Thus Assumption 1 holds with 7(wsp) < (2fa)”!. We now give a lower and an upper
bound for the sequence a,,,. The last bound above can be improved by considering
separately the cases ¢ > p/2 and g < p/2. Let ¢,z denote a generic positive constant which
depends only on a and § and can take different values upon each appearance. If ¢ > p/2,
then

r—1 —a (P
ijlezﬁja < cup (B) aJ‘ e 1e2Bx 4 < Ca’ﬂp—ae%[ipa.
= 2 p/2

If ¢ < p/2, then the sum is split into two parts:

—1
128" < Z i—128j" Z 1281 < 2B(p/2) —ag28p"
Z] € Jj e + Jj e Ca pe + Capp
J=q Jj=q [p/2]+1
< ca,ﬂp*“ezﬁ”u{l + p*fr 2 — 1)}

For all a >0 and > 0, lim,_. p*ef7" 172" = 0, thus we also obtain, if ¢ < p/2, that

p—1

— % _ ()
E j 162[3] < CapD anﬁp )
J=q

Altogether, we have proved that ay,,,(p) = cup p®/?. Now, by definition, we also have that

& (p—1)%
aWu,/)‘,L(p) = T(Wa,ﬁ,L)pe'B(p (p—-1) )'

It is thus easily seen that

2Bpu(Wap ) _
e log(n)

b

and thus Assumption 2 holds. Since lim,_.a.(p) = 0o, b(w) = 0 and we obtain not only
the minimax rate but also an explicit minimax lower bound,

lim inf nlog~ Ye(nyinf  sup E [(d, — d)y*] = (2B)"/*
dy fE]:(Wuﬂ)

Of particular importance are the classes F(wy g ) since they contain the best-known family
of parametric fractional models, namely the FARIMA(p, d, ¢) models. A causal stable in-
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vertible FARIMA(p, d, q) process is a stationary process with spectral density f(x) =
|1 — e™|729| P(e'¥)/ O(e™)|?, where P and Q are polynomials of degree p and g respectively,
without common roots and without roots inside the closed unit disc. If, moreover, P and Q
have no roots inside a disc of radius e for some y > 0, then f € F(w;g ) for all 5 <y and
a suitably chosen constant L. Indeed, if P is a polynomial of degree & with complex roots
z1, ..., zx (not necessarily pairwise distinct) such that P(0) = 1, then it is well known that

k o _—J
z. .
log(P(2) =Y _ > 71] z/,
i=1 j=0

the series being convergent for all z such that |z| < inf,_; |z

It might be difficult to think of a simple model that similarly yields a spectral density
with hyperbolically decaying coefficients 6;, but such a spectral density might arise as a
consequence of the perturbation of a fractionally differenced process by an independent
Gaussian white noise. Indeed, if the observed process is actually ¥ = X + ¢, where X is a
stationary invertible FARIMA(p, d, q) process with d >0 and with spectral density
Fx(x) = |1 —e"|72?f%(x), and ¢ is Gaussian white noise with variance o2, then the spectral
density of ¥ is fy(x) = |1 — ™| 27 f5(x), with,

2
(0} .
SY) = )+ 5|1 = e,

and the regularity of f ’; then depends on d. More precisely, log( f t) € 8(p, L) for any
f <4+ 2d and a suitable choice of L.

3. Minimax upper bounds: the FEXP estimator

We present in this section the so-called FEXP estimator of the fractional differencing
parameter presented in Robinson (1994) and Beran (1993), and later studied by Moulines and
Soulier (1999) and Hurvich and Brodsky (2001). We will then determine an upper bound for
the mean square error of the FEXP estimator of the memory parameter in the restricted case
of a Gaussian process. Using Theorem 2.1, we will then show that the FEXP estimator is
always rate-optimal and in certain cases quasi-efficient.

Let (n;n)1</<n be a triangular array of complex numbers. The tapered discrete Fourier
transform (DFT) and the tapered periodogram of (X, ..., X,) are respectively defined as

-2

n
) = (2“ 2 Iht,nlz) S hXe, L) = di)P.
t=1 t=1

Note that the dependence of d, and /, on the data taper is implicit. These quantities are
evaluated at Fourier frequencies, defined as x;, =2mt/n, 1 <¢<[(n—1)/2]. Setting
hin=1, for all ¢+ and n, yields the ordinary periodogram. For the purpose of adaptive
estimation (see Section 4), it is necessary to reduce the correlation among DFT ordinates. It
has already been observed that tapering is a way to partially achieve this goal; see, for
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instance, Velasco (1999a; 1999b). Here we will use the data taper introduced by Hurvich and
Chen (2000) (which we refer to as Hurvich’s taper) defined as

ht,n == 1 - elx’

For both these choices of the coefficient 4, ,, Z; henexp(itx;) =0 for 1 < j < [n/2]. This
is very important since it implies that the mean of {X,} need not be estimated. This is an
advantage of this data taper with respect to Kolmogorov’s taper used by Velasco (1999b),
which does not share this property.

Define H,(x) =" h,,e™ and p;;= ffn H,(x — x)H,(x — x;)dx. It is well known
that if no taper is used (4,, =1 for all ¢ and n), then p;; = 0 if k # j. Unfortunately, if
Hurvich’s taper is used, we obtain p;; =0 if k < j—1 and pj ;41 = —n. This implies that
the aim of decorrellation of tapered DFTs is not achieved for adjacent Fourier frequencies.
It is shown in Theorem 6.1 below that for non-adjacent Fourier frequencies, the correlation
between tapered DFTs is significantly less than between non-tapered DFTs. Thus, when the
tapered periodogram is used, we will drop half of the frequencies in the regression — see
Hurvich et al. (2000) for other solutions. This results in a loss of asymptotic efficiency
which can be partially compensated by aggregation or pooling of periodogram ordinates.
The pooled tapered periodogram is defined as

mk
I,(x;) l <k <[(n—1)/2m] (ordinary periodogram),
_ r=m(k=1)+1
In,k =
mk
1,(x2), l <k <[(n—1)/4m] (tapered periodogram).
t=m(k—1)+1

For the sake of simplicity, we will let K,, = [(n — m)/2m] when the ordinary periodogram is
used and K, = [(n — 2m)/4m] when the tapered periodogram is used. For 1 < k < K,,, let

Yn,k = log(l_n,k) - 1/’("1),

where y(z) =T"(2)/ F(z) is the digamma function (see, for instance, Johnson and Kotz 1970).
It is well known that if y3, denotes a random variable distributed as a central chi-square with
2m degrees of freedom, then E(log(y3,,)) = log(2) + y(m) and var(log(x3,,)) = ¥'(m). Let

dp s 90, 91, | be the least-squares estimator of d, Op, ..., 0,_1:
R K B p=l 2
d,,=arg 7rn1n Z Yur —dgln) — ZO,-hj(yk) ,
d,00,-. s Op—1 =1 j=0
where, as above, g(x) = —2log|l — e”| and y, = 2k — D)m/2K, are the so-called discrete
cosine frequencies. Note that 4, , might be outside the interval ] — 5, 5[ Being quadratic in

the unknown coefficients, this minimization problem can be solved in closed form. Defining

=g - ah, a;=Qu/K)Y it hi(v)g() and 7, = /K3 it (85()? it is
easily seen that d,, may be expressed as
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=R Zg(yk)Ynk 3.1)

npk

This expression in particular indicates that when the memory parameter is the sole parameter
of interest, there is no need to actually compute (00, ..., 0,1), thus reducing the overall
computational burden and memory requirements. This is in sharp contrast with Gaussian
maximum likelihood or Whittle approximate likelihood techniques, where it is not possible to
estimate d independently of the other parameters.

Recall that the spectral density f is given by f = exp(dg + I™) with [* = E —o0;h; and
define ¢, = Y, —log(f(3x)). Note that for j=0, ..., p, 2nK, lzk 1gp(yk)h (yk) =0,
thus (3.1) implies

dpn—d=E,p+ b, (I*) =

ng

npk

K,
2n N
=Y S olo0. (32
n‘}/p k=1

Where l; = Z _ p+10;h;. The term &, ,, represents a stochastic fluctuation and the bias term

b, p(l ) assesses the accuracy of the approximation by the trigonometric regressmn method.
This bias term depends upon the unknown spectral dens1ty f only through l but does not
depend on d. Provided that the Fourier coefficients of /* are summable, 1t is possible to
obtain an upper bound for the bias.

Proposition 3.1. Assume that 37 |0;| < oo and define 0; =32 ,|0;|. Then there exists a
numerical constant ¢ (independent of the sequence (0;)jen and of n) such that, for all
p=K, / 5,

|bnp(I)] < 2v/7(1 + ¢/ p/ KW)O.

If I* belongs to some functional class C(w), then the above bound obviously holds with
0? replaced by w(p). The proof of Proposition 3.1 is in Section 6.

The stochastic term is much more difficult to handle than in the traditional nonparametric
regression setting with i.i.d. noise. Here the ¢, are neither zero-mean nor independent, as
originally observed by Kiinsch (1986), and their joint distribution depends on the unknown
spectral density f.

However, it is possible to derive minimax and adaptive results when the spectral density
f can be expressed as f(x) = |1 — |74 f*(x) under appropriate smoothness assumptions
for the short-memory component f*. For M > 0, define

G(M) = {u € C([—m, ni]), u € D([—m, 7]\0), max |u()| + |’ (x)] =< M}-

where C([—mt, 7t]) denotes the set of continuous functions on [—zt, ] and D([—mx, x]\{0})
denotes the set of functions which are differentiable on [—m, «t]\{0}. The assumption that
xu'(x) is bounded was originally introduced by Robinson (1995b). It can actually be
weakened to a Lipschitz condition (see Hurvich ef al. 2000). This class is of interest since it
contains the smooth part of the spectral density of an ARFIMA process X observed with
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noise. Recall that the spectral density of such a process can be expressed as fg‘(x) =
F*(x) 4 (0%/2m)|1 — &>, where f* is a positive and smooth function, say at least twice
continuously differentiable. It is then easily seen that log( f:;) € G(M) for a suitable M.
Since, moreover, log( f ;f) € S(B, L) for any f<i+2d < %, it is clear that this functional
class is well suited to our purpose. It is also easily seen that for g > %, v=1,a>0,y>0
and L > 0, the classes S(f, L), C(wy,1) and C(wq,, 1) are all included in the class G(M) for a

suitable choice of the constant M. Now define

!
0= 2“};”7(’") (3.3)
n)/p
aé would be the exact variance of the stochastic term &, , if the noise ¢, ; were i.i.d. centred
with variance 1’(m). The next result states that in spite of the strong correlation between
low-frequency periodogram ordinates, 03, is a good approximation of the variance of &, ,
when log( /™) € G(M), and that this approximation is uniform if, moreover log( /™) € C(w)
for some non-increasing sequence w. Hence we introduce the following class of spectral
densities. For any sequence w, for any real number M > 1 and 6 € (0, 1/2), define

H(M, 6, w) = {f = exp(dg + I*), I € GM)NC(w), |d| < 6}.

Proposition 3.2. For any sequence w such that lim,_.w(n) =0, for any real numbers
M >1 and J € (0, %), there exists a constant C(M, 0, w) such that

sup  [E/[E, ]| < C(M, 3, w)a?, log’ (), (3.4)
SEH(M,0,w)

sup  Ef[&) )] < C(M, 6, w)o?, log™(n), (3.5)
fEH(M,0,w)

with s =3 for the ordinary periodogram and s =2 for the tapered periodogram. Let
{Pn}nen be a sequence such that

lim, . pulogb(n)K ;' =0 if the ordinary periodogram is used,
lim,,—o Py log“(n)K;1 =0 if the tapered periodogram is used.
Then

lim sup |0 2E/[& 1—-1]=0.
no fer(Mow) daies

Here, the supremum is evaluated over all Gaussian stationary process (X,);cz with spectral
density [ € H(M, 0, w).

The proof is in Section 6. Propositions 3.1 and 3.2 and the fact, for any sequence p,
such that lim,_. p, = oo and lim,_ p,/n = 0 that lim,_. p,y,, = 47 yield the following
Theorem.

Theorem 3.1 (Upper bound). Let w be a sequence satisfying Assumptions 1 and 2. Let
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pn(w) be defined as in Theorem 2.1 and d (W) be the FEXP estimator of the fractional
differencing parameter, based either on the tapered or non-tapered periodogram. Recall that
B(w) := lim sup,, nw?*(p,(w))/ pa(w) is finite under Assumption 2. If B(w) > 0, then

lim sup sup Ef[(cipn(w) — d)z] < omy'(m)(1 + B(w)).
n—oo  Pn(W) [EH(M,0,w)

If B(w) =0, then

lim ——  sup  E/[(d,n(w) — d)*] = omy’(m).

n—00 pp(W) FEH(M,0,w) SRS
In both cases, o is a constant depending on the data taper: o =1 if the ordinary
periodogram is used and o =2 if the tapered periodogram is used, and the supremum is
evaluated over all Gaussian stationary process (X,;);cz with spectral density f € H(M, 0, w).

Remarks.

(i) The increased value of the constant 0 when Hurvich’s taper is used, reflects the fact
that in this case, half of the\ Fourier frequencies are dropped from the regression; weaker
loss (but at the expense of some additional technicalities) can be obtained by modifying the
pooled periodogram (see Hurvich et al. 2000).

(ii) The upper bounds presented above hold for smaller classes of spectral density than
the lower bounds of Theorem 2.1. Nevertheless, the lower bounds on these classes are the
same, since the one-dimensional parametric family F, used to obtain the lower bound
belongs to H(w, 6, M) for all M > 1 and sufficiently large n. Thus the FEXP estimator
is minimax rate-optimal in all classes H(M, 0, w), for all sequences w(p) satisfying
Assumptions 1 and 2.

(ili) By definition of p,(w), nw?(p,(w))/pa(w) = a,'(pa(w)). Thus B(w) =0 implies
that b(w) = 0. Moreover, the function mi’(m) decreases in m, taking values /6 at
m=1,1289 at m =2 and 1.185 at m = 3, etc., and tends to 1 as m — oo. Thus, we have
also proved that the lower bounds obtained in Theorem 2.1 for these classes are sharp in
any class F(w, 0) such that B(w) =0. Over such a class the FEXP estimator (with a
rectangular taper) is not only rate-optimal but also quasi-efficient in the sense that, choosing
the pooling number m appropriately, its loss of efficiency can be arbitrarily close to 1. This
is the case, for instance, for the classes F(wqpg, i, 0) where we have, choosing
pn = (log(n)/2p)!/* and for the rectangular taper:

. n il ! -
lim ———  sup  Ef[(dy, —d)] = my'(m)2B) /.
n—o0 10g'/*(n) rer(w,;,.0)

For these classes, as mentioned above, the restriction log( /*) € G(M) is not needed to obtain
the upper bounds.

More generally, we have proved the following corollary.

Corollary 3.1. Let w be a sequence such that Assumptions 1 and 2 hold and
limy, oo nw?(pu(w))/ pu(w) = 0. Then
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B (d,—dy]=1.

lim inf  sup
n=2 d, ferm.ow) Pa(W)

We conclude this section with a brief discussion of when the GPH estimator (Geweke
and Porter-Hudak 1983) should be preferred to the FEXP estimator. Since we proved above
that for 0 < f <2, F(wg, 0) C F(B, Co, Ko, 0), the GPH estimator, being rate-optimal
over the whole class F(f, Co, Ko, 0), is thus also rate-optimal over the class F(wg s, 0).
The rate alone cannot thus help to decide which estimator should be preferred. This ob-
viously depends upon the kind of assumptions the practitioner is willing to accept to model
the data at hand. If one suspects that the spectral density outside a neighbourhood of zero
frequency is likely to be very irregular, then the local method should be privileged. On the
other hand, if one is ready to accept a parametric model for /™ (which usually implies
smoothness of f™ over all the frequency range), then the FEXP estimator is more appro-
priate, because it can adapt to a much wider class of regularity, especially in its adaptive
version described below.

4. Adaptive estimation

The rate-optimal estimators of the previous section are infeasible, since they depend on an
unknown smoothness parameter defining the functional class. Thus it is necessary to select a
truncation order p automatically from the data. Classical model selection techniques have
been adapted in the context of estimation of d. In the parametric framework, Beran et al.
(1998) have proposed a method to select the order of a FARIMA(p, d, ¢) model, and
Kokoszka and Bhansali (1999) have empirically studied a semi-parametric estimator of d
which is related to the FEXP estimator in that it fits a parametric model of order p, then lets
p tend to infinity with the sample size, and uses Akaike’s information criterion (AIC) to
select p from the data. In our opinion, these methods have two important shortcomings. The
main one is perhaps that one has to decide a priori if the model is parametric or semi-
parametric to choose the order selection criterion. The AIC criterion should be used in the
semi-parametric setting, provided that the model is ‘truly’ nonparametric — for example, does
not belong to any finite-order parametric class. On the other hand, the AIC yields inconsistent
estimates of the order in the parametric setting; in this case the Bayesian information
criterion (BIC) or other order selection techniques should be used. The second shortcoming is
that these methods do not provide risk bounds such as the mean square error for the estimator
of d.

The method of adaptive estimation under consideration in this paper is due to Lepski
(1990). It was first developed in the context of a signal perturbed by white noise and was
later extended to many statistical situations. This method has none of the above mentioned
shortcomings. No prior assumption has to be made on the true order of the model (finite or
infinite) and it provides a risk bound for the estimator. The theoretical cost of this method
is that it necessitates an exponential inequality (Lemma 4.1 below) which can be proved (at
the time of writing) only for a Gaussian process. We now describe this method.

Recall that 03) =2my'(m)/(K,7,) is the leading term in the variance of c?p. Let ¢, =
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10g’4(n). For 1 = p=¢,K,, we determine the estimators d p= d p,n using the FEXP
estimator based on the fapered periodogram. Let k¥ > 0 (the value of which is specified in
the statement of Theorem 4.1). Following the terminology introduced by Lepski (1990), the
truncation index p is said to be admissible if

for all g such that p < g < ¢,K,,, |a7q — a?p| < K/log(K,)o,.
Let p be the smallest admissible integer. The adaptive estimator is defined as
d,=dp. 4.1)

For a spectral density f = exp(dg + I*) such that [* = > 200,k with 3777 16;] < oo, recall
that Gf, =37 10| and define

py(f)=max{p: 1< ps=K, 0,\/log(K,) <2Vn0}} + 1. 4.2)

The key result of this section is the following theorem.

Theorem 4.1. Let kK >6, M >1 and 0<9 <%, and let w be a sequence such that
lim, _,ow(n) = 0. For any f € H(M, O, w), there exists a constant C(M, 0, k, w) such that

E/[(d) — dY] =< 2(1 + 1)’ log(K,)a% ) + C(M, 6, 1k, WK, .

Since p*(f) depends upon the spectral density f, this proves that this estimator is adaptive to
the target function f (cf. Barron ef al. 1999, pp. 360ff.). In particular, if the true spectral
density has only finitely many coefficients, say p* then, for sufficiently large n,
p¥<p*+1 and the mean square error of the adaptive FEXP estimator is of order
log(n)/n. The above bound can be extended to a functional class defined by a sequence w.
Define

piw)=max{p : 1 < p < ¢,K,, 0 ,\/log(K,) < w(p)} + 1.
Obviously, if f € H(M, 6, w), then p*(f) < p¥(w), thus we have:

Corollary 4.1. Let Kk >6, M >1 and 0<0 <%, and let w be a sequence such that
lim,_,,ow(n) = 0. There exists a constant C(M, O, k, w) such that

sup  Ef[(d; — d)*] < 2(1 + 1) log(K,)o 5,y + €(M, 8, 1, WK,
[EH(M,O,w) 8

For the classes defined by the sequences wg; and wqg;, we obtain the following
asymptotic upper bounds.

28/(2, 1
limsup  sup < S ) o )Ef[(dﬁ —dy’] < C(B, L),
n ferws .0 \log(n)

n ~
limsup sup ————E/[(d;—d)?*]=< C(a,p, L)
N feFOneg0) 108 T/ 4(n) SRS
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It appears that the adaptive FEXP estimator achieves the optimal rate on the classes
F(wg,z, 0) and F(wegp 1, 6) up to a factor log(n). The next theorem shows that this loss is
unavoidable in the case F(wz0, L, J).

Theorem 4.2. Let By > 3 > 0. Assume that d, is a data-driven estimator of d that achieves
the minimax rate of convergence on the class F(wg,, L, 0). Then

BB
) E/[(d, — dY]1> 0.

liminfinf  sup (

nd, feF(ws0) \10g(n)

We have not been able either to prove that this loss is unavoidable in the classes
F(Wap,1, 0), or to obtain a better rate of convergence for an adaptive estimator. Thus it is
still an open question to find the optimal adaptive rate of convergence in the classes
]:(Wa,/)’,Ls 6)

In spite of this extra logarithmic loss, which anyhow is shared by the adaptive version of
the GPH estimator (Giraitis et al. 2000), our conclusion is that if the data show no evidence
of a singularity in the spectral density outside the zero frequency, the FEXP estimator
should be preferred to the GPH estimator, since it can take advantage of the smoothness of
the spectral density outside a neighbourhood of the zero frequency. In any case, it should be
preferred to a parametric estimator, since it avoids any assumptions on the order of the
model, and it is still consistent in the case of a misspecified model. Simulations (not
reported here) support this claim. When the underlying model is truly parametric (say
FARIMA(p, d, q), with known p and ¢), a parametric estimator such as Whittle’s minimum
contrast estimator is better than any semi-parametric estimator. The differences are,
however, in general rather small when the order of the parametric model is large. When the
model order is unknown and is determined automatically by using, say, the AIC or BIC
criterion, as usually suggested in the literature (without theoretical justifications), parametric
and semi-parametric approaches yield comparable results (with a slight advantage to
the semi-parametric model when the upper bound — used in the AIC and the BIC — for the
model order is large). In the presence of even a small amount of additive noise, the
parametric estimator is inconsistent.

We now prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. For brevity, we write p* = p*(f). Write E/[(d, — d)*] = M* + M2,
with

M =E/[(d; — dY1{p=pr)]s
M =Es[(dp — d)1ps )]

Since by definition p is admissible, if p < p*, then |cff, —d px| < k\/log(K,)o px. Thus we
obtain the following bound for M _:
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M_ <EY[(d; — d )1 = py] + BV [(d )y — d)]

1/2r, 5
< k\/log(K,)o  + EY[(d yr — d)?].
Applying Propositions 3.1 and 3.2 and the definition of p’, we obtain that

EV?((d e — )] < 0 1 /log(K)(1 + O(/)),

and thus

=< (1410 /log(K,)(1 + O(/)). (4.3)

The term M. requires substantially more attention. By definition, p — 1 is not ad-
missible. Thus, there exists an integer p = p such that

ky/log(Ky)o , < |52p*dA[7—1| = |dAp7d| + |d*52i7—1‘,

and this implies that either |c?p —d| > x\/Tog(K,)o /2 or |d — a?ﬁ,1| > k/log(K,)o /2.
Since, for each fixed n, 0, increases with p, the last inequality implies that |d —d ;|
= k/10g(K,)0 p—1/2. If p > p¥, then p— 1= p¥, and we obtain

Pip > )= Py (3p = ) 1d, — d| > 5 /log(K)or, )

Ky
Z Pr(ld, = dl >3 Viog(K,)o ).
P=nr;

Since  d, —d=E&,,+bnp |d,—d|l > (/2)\/Tog(K)o, implies that |E, ,| >
(k/2)\/10g(K,)0 , — |bn, |- Applying Proposition 3.1 and the definition of p’, we obtain,
for p = p* and for all f € F(w, 9),

bupl = (1 4+ O(V/€n))0 p/10g(Kp).
Above and in the followmg, the term O(,/c,) is uniform with respect to 1 < p < ,/¢,K,,.
Thus, for p=p¥, |d,—d|>«logK,)o,/2 implies that |&,,|= (/2 —1—
O(\/€,))\/10g(K,)o . This yields

Ky

P> = 3 Pl = (51— 00/6) ) Vieaoo ).

n

We now bound separately the probabilities in the above sum. Let 3, = \/2/K,7,8 p(yk)
1 < k<K, Then 5 A5 = 1 and, applying (6.11) in Section 6 below, we obtain

sup - max. |ﬁ,,k| C, log™ ' (K), (4.4)

1<p=c,K, I<ks<

where C, depends only on the function g. With this notation, we can write

Kn
Enp =@ (M) 70, Buknis
k=1
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and

Pr(1&nsl > (5= 1~ 0/en) ViegKy)o, )
log<Kn>> .

Ky
=P n,k€n 7
f( ;ﬁ k€n,k W' (m)

Set x = (k/2 — 1 — O(/€,))\/log(K,) /' (m). For any a > 0, the Markov inequality yields

K, K
Py ( Zﬁn,kén,k > x) 2<e¢ “Ey [exp (a ;ﬁn,ken,k>] (4.5)

k=1
We now need the following exponential inequality.

- (5-1- o)

Lemma 4.1. Let p >0, 0 € (0, %), M > 1 and let w be a sequence such that lim,_ ., w(n)
= 0. There exist a real n(p) > 0 which depends only on p, and a constant C(M, 0, p, w),
such that, for any real number o and any triangular array of real numbers (fi)i<i<k,

satisfying Y2 3 = 1 and |ajmaxi<i=kn|Bi| < n(p),

K,
sup Ef [exp <O€ Zﬂ/&n,k)
k=1

SEH(M,0,w)

< C(M, 8, p, wye® V' (mI+0)/2,

Using Lemma 4.1 and setting a = x/y'(m)(1 + p), (4.5) becomes
K,

Pf< Zﬂn,ken,k
k=1

This choice of a is valid for large enough » thanks to (4.4). Thus we obtain, for any p > 0,
for n large enough (depending on M, 6, p and w) and for all f € H(M, J, w),

Pr(1Ensl > (51— 0@ VieaKyo ) < C(M, 6, p, wyK, /2 1-OWE2050),
Applying Hdlder’s inequality, we obtain, for a, » > 0 such that a=' + b~! =1,

1/a
Efl(dp—dP e < | Y Esld,— 1| PY"(p>ph)

p2<p<e,1K,,

> x> < C(M, 8, p, wye ¥ /20 (m0+p),

Lemma 4.2. For any real a = 1, there exists a constant C(M, 0, a) such that

sup sup  Ef[(d, — d?] < C(M, 0, a, ). (4.6)
Isp<e, K, feH(O,M,w)

We finally obtain that for large enough » (still depending on M, 6, p and k)
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sup  Bsl(dp— d)1 pmpe H < (M, 8, p, K, b, WK (/271=ar/20140),
FEH(S,M,w)

Since it has been assumed that k¥ > 6, the choice of p and b can be made in such a way that
(/2 — 1 — O(/&x))*/2b(1 + p) > 2. Such a choice finally yields M™ < C(M, 6, , w)K,'
for all f € H(J, M, w) and for n greater than some nyo(M, 0, x, w) which depends only on
M, 6, k and w. Gathering the bounds for M_ and M, concludes the proof of Theorem 4.1.00

Proof of Theorem 4.2. The proof of Theorem 4 is a straightforward application of the fol-
lowing constrained risk inequality:

Proposition 4.1. (Brown and Low 1996). Let Z have distribution with density fg, or fo,
with respect to a measure u. Define q= fo,/fo, and I=Eg[q*(Z)]. Let R(9, ;)
= Bq,[(0; — 0)*] be the risk of an estimator & based on Z. If R(6y, 0) < ¢* and
1 /(0 — 6p)* < 1, then

R(B1, 0) = (01 — 00)*(1 — I'2¢|0, — 6| ")>.

Let Cy be a class of spectral densities that contains the spectral density of white noise
and upon which the optimal rate of convergence for the estimation of d is €,. Let (g,)neN
be a non-decreasing sequence of integers and (0,),en be a decreasing sequence of reals,

and define f, = exp{0,) ", a;h;}. Let X be a Gaussian process with spectral density [,

and let p, be the density of Xy, ..., X,. Let g, be the density of n independent N(0, 1)
random variables Zi, ..., Z,. Let [, = E{puZ1, ...\ Z2)/gn(Zy, ..., Z,)}?] and assume
that & := lim sup,,lnefﬂ;z < 1. Let d, be a data-driven estimator (based on Xy, ..., X,)

which achieves the optimal minimax rate of convergence on the class Cy. Then, applying
Proposition 4.1, we obtain, for large enough n,

E[(d, — 0,)"1 = 02(1 — . 1'%, ).
Consider now a class of spectral densities C such that for large enough n, f, € C. Then

lim inf sup 0, 2E s[(d,, — d)*] = (1 — \/EY.
no feC

We now set Co = F(wg0, L, 8) and C = F(wg, 6), with By > 8 > 0. Note that in that case,
€y = nPo/CP+D  Define ¢, as the smallest integer greater than (n/log(n))/@?f*+D and
0, = y(log(n)/ n)P/@P+1 \where y will be chosen later. Using the same kind of computations
as in the proof of Theorem 2.1 and Lemma 2.1, it is easily shown that f, € F(wg ., 0) for
large enough » and for small enough y >0, and that 7, = exp{2n0iq;1(l +o(1)} =
n?’(1 + o(1)). Thus
1,6
0,
Choosing 0 < y? <2B,/(2f0 + 1) — 2B/ + 1) yields limsup,/,e20,%> =0. This con-
cludes the proof of Theorem 4.2. O

— 277 2P0/ 2Bo+DH2B/(2B+1) log(n)—Zﬁ/(ZﬂH)(l + o(1)).
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5. Proof of Lemma 2.1

In the rest of this paper, c, C, ..., c(.) denote generic constants that may take different
values at each appearance and depend only on their arguments when any. For brevity, write
DPn := pn(w). The Fisher information quantity for n consecutive samples {X, ..., X,,} of a
zero-mean Gaussian process, under a regular parametric model ( fy, 0 € R) may be expressed
as

1,(0) = 3tr((Z5 ' Z5)%),
where 2y = (Z¢(i, j))i=ij<n is the Toeplitz matrix associated with fy, that is,

{ V27 £5(0) if j =k,

S k= | U= dyx = )
oty = [ pooe VERfli— k) if A,

—T

and Zé is its derivative with respect to 6.

Recall now that fy = exp(@gjjn(ajw)), where g}i = jashs. Note that with this
normalization, we have Xy = 2nJ, + A,, where J, is the n X n identity matrix, and we
must prove that the spectral radius of A,, say p¥, tends to zero as n tends to infinity.
Standard results on the spectral radius of Toeplitz matrices yield the bound

n
Py < 2AV2rfo(0) — 21 +2V Y _[fo(h)]
k=1
Since the functions #; form an orthonormal sequence, the Parseval-Bessel identity implies
T
gl = | (gherar=3"at <smp .
- Jj=pr

Since g € Li([—m, «]) for all g = 1, it follows from Katznelson (1968, Theorem 11.1.5, p.
50), that limpﬂoo||g>;\|q =0 (where .||, denotes the L?-norm). Let ¢ >2 and 0 < ¢ <.
Applying Hoélder’s inequality, we obtain

U 7T
J |g’;<x)|qu:J P g5 2 dr
—TT —7IT

7T 1—¢ T €
< (j |g’;<x)|2dx) (J | g ()| (122 dx) <alg.op " (5.1
—TT —T
Now, for large enough n, |6] < d, and p < n, we also have

g

PR (5.2)

P
0g5| < dyg+2d,y ' <
Jj=1

Equations (5.1), (5.2) and the Cauchy—Schwarz inequality imply that, for all ¢ > 0 and all
integers k > 1, there exists a constant c¢,(k, €) such that, for large enough n, for all |6| < d,
and for all p < n,
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T
J 5| e’ Vdx < cak, )p~ '/ (5:3)
—TT

We now have all the necessary ingredients to determine an upper bound for p*. For
reN, write ¢, , = [gj;n]’. Using

k i

X X ‘x|k+1
S B
oy k+ 1)

< emax(x,O)

together with (5.2) and (5.3), we obtain, for large enough n, for all |6| < d, and p < n,

Py < Zi
k=0

J (e€n® — 1)el* dx

7T
-

Cz(S + 1, 6)n0s+1p;1/2+(
(s+ D!

T
| «pn,r(x)eik”dx‘u
=1 =0 =

n \/Ed; n. eas+1, C)na‘v+1p;1/2+s
<4vmd, Y ap+2) ; |pur(b)| + 22 .

N
=, —~ 7l (s+ 1!

Applying the Cauchy—Schwarz and Parseval—Bessel inequalities and using (5.1), we obtain,
for any ¢ > 0,

n n 1/2
> k) < Vn (Z[én,r(k)]z)
k=0 k=0

7 1/2
sﬁ{j ¢n,2r(x)dx} < ¢\ @r, e/np, ).

As a result, we obtain
pr = O(d,log(n) + /ndyp, > + nd} p, 120,
Assumption 2 implies that, for all 6 > 0, there exists a constant c¢(a, w, d) such that, for large
enough n, d, < c(a, w, 0)p!/>n~1/>7°. Assumption 2 now yields
d, log(n) < c(a, w, 0, pyn~'/2H1+/2+0,
VAd p, S cla, w, 0, pyn VIO,

nds;l+1p;1/2+e < c(a, w, (3, p)n—s/2+l/2+(3(s+l)+£/(1+ﬂ)'

If ¢ and O are chosen small enough and s is chosen large enough, then all the above terms are
o(1) and thus p* = o(1).

For large enough n, p’ :=p(A,) <2m (where p(-) denotes the spectral radius), and
Sl =Q@n)"'J, + E,, with E, := Z?{OZIQJE)”‘A];. Hence, p(E,) < cp¥, for some finite
constant ¢. Using the bound for symmetric matrices |tr(4°B)| < p(B)(tr(4%), we obtain
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1
8721 ,(0) = o UlEh + 2AZHE )] = {tr(Z'2) + Amtr(Z2E,) + 4mPt(Z'S E2)}

”
= tr(Zy (1 + O(p})).
We now compute the entries of Zj. Using the same technique as above, we obtain

o /6" . o ol
(i ) = VA iz} + Y Pnri (= )+ O p, 12,
r=1 ’

where the O(d*™ p;!/2+) term is uniform with respect to |6 < d,. Using straightforward
algebra, we may show that

n—1
1—k _
> afi,j‘:znkz +1< . )aizsnnpnl(wo(l)).
=Pn

li=j1> pu

Applying the Parseval—Bessel inequality, we have

n—1 T
S i ali—ih=2n) ¢k () < ZnJ Bnaorn@)dx < 2¢12(r + 1), Onp,
1=<i,j<n s=0 0

Hence, for all |0 < d,,

2
> (Z \/Tr_t,e d3n,r(|i—j|)> <ocmp,' Y dip,
. r=1

Isi,jsn \ r=1

for some finite constant c. Choosing, as above, ¢ sufficiently small and s sufficiently large, we
obtain

tr(2'7) = 2nn<zn:(1 - k/n)ai> (1 + o(1)) = 8x%np, (1 + o(1)),

k= pu

where the o(1) is uniform for || < d,. This concludes the proof of Lemma 2.1.

6. Proofs of Propositions 3.1 and 3.2

Proof of Proposition 3.1. For notational convenience, we use the following convention. We
identify any function ¢ with the K,-dimensional vector (¢(y), ..., ¢(yx,))'. We define a

scalar product on R%" as follows: for any vectors u, v in R,
(u, 0) 20
U, V) = — Z UpDf.
’ KniS

With this notation, we have (4;, hj) = d; for all 0 < j, j' < K,,, where 0 is the Kronecker
delta. Define g% =32 a;h;. Then g* = g% — S"7"!(h;, gk }h;. It is easily seen that
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p—1
<g>;, ID <g’;, ZD (B, gl( )y, ID
j=0
K,—1 p—1
= <h/’ l;> <g2n7 Z>;> - <hj> gz,,><hj’ l;> (61)
j=p =0
K,—1
- Z (g T5) + > (g% bk, 1) (6.2)
j=pr j=p
For je{l,...,K,} and j' =
1 j—Jj =0mod2K,,
(hj, hy) = ¢ —1 Jj+Jj =0mod2K,,
0 otherwise.
This implies the bounds
(b, g% )| < a2k, — j < ax,, jed0, ..., K,—1}, 6.3)
Z (b, T5)| < 67, (6.4)

Plugging these bounds into (6.2) yields
(&), 1)l = 2vmp _1< X, )0*

We must now glve a lower and an upper bound and an asymptotic equivalent for py,. Note
thatgp_Zj_ah+Z <gK,h>h_ Thus,

K,—1 12 /g 1/2 K,—1 12 /g 1/2
(Sa) ~(Swnr) =tan=(Ea) +(Swnn)
j=p j=pr

J=pr J=pr

Applying (6.3), we have Zfi;l(g’};, h)* < 4n/K, and
K1 1/2 P\
(rSa) (L) <wme=(r54)
J=p n
This yields, for 1 = p < K,

[p P
431(1—2 E)\p}/p<4np2] +12nK (6.5)

J=pP

12

» 1/2
2 = .
+ \/E(K>

Both bounds always hold, but the lower bound is meaningful only if p < K,,/4. This implies
that if p is a non-decreasing sequence of integers such that p, < K, and lim,_(1/p,
+ pu/K,) =0, then lim,_. p,¥,, = 4n. The proof of Proposition 3.1 finally follows from

Vpb"P <gp5 l*> O
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To prove Proposition 3.2 and Lemmas 4.1 and 4.2, we need covariance bounds for the
ordinary and tapered discrete Fourier transforms computed at the Fourier frequencies. These
bounds were obtained in Moulines and Soulier (1999) in the case of the ordinary DFTs and
in Hurvich et al. (2000) in the case of the tapered DFTs.

Theorem 6.1. Let M > 1 and 0 € (0, 3). Let {X,},cz be a stationary Gaussian process with
spectral density f = et where I* € GM) and |d| < 0. For k=1, ..., i define &, =
dy(x1)/ VT Oxk). Then, there exists a constant C(M, O) such that

|Ef[§n,kCn,k] - 1| + |Ef[Cn,k§n,k]‘ = C(M, 5)P(k), (6'6)
|E [ kSl + |Ef[EniCnsll < C(M, 6)p(d, k, j), (6.7)

with p(k) =log(l + k)/k and p(d, k, j) = log(j)k~ 194" for j > k and for the ordinary
DFTs, and with p(k) = k=" and p(d, k, j) = k'(j — k)" 2(j/ ) for j > k + 1 and for the
tapered DFTs.

Since the log-periodogram ordinates are functionals of the Gaussian vector
[Cnis ---» Enk], moment bounds for log-periodogram ordinates can be obtained from
expressions for the moment bounds of functions of Gaussian vectors, such as the covariance
inequality of Arcones (1994, Lemma 1) later extended by Soulier (1998, Theorem 1).
Noting that the function defined on R>” as x — log(|x|*/2) has Hermite rank 2 (as defined
in Arcones 1994), we obtain the following corollary.

Corollary 6.1. Let M > 1, 6 € (0, %) and let w be a sequence such that lim,_ ., w(n) = 0.
Let {X,}cz be a stationary Gaussian process with spectral density f € H(M,0d, w). Then
there exists a constant C(M,0, w) such that, for all 1 < k < j < K,

E/[ex]l + [Efle] — 9/ (m)| < C(M, 6, w)p(k), (6.8)
lcov/(ex, €;)] < C(M, 8, w)p*(d, k, j). (6.9)

We will make also repeated use of the following technical result which is easily checked
and whose proof is omitted.

Lemma 6.1. For all 6 € (0, %), there exists a constant C(0) such that, for any integers
K > L >0 and any real |d| <9,

>

=L k=L

& C(d)log*(K), for the ordinary DFTs

2 .
ACAUA { C(O)L!, for the tapered DFTs. (6.10)

Proof of Proposition 3.2. We first need to obtain an upper bound for g7, *(). Recall that

Z1
gp gp o (h, gx)h; and that |(h;, g5)| < ag. Hence,

1850w < gyl +2pK~".
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Since g}‘; =g- Z‘f:_llajhj, we obtain, for all 1 < p < K,

p—1

» = 2) < clog(K
[max [¢,(y)] < max [g(v)| + > clog(K),

for some finite constant ¢. Combining these two bounds yields, under the stated assumptions,

g, (v < clog(K). 11
(02X X, €, ()] < clog(K) 6.11)

Define v; = 2mg’5(vi)/(Ky7,). Then SR = 0% /y'(m) and (6.11) implies that |v;] <
clog(Kn)Oé /Y’ (m). With this notation, we obtain

E([& )] = (Ef[E,,]) + vars(En, )

K,
= (Ef[&n, )7 + ) _vivarp(en) +2 Y vivicov(ngs €n))-

k=1 1<k<j<K,

n

Applying (6.8) and (6.11), we obtain

Ky
|E/[En ]l < C(M, 6, w)o?, log(K,) > p(k) < C(M, 6, w)o', log"(n),
k=1

with v = 6 for the ordinary periodogram and v = 4 for the tapered periodogram. Applying
(6.8) again, we obtain

K,

=

K,
vivar(e, i) = 0% + C(M, 6, o't log(K,) > p(k) = 07(1 + C(M, 6, w)o, log"(K,))
k=1 k=1

n

with v =4 (v = 3) when the ordinary (tapered) periodogram is used. Finally, applying (6.9),
Lemma 6.1 and (6.11), we obtain

Z Vivjicov(€nk, €ny) < C(M, O, w)o‘; log?(K;)
1=sk<j=<K,

Y P k)< C(M, 0, wo' log (n).

|<k<j<K,

with v =15 (v = 2) when the ordinary (tapered) periodogram is used. This concludes the
proof of Proposition 3.2. O
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7. Proofs

Proof of Lemma 4.1. Let a € (1, 2] and suppose b is such that 1/a + 1/b = 1. For brevity,
denote |B|o = maxyeqi,... k,}/B4|- By Holder’s inequality, we have, for any positive integer

L =K,
K, L K,
E/ [a exp{Zﬂkek}] < Elf/b [exp{baZﬁkek}E_ya [exp{aa Z ﬂkek}]
=1 =1 k=L+1

=: B(a)"/? 4" %(a)

We bound these two terms separately. If 2b|a||f|w =< 1, Lemma 7.3 below implies that

Bla) < C(M, 6, w, L), (7.1)
For & € R*™, define ¢(&) = log(|&|*/2) — v(m) and

K
D1, .-, Ek,) = exp{a > ﬁk¢(§k)}~

k=L+1

Set d,(xx) := Cu(xx) +1S,(xx) and let ', be the covariance matrix of the 2m(K, — L)-
dimensional Gaussian vector

o (Gl S Calie) i) )
! VIGr) Vi)™V FOk) VO]

Theorem 6.1 and Lemma 6.1 imply that, for any 1 < a <2 and ¢ = %, say, we can choose
L = L(M, 0) large enough for the assumptions of Lemma 7.1 below to hold. Hence, we
obtain

K,
A(a) = Ef[@U)] < Cla, o) [] 1’|,
k=L+1

where the norm ||.||, is defined in Lemma 7.1. Now applying Lemma 7.2 below, we obtain,
for all a such that a*|a||B|« < 10(a),

lexp(aafnip)§ = exp(—a>ap(m)E[Y ] < exp(@®Biy' (m)a’ /2),
where 779 and Y are defined in Lemma 7.2. We now obtain that
Kn 2022 4 2 2 4
A(a) < Cla) [ PV ™2 < Claye™ V™), (7.2)
k=L+1

where the last inequality is a consequence of the fact that Zleﬂi = 1. In conclusion, if
|| |Ble =< (1/2b) A (170(@)/a*), gathering (7.1) and (7.2), we obtain
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K,

E/ [a exp{Zﬂkek}
k=1

Setting a* = 1 + p and 7(p) = (1/2b) A (7o(a)/a*) concludes the proof of Lemma 4. [

< C(M, 6, w, a)exp(a®y'(m)*a*)2).

Lemma 7.1. Let X be a k-dimensional centred Gaussian vector with covariance matrix T.
Let ® : R* — R be a function such that kad)z(x)exp(—%xTx)dx < oo, and, for 1 <a <2,
write | @4 = 2m)~*/? [ g ®@(x)exp(—ixTx)dx. If tr({T — I;}*) < (a — 1)X(1 — ¢), then there
exists a constant c(a, €) which depends only on a and € but not on k, such that

[E[®X)]] = c(a, O)]|P]|4

Proof. The proof of Lemma 7.1 is an adaptation of the proof of Lemma 4.2 in Giraitis et al.
(2000). For a € (1, 2], denote by b the real number in [2, oo[ such that a=' 4+ b~! = 1.
Applying Hélder’s inequality, we obtain

E[®(X)] = (2n)*k/2\r|*1/zj P(x)exp(—x )exp(—ix (T~ — I /a)x)dx, (7.3)
Rk

1/b

|E[(I>(X)]|<|F|‘1/2||CI>||a(2n)"‘/2J exp(—2x"(T ! — It /a)v)dx| . (7.4)
Rk

The last term on the right-hand side of the latter equation is finite provided that ™! — I;/a
is invertible. Let A =T — I;. Then

r-t— %‘ =T! <1k - g) =r! ((1 —é)lk — %) =b'T7 U — (b= DA).

Under the assumptions in the statement of the lemma, I; — (b — 1)A is invertible and thus
(!~ Ii/a) ' = bT(I; — (b — 1)A)"!. Thus

.- I —1)2

(275)_"/2J exp(—2xT(T™! — I /a)x)dx = b~*/?
R* a

Finally, we obtain

—1/2b

1) = [T~ 7 — (b = DA @,

I
[E[®X)]| < |[| V2 *2|p-! — 2£
a

= I+ A7V L — (b= DA @

Let 4;, 1 <i < k denote the eigenvalues of A. Then
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s - L L
log(| 7 + A| 2| I, = (b — DA|7'/?")| = ] —5- log(l+4) — 55> log(l — (b — %)'
i=1 i=1

k
< c(6) Y A} < 2c(e)(b — 1tr({T — I})) < 2¢(e),
=1

since by assumption (b — 1)*tr({T’ — I;}?) < 1. This concludes the proof of Lemma 7.1. [J

Lemma 7.2. Let Y be a I'(m, 1) random variable. For any a > 1, there exists a real
no(a) > 0 depending only on a such that, for all s = —ny(a),

2
log(E[Y"]) < syp(m) + ap'(m) (7.5)

Proof. By concavity of the digamma function, we obtain, for s > —m,

2
log(E[Y*]) < sy(m) + %w'((m +5)V m).

If s > 0, then (7.5) holds. If s < 0, then y'(m + s) > 1'(m). Nevertheless, by continuity, for
any a > 1, there exists an 79(a) > 0 such that if s > —»¢(a), then v'(m + s) < ayp’'(m). O

Lemma 7.3. Let M > 1, 6 € (0, %), w be a sequence such that lim nw(n) =0 and L be a
positive integer. There exists a constant C(M, 0, w) such that if r\, ..., ry are real numbers
satisfying max|<g<p|ry| < % then

L
sup Ey [exp{z rkek}

SEH(M.0,w) k=1

< C(M, 6, w, L). (7.6)

Proof. Pooling creates a technical difficulty due to the fact that the regression is based on

the frequencies y;. We first get rid of this problem. Let J; = {2m(k — 1)+ 2, ..., 2mk}

(I<k<L), u=0Cyx)/f(x)) and v;=S,0x)/f(x5) (1<s<2ml), and T, =
L . . . .

exp{D_;_ rxcx }. With this notation, we can write

L Tk
- f(X5) , 2
T,1= e VN T 2 Loty |
: H( 2 o0+
Thus it is easily seen that there exists a constant C(M, o, L) such that
L T
T,.<CM, 6, D]] <Z(u§ + u§)> .
k=1 \s€Jy

Since the weights 7y satisfy |r¢| < 1/2, it also holds that
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L 1/2 -1/2
v=cor o 0] <Z<u§+uz>) +(Z<u§+u§>>

k=1 se€Jy se€Jy

Let V,. be the 2mL-dimensional Gaussian vector V. = (Uzs, Uzs)i<k<r. For z=
(z—1, ..., z2) € R*™, write |z||* = Y ,z2, and for zy, ..., z;, define

L

What we must now prove is that

sup  sup E [PV, )] < C(M, 0o, w). (7.7)
nofEH(M,0,w)
Let > ,.(f) be the covariance matrix of V, ;. Since E[®(E)] < oo if & is a 2mL-
dimensional vector with i.i.d. standard Gaussian components, to prove (7.7), it is sufficient to
prove that
ll}lf fe,}_li(n]‘ia’w)imin(Zn,L(f)) =Ax > 0, (78)
where Amin(A4) denotes the smallest eigenvalue of the matrix 4. Basically, the argument for
proving (7.8) is that it holds for any f € H(M, o, w), and that H(M, &, w) is isomorphic to
[—9, 6] X C(w) N G(M) which is a compact set for the product topology on R X C([—m, t]).
We now give some details. We follow the arguments in the proof of Lemma 3 in Moulines
and Soulier (1999), which hold for one function f, and mention where uniformity with
respect to f is used.
We first prove that >, ;(f) converges uniformly to a positive definite matrix > ;(d).
Recall that H,(x) = Y7 h..e™ and &,x = d,(xx)/v/f (). Since S0 | al* =2n, we
obtain

B [Cnilns] = ! j H(x + x) Hy(x, — )/ (x)dx

drun /TG0 ) )

_ eix,-|d

I s (s

Note that n~!|H,(x/n)| < C(1 + |x)! for all x € [-3nm/2, 3nm/2], and that, for all
X € [—nm, ni),

N 2m(l —e¥) .
li IH 1 — 21J'[S isx — —- .
Pt (n) J ( Je ds x(x 4 2) hx)

Applying the dominated convergence theorem, we thus have, uniformly with respect to
S € H(M, o, w),

Tim B (880 ] = 247202 kdjdj h@rk + y)h@aj = Yy dy =: g1 (d).

—00
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The non-singularity of the matrix Yo 1.(d) = (Gi j(d)<k <1 now follows from the fact that
the functions Ay : x — h(2km + x), k € Z, are linearly independent. Moreover, by continuity
and compactness, inf|y<sAmin(D_r(d)) > 0. Thus there exists an integer no(M, 0, w) such
that

inf inf  Anin(Qnr(f)) > 0.

n=ny feH(M,0,w)

For each n < no(M, O, w), and each f € H(M, O, w), it is clear that Amin(>_,..(f)) > 0 (cf.
Lemma 3 in Moulines and Soulier 1999). Hence by compactness we also have,

inf infé Amin(Q () > 0.

n=<ny feH(M,d,w)

This proves that (7.8) holds, and this concludes the proof of Lemma 7. O

Proof of Lemma 4.2. Using the previous notation, d p — d can be decomposed as

~ o
d,—d= n,kCn, +bn l* =2
V4 WZﬂ k€n,k p( ) \/W

Hence there exists a constant C(a) such that, for all p < ¢,K,,

Cnp + b p(I).

~ g
El/a[|dp _ d|a] < 7PE1/G[|€n~p|a] + |bn,p(l*)| < C(a)El/za[eCmp] 4 |bn,p(l*)|

V' (m)

Applying Proposition 3, we obtain |b,, p(l*)| 00* For large enough n, (4.4) implies that
the assumptions of Lemma 4.1 hold, thus

E[et"r] < C(M, 0, w).
This concludes the proof of Lemma 4. U]
For the sake of completeness, and because we did not find a relevant reference, we give a
proof of the fact that a function /4 in C(wg ;) is Hélder continuous with exponent 3, for
0 < <2. Let h be an even function with summable Fourier coefficients 6;, j = 0. By

definition, /& € C(wg ) implies that 0:; < L(1 + p)P. For 0 <x <1, let n, be the greatest
integer smaller than or equal to 1/x. Then we can write

h(x) — h(0) = ZG(cos(jx)—l)—ze(cos(]x)—1)+ Z 0;(cos(jx) — 1).

J=ne+1

The last term above is easily bounded:

> 0)(cos(jx) — 1)‘ <20% <2L(1+n) P <2LxP.

To bound the first term, note that if 0 < j < n,, then 0 < 1 — cos(jx) < (jix)*/2 < jx/2. If
0 < f <1, we then obtain
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XN | RN AR 5 _ LxnlP LxP
S Jjlo;| == 0=—>» 1+) "= < .
2;1 0] 2; ) ijl 21-p)  201-P)

Zejcos(jx)
j=1
If 1 <p <2, then
ny n 2 y y 2,28 Vi
_ . 2N\~ g, 2 ok 2 N1op LTy Lx
;G,cos(]x) <x ;2|6]\Sx ;jGj<Lx ;(1+]) < 25 <2—ﬂ'

For 0 < 8 < 2, let H(B, C) denote the class of even functions % such that, for all x € [0, 2],
|(x) — h(0)| < C|x|P for some constant C. To prove that C(wy ;) is not included in H(B’, C)
for any 5’ > f and any C, and that the class C(w,, 1) is strictly greater than the class H(2, C),
we need only consider the Weierstrass-type functions #g defined as /hg(x) =

02 PFcos(2kx). Tt is easily checked that, for all 0<p <2, hgeC(ws) for
L= -2 Thus hg € H(B, C) for some constant C. It can be also easily checked
that, for 0 < 8 < 2, lim,_ox #hg(x) > 0, which implies that iz ¢ H(B', C) for any ' > p
and any C. For f§ = 2, it can be shown that

im ha(x)
0 x2log(1/x) =

which implies that A, ¢ H(2, C) for any C.
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