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Let (X , Y ) be a random vector, where Y denotes the variable of interest, possibly subject to random

right censoring, and X is a covariate. Consider a heteroscedastic model Y ¼ m(X )þ 	 (X )
, where the

error term 
 is independent of X and m(X ) and 	 (X ) are smooth but unknown functions. Under this

model, we construct a nonparametric estimator for the density and hazard function of Y given X,

which has a faster rate of convergence than the completely nonparametric estimator that is constructed

without making any model assumption. Moreover, the proposed estimator for the density and hazard

function performs better than the classical nonparametric estimator, especially in the right tail of the

distribution.

We prove the weak convergence of both the density and the hazard function estimator. The results

are obtained by constructing asymptotic representations for the two estimators and by making use of

work by Van Keilegom and Akritas in which an estimator of the conditional distribution of Y given X

is studied under the same model assumption.

Keywords: asymptotic representation; density function; hazard rate; heteroscedastic regression; right

censoring; weak convergence

1. Introduction

Let Y denote a possible transformation of the variable of interest and let X be a covariate. The

response Y is allowed to be subject to random right censoring, while X is completely

observed. It is assumed that the vector (X , Y ) follows the heteroscedastic regression model

Y ¼ m(X )þ 	 (X )
, (1:1)

where 
 is independent of X, the function m(:) is the unknown regression curve and 	 (:) is a

conditional scale function, representing possible heteroscedasticity. Under this model we

estimate the density and hazard function of Y given X based on kernel methods.

Given that (1.1) is the correct model, the estimators for our proposed conditional density

and hazard have two important advantages over the completely nonparametric estimator

(which does not make use of (1.1)). First, there is a difference in the practical performance

of the two types of estimators, especially in the right tail of the distribution. The completely

nonparametric kernel estimator for the conditional density or hazard at a given value x of X

uses only data in a neighbourhood of x and hence behaves badly whenever the censoring is
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heavy in a neighbourhood of x. The proposed estimator is based on all available data points

in the full range of X , not only those in a neighbourhood of x. Because of this, the

behaviour will be satisfactory provided there is a region of the support of X where the

censoring of Y is light.

The second advantage of these new estimators is their faster rate of convergence. The

completely nonparametric kernel estimator for the conditional density or hazard requires

smoothing both over the covariate space and over the time axis. As a consequence, the rate

of convergence of such estimators is OP((na2
n)�1=2) (for one-dimensional covariates), where

an is the bandwidth used in the smoothing process (see McKeague and Utikal 1990; Li and

Doss 1995). Although the proposed estimators also require smoothing in two directions,

their rate of convergence is Op((nan)�1=2).

Much research has been devoted to the estimation of the density and hazard function. We

focus on recent papers based on kernel estimators. In the case of independently and

identically distributed (i.i.d.) censored data (without covariates), Lo et al. (1989) estimated

the density and hazard function based on the Kaplan–Meier estimator, and obtained an i.i.d.

representation and the asymptotic normality of these estimators. Müller and Wang (1994)

introduced boundary-corrected kernels for a better estimation of the hazard function near

the boundary of the covariate space. Gefeller and Dette (1992) and Dette and Gefeller

(1995) used nearest-neighbour weights for estimating the hazard function. In the context of

censored response data considered in a regression model with fully observable covariates,

the nonparametric estimation of the conditional hazard function was studied by McKeague

and Utikal (1990), Li and Doss (1995) and Li (1997), who used counting processes to

obtain the asymptotic normality of their estimator. Gray (1996) used binning methods to

estimate the conditional hazard function.

The paper is organized as follows. In the next section, we give the definition of the

estimator of the density and hazard function and state the main assumptions under which

the results will be derived. Section 3 describes the main results, and the proofs are given in

the Appendix. In Section 4 we illustrate the performance of the proposed estimators in a

simulation study.

2. Definitions and assumptions

Assume the vector (X , Y ) satisfies the regression model (1.1), where the functions m(:) and

	 (:) are respectively a location and scale functional. This means that there exist functionals S

and T such that m(x) ¼ T (FY (:jx)) and 	 (x) ¼ S(FY (:jx)), with

T (FaYþb(:jx)) ¼ aT (FY (:jx))þ b and S(FaYþb(:jx)) ¼ aS(FY (:jx)),

for all a > 0, and b 2 R, where FY (:jx) denotes the distribution of Y given X ¼ x. The

response Y is allowed to be subject to random right censoring. Let C be the censoring random

variable which is conditionally independent of Y given X, and suppose that the observable

random vector is (X , Z, ˜), where Z ¼ min(Y , C) and ˜ ¼ I(Y < C). Finally, let

(Xi, Zi, ˜i), i ¼ 1, . . . , n, denote independent replications of (X , Z, ˜). We use the notation

F(yjx) ¼ P(Y < yjx), G(yjx) ¼ P(C < yjx), H(yjx) ¼ P(Z < yjx) and H1(yjx) ¼ P(Z < y,
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˜ ¼ 1jx). Further, denote Fe(y) ¼ P(
 < y) and Ge(y) ¼ P((C � m(X ))=	 (X ) < y), and for

E ¼ (Z � m(X ))=	 (X ) we use the notation He(y) ¼ P(E < y), He1(y) ¼ P(E < y, ˜ ¼ 1),

He(yjx) ¼ P(E < yjx) and He1(yjx) ¼ P(E < y, ˜ ¼ 1jx). The density functions of the

above distribution functions will be denoted with lower-case letters.

In order to estimate the conditional density function, we first need to estimate the

conditional distribution function F(yjx). Note that under model (1.1),

F(yjx) ¼ Fe

y� m(x)

	 (x)

� �
: (2:1)

To estimate m(x) and 	 (x) we will work with the particular definitions

m(x) ¼
ð1

0

F�1(sjx)J (s) ds, 	 2(x) ¼
ð1

0

F�1(sjx)2 J (s) ds� m2(x), (2:2)

where F�1(sjx) ¼ infft; F(tjx) > sg is the quantile function of Y given x and J (s) is a given

score function satisfying
Ð 1

0
J (s) ds ¼ 1. Note that if the assumed independence of 
 and X

holds for particular location and scale functionals then it holds for all location and scale

functionals. Hence, working with the functionals m(x) and 	 (x) in (2.2) constitutes no

restriction of generality. The estimation of these functions consists in replacing the unknown

distribution F(:jx) with the following nonparametric estimator which is due to Beran (1981):

~FF(yjx) ¼ 1�
Y

Zi< y,˜i¼1

1� Wi(x, an)Xn

j¼1

I(Zj > Zi)Wj(x, an)

8>>>><
>>>>:

9>>>>=
>>>>;

, (2:3)

where Wi(x, an) are the Nadaraya–Watson weights

Wi(x, an) ¼ K1((x� X i)=an)Xn

j¼1

K1((x� X j)=an)

,

with K1 a known probability density function (kernel) and fang a sequence of positive

constants tending to zero as n tends to infinity, called a bandwidth sequence. This estimator

reduces to the usual Kaplan and Meier (1958) estimator if all weights Wi(x, an) equal n�1

(i.e. if there are no covariates). This leads to

m̂m(x) ¼
ð1

0

~FF�1(sjx)J (s) ds, 	̂	 2(x) ¼
ð1

0

~FF�1(sjx)2 J (s) ds� m̂m2(x) (2:4)

as estimators for m(x) and 	 (x). Let ÊEi ¼ (Zi � m̂m(X i))=	̂	 (X i) and define

F̂Fe(y) ¼ 1�
Y

ÊE(i)< y,˜(i)¼1

1� 1

n� iþ 1

� �
, (2:5)
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where ÊE(i) is the ith order statistic of ÊE1, . . . , ÊEn and ˜(i) is the corresponding censoring

indicator. Relation (2.1) now suggests

F̂F(yjx) ¼ F̂Fe

y� m̂m(x)

	̂	 (x)

� �
(2:6)

as an estimator for F(yjx). The estimator is an alternative for the Beran estimator ~FF(yjx),

which often does not behave well in the right tail if the censoring is heavy. The estimator

F̂F(yjx), however, behaves well in the right tail for all values of x, provided that there is a

region of the covariate space where the censoring of Y is light. This is because in that case,

the right tail of Fe(:) can be well estimated and hence, by (2.1), the same is true for the right

tail of F(:jx) for all values of x, including those for which the censoring of Y is heavy. The

asymptotic properties of this estimator were studied in Van Keilegom and Akritas (1999). We

now estimate the conditional density function f (yjx) and the hazard function º(yjx)

¼ f (yjx)=(1� F(yjx)) by smoothing the estimator F̂F(yjx) with a second kernel function K2

(in order to make the results less technical we work with the same bandwidth as used for

smoothing over the covariate space):

f̂f (yjx) ¼ a�1
n

ð
K2

y� t

an

� �
dF̂F(tjx), (2:7)

º̂º(yjx) ¼ f̂f (yjx)

1� F̂F(yjx)
: (2:8)

The primary objective of this paper is to prove an asymptotic representation and the weak

convergence of the estimators f̂f (yjx) and º̂º(yjx).

The above estimator f̂f (yjx) is obtained by first evaluating Fe(y) in (y� m(x))=	 (x)

(which leads to F(yjx)) and then smoothing F(yjx). We could also start by smoothing

Fe(y), and then evaluating the result in (y� m(x))=	 (x). This leads to the following

alternative estimator:

f̂f alt(yjx) ¼ 1

	̂	 (x)
f̂f e

y� m̂m(x)

	̂	 (x)

� �
,

where f̂f e(y) ¼ a�1
n

Ð
K((y� t)=an) dF̂Fe(t) is an estimator for the density f e(y) of 
. It can be

seen that the estimators f̂f (yjx) and f̂f alt(yjx) are not asymptotically equivalent, due to an extra

contribution in the asymptotic representation of f̂f alt(yjx). In this paper we do not consider the

estimator f̂f alt(yjx), but we note that its asymptotic properties can be obtained in a very similar

way as for f̂f (yjx).

The following functions enter in the asymptotic representation for f̂f (yjx) and º̂º(yjx):
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�e(z, �, y) ¼ (1� Fe(y)) �
ð y^z

�1

dHe1(s)

(1� He(s))2
þ I(z < y, � ¼ 1)

1� He(z)

� �
,

�(z, �, yjx) ¼ (1� F(yjx)) �
ð y^z

�1

dH1(sjx)

(1� H(sjx))2
þ I(z < y, � ¼ 1)

1� H(zjx)

� �
,

�(z, �jx) ¼
ðþ1
�1

�(z, �, vjx)J (F(vjx)) dv	 �1(x),

�(z, �jx) ¼
ðþ1
�1

�(z, �, vjx)J (F(vjx))
v� m(x)

	 (x)
dv	 �1(x),

ª1(yjx) ¼
ð y

�1

he(sjx)

(1� He(s))2
dHe1(s)þ

ð y

�1

dhe1(sjx)

1� He(s)
,

ª2(yjx) ¼
ð y

�1

she(sjx)

(1� He(s))2
dHe1(s)þ

ð y

�1

d(she1(sjx))

1� He(s)
,

j(x, z, �, y) ¼ �(1� Fe(y))�(z, �jx)ª1(yjx)� (1� Fe(y))�(z, �jx)ª2(yjx):

Further, we estimate He(y) and He1(y) by the empirical distribution functions

ĤHe(y) ¼ n�1
Xn

i¼1

I(ÊEi < y) and ĤHe1(y) ¼ n�1
Xn

i¼1

I(ÊEi < y, ˜i ¼ 1):

Let T (or Tx) be any value less than the upper bound of the support of He(:) (or H(:jx)), such

that inf x2RX
(1� H(Txjx)) . 0, and define � ¼ f(x, y); (y� m(x))=	 (x) < Tg. For a

(sub)distribution function L(yjx) we will use the notation

L9(yjx) ¼ @

@ y
L(yjx), _LL(yjx) ¼ @

@x
L(yjx),

and similar notation will be used for higher-order derivatives. Further, let kKik2
2 ¼

Ð
K2

i (u) du

and �Ki

2 ¼
Ð

u2 Ki(u) du, i ¼ 1, 2.

The assumptions we need to make in the proofs of the main results are the following:

Assumption 1.

(i) na5
n(log a�1

n )�1 ¼ O(1), and na3þ2�
n (log a�1

n )�1 !1 for some � . 0.

(ii) The support RX of X is bounded, convex and its interior is not empty.

(iii) For i ¼ 1, 2, the probability density function Ki has compact support [�Li, Li],Ð
uKi(u) du ¼ 0 and Ki is twice continuously differentiable.

Assumption 2.

(i) There exist 0 < s0 < s1 < 1 such that s1 < inf x F(Txjx), s0 < inffs 2 [0, 1];

J (s) 6¼ 0g, s1 > supfs 2 [0, 1];J (s) 6¼ 0g and inf x2RX
inf s0<s<s1

f (F�1(sjx)jx) . 0.

(ii) J is twice continuously differentiable,
Ð 1

0
J (s) ds ¼ 1 and J (s) > 0 for all 0 < s < 1.
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Assumption 3.

(i) The distribution FX is three times continuously differentiable and inf x2RX
fX (x) . 0.

(ii) The functions m and 	 are twice continuously differentiable and inf x2RX
	 (x) . 0.

(iii) EjEj5 ¼ Ej(Z � m(X ))=	 (X )j5 ,1.

Assumption 4. The functions �(z, �jx) and �(z, �jx) are twice continuously differentiable with

respect to x and their first and second derivatives (with respect to x) are bounded uniformly

in x 2 RX , z , Tx and �.

Assumption 5. For L(yjx) equal to H(yjx), H1(yjx) , He(yjx) or He1(yjx), L9(yjx) is

continuous in (x, y) and supx, yjy2 L9(yjx)j ,1 , and the same holds for all other partial

derivatives of L(yjx) with respect to x and y up to order 4.

3. Main results

Suppose throughout this section that Assumptions 1–5 hold.

Theorem 3.1.

f̂f (yjx)� f (yjx) ¼ (nan)�1
Xn

i¼1

ð
�e Ei, ˜i,

y� van � m(x)

	 (x)

� �
dK2(v)

þ (nan)�1
Xn

i¼1

K1

x� X i

an

� �
gx, y(Zi, ˜i)þ a2

nbf (yjx)þ rn(yjx),

where

gx, y(z, �) ¼ f �1
X (x)	 �1(x) �(z, �jx) f 9e

y� m(x)

	 (x)

� ��

þ �(z, �jx)
y� m(x)

	 (x)
f 9e

y� m(x)

	 (x)

� �
þ f e

y� m(x)

	 (x)

� �# $�
,

bf (yjx) ¼ 1

2
�K2

2 	 �1(x)

ð
@

@ y
E j z, Z, ˜,

y� m(x)

	 (x)

� �����X ¼ u

� �
fX (u)

# $
99

u¼z

dz

þ 1

2
�K2

2 f 0(yjx),

and supfjrn(yjx)j; (x, y) 2 �g ¼ oP((nan)�1=2)þ oP(a2
n).

Next we show the the local weak convergence of this density estimator in a

neighbourhood yþ an t (� ~TT < t < ~TT , ~TT . 0 arbitrary) of a fixed point y. By choosing

t ¼ 0, the asymptotic normality of f̂f (yjx) follows from this result. We need to restrict

attention to this local type of weak convergence, since otherwise the tightness of the
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process cannot be established. This is a typical feature of processes of nonparametric

density, hazard or regression function estimators and can also be found in, for example,

Rosenblatt (1971).

Note that Theorems 3.2 and 3.4 below are formulated both for the optimal bandwidth

case (K . 0) and the non-optimal case (K ¼ 0).

Theorem 3.2. If na5
n ¼ K for some K > 0, then the process (nan)1=2( f̂f (yþ an tjx)

� f (yþ an tjx)) (x 2 RX and y < T	 (x)þ m(x) fixed, � ~TT < t < ~TT, ~TT . 0 arbitrary)

converges weakly to a Gaussian process Zf (y, tjx) with mean function

E(Zf (y, tjx)) ¼ K1=2bf (yjx)þ 1

2
K1=2�K1

2 [E(gx, y(Z, ˜)jX ¼ u) fX (u)]99u¼x

and covariance function

cov(Zf (y, tjx), Zf (y, t9jx)) ¼ fX (x)kK1k2
2 var(gx, y(Z, ˜)jX ¼ x)

þ 	 �1(x)

ð
K2(w)K2(wþ t � t9) dw

he1((y� m(x))=	 (x))

(1� Ge((y� m(x))=	 (x)))2
:

Theorem 3.3.

º̂º(yjx)� º(yjx) ¼ (nan)�1(1� F(yjx))�1
Xn

i¼1

ð
�e Ei, ˜i,

y� van � m(x)

	 (x)

� �
dK2(v)

þ (nan)�1
Xn

i¼1

K1

x� X i

an

� �
kx, y(Zi, ˜i)þ a2

nbº(yjx)þ rn(yjx),

where

kx, y(z, �) ¼ (1� F(yjx))�1 gx, y(z, �)þ f (yjx)(1� F(yjx))�2 hx, y(z, �),

hx, y(z, �) ¼ �(z, �jx)þ �(z, �jx)
y� m(x)

	 (x)

# $
f e

y� m(x)

	 (x)

� �
f �1

X (x),

bº(yjx) ¼ (1� F(yjx))�1bf (yjx)þ 1

2
�K1

2 (1� F(yjx))�2 f (yjx)

3

ð
E j z, Z, ˜,

y� m(x)

	 (x)

� �����X ¼ u

# $
fX (u)

� �
99

u¼z

dz,

and supfjrn(yjx)j; (x, y) 2 �g ¼ oP((nan)�1=2)þ oP(a2
n).

Finally, we give the weak convergence of the hazard estimator º̂º(yjx). The proof is very

similar to that for the density function (see Theorem 3.2) and is therefore not given.

Theorem 3.4. If na5
n ¼ K for some K > 0, then the process (nan)1=2(º̂º(yþ an tjx)
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� º(yþ an tjx)) (x 2 RX and y < T	 (x)þ m(x) fixed, � ~TT < t < ~TT, ~TT . 0 arbitrary)

converges weakly to a Gaussian process Zº(y, tjx) with mean function

E(Zº(y, tjx)) ¼ K1=2bº(yjx)þ 1

2
K1=2�K1

2 [E(kx, y(Z, ˜)jX ¼ u) fX (u)]99u¼x

and covariance function

cov(Zº(y, tjx), Zº(y, t9jx)) ¼ fX (x)kK1k2
2 var(kx, y(Z, ˜)jX ¼ x)

þ 	 �1(x)

ð
K2(w)K2(wþ t � t9) dw

he1((y� m(x))=	 (x))

(1� He((y� m(x))=	 (x)))2
:

4. Simulations

In this section we carry out a number of simulations, in which the small-sample performance

of the estimator f̂f (yjx) is compared with that of the completely nonparametric estimator

~ff (yjx) ¼ a�1
n

ð
K2

y� t

an

� �
d ~FF(tjx),

which is based on Beran’s estimator ~FF(yjx) defined in (2.3), instead of the estimator F̂F(yjx).

Assume that the covariate X is uniformly distributed on the interval [0, 1]. We consider

Weibull survival and censoring distributions

(Y jX ¼ x) � Weibull(c0 þ c1xþ c2x2, d),

(CjX ¼ x) � Weibull(e0 þ e1xþ e2x2, d),

i.e. F(yjx) ¼ 1� exp(�(c0 þ c1xþ c2x2)yd) and similarly for G(yjx), for certain values for

the parameters. From the conditional independence of Y and C for given X, it follows that

(ZjX ¼ x) � Weibull(c0 þ e0 þ (c1 þ e1)xþ (c2 þ e2)x2, d) and that

P(˜ ¼ 0jx) ¼ e0 þ e1xþ e2x2

c0 þ e0 þ (c1 þ e1)xþ (c2 þ e2)x2
: (4:1)

It is easily shown that if m(x) equals the conditional mean and 	 (x) the conditional standard

deviation, then

P(
 < yjx) ¼ 1� exp(�fy[ˆ(1þ 2d�1)� ˆ2(1þ d�1)]1=2 þ ˆ(1þ d�1)gd), (4:2)

which is independent of x. Hence, model (1.1) is satisfied for these distributions. We

simulated samples of size n ¼ 150 and chose x ¼ 0:5. The results are obtained from 1000

simulation runs. The kernel function K is the biquadratic kernel K(u) ¼
15
16

(1� u2)2 I(juj < 1).

Although, in the asymptotic theory, we used the same bandwidth for smoothing over x

and y, we prefer here to work with two bandwidths, as in practice the range of x might be

very different from that of y. Let an be the bandwidth for x, and let bn be the bandwidth for

y. In order to select these bandwidths in an appropriate way for a fixed x and y, we consider
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a grid of values of an and bn, approximate the mean square error (MSE) of ~ff (yjx) (or

f̂f (yjx)) for each pair (an, bn) by the MSE of the 1000 simulation outcomes, and select the

pair (an, bn) for which the MSE of ~ff (yjx) (or f̂f (yjx)) is minimal.

For the location and scale functions m(x) and 	 (x), defined in (2.2), we need to choose a

proper score function J . Since ~FF�1(sjx) is only defined for s < ~FF(þ1jx), J (s) must be

zero from that point on. We therefore worked with trimmed means and variances

determined by J (s) ¼ I(0 < s < b)=b, where b ¼ mini
~FF(þ1jX i).

The first set of parameters we consider is the following: c0 ¼ 1, c2 ¼ 20, e0 ¼ 0:1
e1 ¼ 0, e2 ¼ 25 and d ¼ 3. The parameter c1 is determined such that the probability of

censoring at x ¼ 0:5 (given by (4.1)) equals 0.3 or 0.6. Figure 1 shows how the probability

of censoring varies with x for both situations. The simulation results for this set-up are

shown in Table 1 (where �( pjx) ¼ F�1( pjx)). The bias, variance and MSE of the two

estimators are obtained from the 1000 simulation runs. We see that for both situations and

for all values of y, the estimator f̂f (yjx) behaves considerably better than the completely

nonparametric estimator ~ff (yjx), both with respect to the bias and the variance.

Next, we consider the parameters c0 ¼ 1, c1 ¼ 2, c2 ¼ 3, e0 ¼ 1, e1 ¼ 2, e2 ¼ 3 and

d ¼ 3. This leads to a constant censoring rate of 0.5 for all x. The results for this set-up are

summarized in Table 2. Here too the estimator f̂f (yjx) outperforms ~ff (yjx). It should be

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
(∆

 �
 0

|x
)

x

Figure 1. Graph of the probability of censoring versus x when c0 ¼ 1, c2 ¼ 20, e0 ¼ 0:1, e1 ¼ 0,

e2 ¼ 25, d ¼ 3 and P(˜ ¼ 0j0:5) ¼ 0:3 (solid curve) and 0.6 (dashed curve).
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noted, however, that the difference in performance between the two estimators is more

extreme in Table 1 than in Table 2. The reason for this lies in the fact that in the set-up of

Table 1 there is a region where the censoring is quite light (namely for small x-values, see

Figure 1), while in the second set-up the censoring is uniform over x. The data in the

region of light censoring are used by the estimator f̂f (yjx), but not by ~ff (yjx) (since ~ff (yjx)

only uses data in a small window around x ¼ 0:5). The use of data from a region where

there is not much censoring can considerably improve the estimator, especially in the right

Table 1. Mean square error of the two estimators when c0 ¼ 1, c2 ¼ 20, e0 ¼ 0:1, e1 ¼ 0,

e2 ¼ 25 and d ¼ 3

Bias Variance MSE

P(˜ ¼ 0jx) y f (yjx) ~ff (yjx) f̂f (yjx) ~ff (yjx) f̂f (yjx) ~ff (yjx) f̂f (yjx)

0.3 �(0.20|x) 2.169 �0.2133 �0.1598 0.0587 0.0607 0.1042 0.0862

�(0.40|x) 2.825 �0.2933 �0.2161 0.1219 0.1004 0.2080 0.1471

�(0.60|x) 2.780 �0.3549 �0.1943 0.0998 0.0948 0.2257 0.1325

�(0.80|x) 2.024 �0.2024 �0.1252 0.0425 0.0265 0.0835 0.0422

�(0.90|x) 1.285 �0.0158 �0.0148 0.0030 0.0017 0.0033 0.0019

�(0.95|x) 0.766 �0.0043 �0.0047 0.0001 0.0001 0.0001 0.0001

0.6 �(0.20|x) 1.428 �0.1900 �0.1685 0.0479 0.0498 0.0840 0.0782

�(0.40|x) 1.861 �0.3451 �0.2390 0.0915 0.0848 0.2105 0.1419

�(0.60|x) 1.831 �0.4171 �0.2318 0.0845 0.0636 0.2585 0.1173

�(0.80|x) 1.333 �0.2687 �0.1438 0.0377 0.0190 0.1099 0.0397

�(0.90|x) 0.846 �0.0387 �0.0102 0.0043 0.0020 0.0058 0.0021

�(0.95|x) 0.504 0.0043 �0.0035 0.0002 0.0002 0.0002 0.0002

Table 2. Mean square error of the two estimators when c0 ¼ 1, c1 ¼ 2, c2 ¼ 3, e0 ¼ 1,

e1 ¼ 2, e2 ¼ 3 and d ¼ 3

Bias Variance MSE

y f (yjx) ~ff (yjx) f̂f (yjx) ~ff (yjx) f̂f (yjx) ~ff (yjx) f̂f (yjx)

�(0.20|x) 1.237 �0.1104 �0.1164 0.0171 0.0149 0.0293 0.0284

�(0.40|x) 1.612 �0.1769 �0.1294 0.0371 0.0412 0.0684 0.0580

�(0.60|x) 1.586 �0.2055 �0.1441 0.0396 0.0316 0.0818 0.0524

�(0.80|x) 1.154 �0.1420 �0.0965 0.0163 0.0157 0.0364 0.0250

�(0.90|x) 0.733 �0.0151 �0.0179 0.0030 0.0035 0.0032 0.0038

�(0.95|x) 0.437 0.0904 0.1062 0.0048 0.0020 0.0130 0.0133
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tail of the distribution, where uncensored data are typically rare. This explains why the

existence of a region of light censoring has an influence on the performance of f̂f (yjx).

Finally, the above procedure for optimizing the choice of an and bn by minimizing the

MSE of the simulation outcomes can be adapted to real data by creating bootstrap samples

and by minimizing the MSE over a large number of these bootstrap samples. Van Keilegom

and Veraverbeke (1997) propose a bootstrap procedure for the general context of

nonparametric regression with censored data which can be used for this purpose. In view

of the complexity of the asymptotic variance, this bootstrap procedure can also be used for

the construction of confidence intervals and for testing hypotheses concerning the density

and the hazard function.

Appendix

We start with a lemma in which it is shown that a certain process of the random variables

ÊEi ¼ (Zi � m̂m(X i))=	̂	 (X i), i ¼ 1, . . . , n, is asymptotically equivalent to the same process

evaluated at Ei ¼ (Zi � m(X i))=	 (X i), i ¼ 1, . . . , n. This lemma is crucial to the proofs of

the main results, since it allows results for E to be carried over to analogous results for ÊE.

The proof of this lemma is complex and technical. The main reason for this complexity is

that it is hard to replace m̂m and 	̂	 respectively by m and 	, given that they appear inside an

indicator function, which is not differentiable. We sketch the proof of the lemma. Details can

be found in Van Keilegom and Veraverbeke (2000).

Lemma A.1. Suppose that Assumptions 1–5 hold. Then

sup
�1, y,þ1

����(nan)�1
Xn

i¼1

ð
fI(ÊEi < y� van)� I(Ei < y� van)� P(ÊE < y� vanjX n)

þ P(E < y� van)g dK2(v)

���� ¼ oP((nan)�1=2), (A:1)

where P(ÊE < yjX n) is the distribution of ÊE ¼ (Z � m̂m(X ))=	̂	 (X ) conditioning on (X j, Zj,

˜ j), j ¼ 1, . . . , n.

Proof. We use the notation yv ¼ y� van, d n1(x) ¼ (m̂m(x)� m(x))=	 (x) and d n2(x)

¼ (	̂	 (x)� 	 (x))=	 (x) throughout the proof. First it can be seen that, up to a term of order

oP((nan)�1=2) uniformly in y, the expression between modulus bars in (A.1) is equal to

(nan)�1
Xn

i¼1

ð
fI(Ei < d n1(Xi)þ yv(1þ d n2(Xi)))� P(E < d n1(X )þ yv(1þ d n2(X )))

� Ji(yv, d n1(Xi), d n2(X i))þ E[J (yv, d n1(X ), d n2(X ))]

� I(Ei < yv)þ P(E < yv)þ Ji(yv, 0, 0)� E[J (yv, 0, 0)]g dK2(v), (A:2)

where Ji(y, a, b) equals 0 for y < (Ei � a)=(1þ b)� a1=2
n , 1 for y > (Ei � a)=(1þ b)
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þa1=2
n , and a linear function starting at 0 and ending at 1 on the interval

[(Ei � a)=(1þ b)� a1=2
n , (Ei � a)=(1þ b)þ a1=2

n ].

The proof is based on results in van der Vaart and Wellner (1996). Let

Zni(y, d1, d2) ¼ n�1=2a1=2��
n

ð
fI(Ei < d1(Xi)þ yv(1þ d2(Xi)))

� Ji(yv, d1(X i), d2(X i))� I(Ei < yv)þ Ji(yv, 0, 0)g dK2(v),

i ¼ 1, . . . , n. We consider
Pn

i¼1[Zni � E(Zni)] as a process over the class

F ¼ f(y, d1, d2); �1 , y , þ1, di(X ) ¼ en
~ddi(X ) and ~ddi(X ) 2 C�

1(RX ), i ¼ 1, 2g,

where en ¼ (na1þ�
n )�1=2(log a�(1þ�)

n )1=2, � . 0, and where C�
1(RX ) is the class of all

differentiable functions d defined on the domain RX of X such that

kdk� ¼ sup
x

jd(x)j þ sup
x,x9

jd(x)� d(x9)j
jx� x9j� < 1:

It can be shown that, for i ¼ 1, 2, P(e�1
n dni 2 C�

1(RX )) ! 1 as n !1. We will show thatPn
i¼1(Zni � EZni) converges weakly to a Gaussian process. From this is follows that (A.2) is

OP(n�1=2a�1=2þ�
n ) ¼ oP((nan)�1=2) uniformly in y.

To show the weak convergence of the given process, we will verify the conditions of

Theorem 2.11.9 in van der Vaart and Wellner (1996). Proving the convergence of the

marginals of the process
Pn

i¼1(Zni � EZni) is achieved by showing that Lyapunov’s ratio

Xn

i¼1

EjZni � E[Zni]j3

Xn

i¼1

var(Zni)

" #3=2
<

sup
y,d1 d2

jZ n1(y, d1, d2)j

Xn

i¼1

var(Zni)

" #1=2
(A:3)

tends to zero as n tends to infinity. Lengthy calculations show thatPn
i¼1 var(Zni) ¼ O(n�1a�4�3�

n log a�(1þ�)
n ) and hence (A.3) is o(1). It remains to calculate

the bracketing number N[ ](
, F , Ln
2 ), which is the minimal number of sets N
 in a partition

of F into sets F n

 j such that, for every partitioning set F n


 j,Xn

i¼1

EfsupjZni(y, d1, d2)� Zni(y9, d91, d92)j2g < 
2,

where the supremum is taken over all (y, d1, d2), (y9, d91, d92) 2 F n

 j. Partition the line into

m1 ¼ O(
�17=3) subintervals yi, i ¼ 1, . . . , m1: let y0 ¼ �1, y1 ¼ �
�2=3, ym1�1 ¼ 
�2=3,

ym1
¼ þ1 and divide the interval [y1, ym1�1] into m1 � 2 equally spaced subintervals of

length O(
5). Next, note that in Corollary 2.7.2 of van der Vaart and Wellner (1996), it

is stated that m2 ¼ N[ ](
, C�
1(RX ), L2(P)) < exp(K
�1=�) and m3 ¼ N[ ](
5=3, C�

1(RX ),

L2(P)) < exp(K
�5=(3�)). Let d L
j1 < dU

j1, j ¼ 1, . . . , m2, be the functions defining the m2


-brackets for C�
1(RX ) and let d L

k2 < dU
k2, k ¼ 1, . . . , m3), be the functions defining the m3


5=3-brackets for C�
1(RX ). Lengthy and technical calculations show that the brackets for the
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considered process are given by [yi, yiþ1] 3 [d L
j1, dU

j1] 3 [d L
k2, dU

k2] (i ¼ 1, . . . , m1,

j ¼ 1, . . . , m2, k ¼ 1, . . . , m3). Hence, the bracketing number for the process considered

is O(
�17=3 exp(K
�5=(3�))), which satisfies
Ð �n

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N[ ](
, F , Ln

2 )
p

d
! 0 for all �n#0. This

shows that the conditions of Theorem 2.11.9 in van der Vaart and Wellner (1996) are

satisfied, from which the weak convergence of the process
Pn

i¼1(Zni � EZni) follows. h

Proof of Theorem 3.1. Write

f̂f (yjx)� f (yjx) ¼ a�1
n

ð
K2

y� t

an

� �
dF̂F(tjx)� f (yjx)

¼ a�1
n

ð
K2

y� t

an

� �
d[F̂F(tjx)� F(tjx)þ a�1

n

ð
K2

y� t

an

� �
dF(tjx)� f (yjx)

¼ �a�1
n

ð
[F̂F(tjx)� F(tjx)] dK2

y� t

an

� �
þ a�1

n

ð
K2

y� t

an

� �
dF(tjx)� f (yjx)

¼ a�1
n

ð
[F̂F(y� vanjx)� F(y� vanjx)] dK2(v)þ a�1

n

ð
K2

y� t

an

� �
dF(tjx)� f (yjx): (A:4)

The second term in (A.4) equals

a�1
n

ð
K2

y� t

an

� �
[ f (tjx)� f (yjx)] dt ¼ f 9(yjx)a�1

n

ð
K2

y� t

an

� �
(t � y) dt

þ 1

2
f 0(yjx)a�1

n

ð
K2

y� t

an

� �
(t � y)2 dt

þ a�1
n

ð
K2

y� t

an

� �
o(jt � yj2) dt

¼ 1

2
a2

n�
K2

2 f 0(yjx)þ o(a2
n):

The derivation of the first term in (A.4) is quite lengthy and requires a substantial

number of technical lemmas. We restrict ourselves to a sketch of the proof, and refer the

interested reader to the Appendix of the technical report of Van Keilegom and Veraverbeke

(2000), where a detailed derivation can be found. Note that the first term of (A.4) equals

a�1
n

ð
F̂Fe

y� van � m̂m(x)

	̂	 (x)

� �
� Fe

y� van � m̂m(x)

	̂	 (x)

� �# $�

þ Fe

y� van � m̂m(x)

	̂	 (x)

� �
� Fe

y� van � m(x)

	 (x)

� �# $�
dK2(v): (A:5)

The second term of (A.5) can be written as

(nan)�1
Xn

i¼1

K1

x� Xi

an

� �
gx, y(Zi, ˜i)þ oP((nan)�1=2),
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uniformly for (x, y) 2 �, after applying a representation for m̂m(x) and 	̂	 (x) given by

Proposition 4.6 in Van Keilegom and Akritas (1999). For the first term of (A.5), Lemma A.1

plays a crucial role, as it implies, after some technical calculations, that, up to a bias term of

order O(a2
n), the estimator F̂Fe (which is constructed with ÊEi, i ¼ 1, . . . , n) can be replaced by

the analogous estimator based on Ei, i ¼ 1, . . . , n. Hence, a representation for the latter

Kaplan–Meier estimator given in Lo and Singh (1986) implies that the first term of (A.5) can

be written as

(nan)�1
Xn

i¼1

ð
�e Ei, ĩ,

y� van � m(x)

	 (x)

� �
dK2(v)

þ 1

2
a2

n�
K2

2 	 �1(x)

ð
@

@ y
E j z, Z, ˜,

y� m(x)

	 (x)

� �����X ¼ u

� �
fX (u)

# $
99

u¼z

dz

þ oP((nan)�1=2)þ oP(a2
n),

uniformly for (x, y) 2 �, from which the result follows. h

Proof of Theorem 3.2. To show the weak convergence of the main term in the representation,

use will be made of Theorem 2.11.9 in van der Vaart and Wellner (1996). We start by

calculating the covariance of the process. That

cov K1

x� X

an

� �
gx, yþa n t(Z, ˜), K1

x� X

an

� �
gx, yþa n t9(Z, ˜)

� �

¼ an fX (x)kK1k2
2 varfgx, y(Z, ˜)jX ¼ xg þ O(a2

n)

follows easily from a Taylor expansion. Next, let ev(t) ¼ (yþ (t � v)an � m(x))=	 (x) and

e ¼ (y� m(x))=	 (x). Using the expression for the covariance of the function �e given in Lo

and Singh (1986), we have

cov

ð
�e(E, ˜, ev(t)) dK2(v),

ð
�e(E, ˜, ev(t9)) dK2(v)

# $

¼
ðð

Ef�e(E, ˜, ev(t))�e(E, ˜, ew(t9))g dK2(v) dK2(w)

¼
ðð

(1� Fe(ev(t)))(1� Fe(ew(t9)))

ðev( t)^ew( t9)

�1

dHe1(s)

(1� He(s))2
dK2(v) dK2(w)

¼
ððwþ t� t9

�1
(1� Fe(ev(t))) dK2(v)(1� Fe(ew(t9)))

ðew( t9)

�1

dHe1(s)

(1� He(s))2
dK2(w)

þ
ððv� tþ t9

�1
(1� Fe(ew(t9))) dK2(w)(1� Fe(ev(t)))

ðev( t)

�1

dHe1(s)

(1� He(s))2
dK2(v): (A:6)

620 I. Van Keilegom and N. Veraverbeke



The first term of (A.6) equalsð
K2(wþ t � t9)(1� Fe(ew(t9)))2

ðew( t9)

�1

dH e1(s)

(1� He(s))2
dK2(w)

� an

	 (x)

ððwþ t� t9

�1
K2(v) f e(ev(t)) dv(1� Fe(ew(t9)))

ðew( t9)

�1

dHe1(s)

(1� He(s))2
dK2(w):

Applying integration by parts to both terms above, we obtain

�
ð

K2(w)K92(wþ t � t9)(1� Fe(ew(t9)))2

ðew( t9)

�1

dHe1(s)

(1� He(s))2
dw

� an

	 (x)

ð
K2(w)K2(wþ t � t9) dw(1� Fe(e)) f e(e)

ðe

�1

dH e1(s)

(1� He(s))2

þ an

	 (x)

ð
K2(w)K2(wþ t � t9) dw(1� Fe(e))2 he1(e)

(1� He(e))2
þ O(a2

n):

Using the same techniques, we find that the second term of (A.6) equalsð
K2(w)K92(wþ t � t9)(1� Fe(ew(t9)))2

ðew( t9)

�1

dHe1(s)

(1� He(s))2
dw

þ an

	 (x)

ð
K2(w)K2(wþ t � t9) dw(1� Fe(e)) f e(e)

ðe

�1

dHe1(s)

(1� He(s))2
þ O(a2

n):

Hence, (A.6) is equal to

an

	 (x)

ð
K2(w)K2(wþ t � t9) dw

he1((y� m(x))=	 (x))

(1� Ge((y� m(x))=	 (x)))2
þ O(a2

n):

Next we need to calculate cov(K1((x� X )=an)gx, yþan t(Z, ˜),
Ð
�e(E, ˜, ev(t9)) dK2(v)).

Since the calculations are similar to those above, we confine ourselves to giving an outline.

Since the function gx, y(z, �) is formed from the functions �(z, �jx) and �(z, �jx), which

contain the function �(z, �, sjx), we need to calculate the covariance of �(Z, ˜, sjx) and

�e(E, ˜, y), given X. Next, integration by parts over the v variable shows that the order of

the covariance is O(a2
n).

Let us now calculate the bias of the second term of the representation in Theorem 3.1

(the first one is unbiased). This follows from a Taylor expansion:

a�1
n

ð
K1

x� u

an

� �
E(gx, yþa n t(Z, ˜)jX ¼ u) dFX (u)

¼ 1

2
a2

n�
K1

2 [E(gx, y(Z, ˜)jX ¼ u) fX (u)] 0ju¼x þ o(a2
n),

since E(gx, y(Z, ˜)jX ¼ x) ¼ 0. Next, we show the convergence of the finite-dimensional

distributions. By the Cramér–Wold device, we need to show the convergence of any linear

combination of the functions (nan)1=2( f̂f (yþ an tjjx)� f (yþ an tjjx)) (� ~TT < t1, . . . , tk < ~TT
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arbitrary, k arbitrary). We do this by verifying Lyapunov’s condition. Since the functions gx, y

and �e are bounded, the Lyapunov ratio is easily seen to be O((nan)�1=2) ¼ o(1).

It remains to verify the three displayed conditions in Theorem 2.11.9 in van der Vaart

and Wellner (1996). The first one is obviously satisfied, since the functions gx, y(z, �) and

�e(z, �, y) are bounded. We will next show that

ð�n

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log N[ ](
, F , L2(P))

p
d
! 0

for every �n#0, where N[ ] is the bracketing number, F ¼ fWn(t); � ~TT < t < ~TTg, with

Wn(t) ¼
ð
�e E, ˜,

yþ (t � v)an � m(x)

	 (x)

� �
dK2(v)þ K1

x� X

an

� �
gx, yþa n t(Z, ˜)

¼ Wn1(t)þ Wn2(t),

P is the probability measure corresponding to the joint distribution of (Z, ˜, X ), and L2(P) is

the L2 norm. Partition [� ~TT , ~TT ] into O(
�1) subintervals [tj, tjþ1] of length at most K
 for

some K . 0. We will show that

a�1
n E sup

tj< t, t9< t jþ1

jWn(t)� Wn(t9)j2 < 
2: (A:7)

This implies not only the third condition in van der Vaart and Wellner (1996) but also

the second, since the partitions are independent of n. It is easily seen that

jWn2(t)� Wn2(t9)j < K
an whenever jt � t9j < K
, and hence (A.7) is satisfied for Wn

replaced by Wn2. Since the function �e(z, �, y) consists of three terms, Wn1(t) can also be

decomposed into three terms. The most difficult term to deal with is the second one, which

equals Zn(t)� E[Zn(t)], where

Zn(t) ¼
ð

I(E < ev(t), ˜ ¼ 1)

1� Ge(ev(t))
dK2(v):

We will prove that (A.7) is satisfied if Wn(t) is replaced by Zn(t) (the derivation for E[Zn(t)]

follows immediately, using integration by parts). Consider

Zn(t)� Zn(t9)

¼
ð

I(E < ev(t), ˜ ¼ 1)� I(E < ev(t9), ˜ ¼ 1)

1� Ge(ev(t))
dK2(v)

þ
ð

I(E < ev(t9), ˜ ¼ 1)
1

1� Ge(ev(t))
� 1

1� Ge(ev(t9))

# $
dK2(v):

We concentrate on the first term which, using the notation En(x, y) ¼ (E	 (x)� yþ m(x)=an

and choosing t9 < t, equals
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I(˜ ¼ 1)

ð t�En(x, y)

t9�En(x, y)

1

1� Ge(ev(t))
dK2(v)

¼ I(˜ ¼ 1)
K2(t � En(x, y))

1� Ge(E)
� K2(t9� En(x, y))

1� Ge(E þ 	 �1(x)(t � t9)an

� �

þ an

	 (x)
I(˜ ¼ 1)

ð t�En(x, y)

t9�En(x, y)

K2(v)

(1� Ge(ev(t)))2
ge(ev(t)) dv:

The last term above is not more than K
an, which is sufficiently small for the required

condition to be satisfied. For the first term above it suffices to consider

a�1
n E sup

tj< t, t9< t jþ1

jK2(t � En(x, y))� K2(t9� En(x, y))j2

¼ a�1
n E sup

tj< t, t9< t jþ1

jK2(t � En(x, y))� K2(t9� En(x, y))j2 I(tj � L2 < En(x, y) < tjþ1 þ L2)

" #

< K
2,

where [�L2, L2] is the support of the kernel K2. This completes the proof. h

Proof of Theorem 3.3. Write

º̂º(yjx)� º(yjx) ¼ f̂f (yjx)

1� F̂F(yjx)
� f (yjx)

1� F(yjx)

¼ f̂f (yjx)� f (yjx)

1� F(yjx)
þ f (yjx)[F̂F(yjx)� F(yjx)]

(1� F(yjx))2

þ ( f̂f (yjx)� f (yjx))(F̂F(yjx)� F(yjx))

1� F̂F(yjx)
þ f (yjx)[F̂F(yjx)� F(yjx)]2

(1� F̂F(yjx))(1� F(yjx))2
:

The representation for the first term above follows from Theorem 3.1. For the second term we

use a slight generalization of the representation for F̂F(yjx) given in Theorem 3.3 in Van

Keilegom and Akritas (1999). The latter theorem assumes that na5
n ! 0, which implies that

all bias terms are o((nan)�1=2). Here we assume weaker conditions on the bandwidth, which

means that a bias term has to be added in the representation. In order to show that the third

and fourth terms are of lower order, we will prove that

sup
(x, y)2�

jF̂F(yjx)� F(yjx)j ¼ O((nan)�1=2(log a�1
n )1=2) a:s:,

sup
(x, y)2�

j f̂f (yjx)� f (yjx)j ¼ O((nan)�1=2(log a�1
n )1=2) a:s:

We will show the latter result; the former can be obtained in a similar way.

The representation for f̂f (yjx) established in Theorem 3.1 has two main terms, say
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A1(yjx) and A2(yjx). The term A1(yjx) contains the function gx, y(z, �), which is formed

from the functions �(z, �jx) and �(z, �jx). These functions are integrals of the function

�(z, �, y). Now, since

(nan)�1
Xn

i¼1

K1

x� X i

an

� �
�(Zi, ˜i, yjx) (A:8)

¼ (nan)�1
Xn

i¼1

K1

x� X i

an

� � ð y

�1

I(Zi < s)� H(sjx)

(1� H(sjx))2
dH1(sjx)

#

þ I(Zi < y, ˜i ¼ 1)� H1(yjx)

1� H(yjx)
�
ð y

�1

I(Zi < s, ˜i ¼ 1)� H1(sjx)

(1� H(sjx))2
dH(sjx)

$

is O((nan)�1=2(log a�1
n )1=2) a.s. uniformly in x and y < Tx by Lemma A.1 in Van Keilegom

and Akritas (1999), it follows that A1(yjx) is uniformly of the right order. For A2(yjx) we first

note that n�1
Pn

i¼1�e(Ei, ˜i, y) can be decomposed into three terms in a similar way as was

done in (A.8) for the function �(z, �, yjx). We consider the second term, which is the most

difficult one. Denote ev(y) ¼ (y� van � m(x))=	 (x) and e(y) ¼ (y� m(x))=	 (x). Then,

(nan)�1
Xn

i¼1

ð
I(Ei < ev(y), ˜i ¼ 1)� He1(ev(y))

1� He(ev(y))
dK2(v)

¼ (nan)�1
Xn

i¼1

ð
(1� He(ev(y)))�1[I(Ei < ev(y), ˜i ¼ 1)� He1(ev(y))

� I(Ei < e(y), ˜i ¼ 1)þ He1(e(y))] dK2(v)

¼ O((nan)�1=2(log a�1
n )1=2) a:s:

by Lemma 2.4 in Stute (1982). This completes the proof.
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