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1. INTRODUCTION 

It is some years since a research level book on "pure" cate­
gory theory has appeared, and perhaps that is sufficient reason 
to review it here. Category theory was invented in the 1940s by 
S. Eilenberg and S. Mac Lane and has gone through a number of 
transformations since then. At one point, it appeared to be part 
of homological algebra, while at another point, topos theory swept 
away all other concerns. It may be that the intensity with which 
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these topics were investigated used up the available results, or it 
may be that fashions simply changed. The present book contin­
ues a different long tradition in category theory, beginning with 
Gabriel and Ulmer in 1971 and Artin, Grothendieck, and Verdier 
in 1972, and continuing through the work of Makkai and Reyes 
[12], 1977, Diers [4], 1980, and Guitart and Lair [7, 8, 11], 1980-
1981, to mention only the major contributors. It is concerned 
neither with homological algebra nor with topos theory, but in­
stead, it seeks to unify several trends in category theory that were 
always viewed as somewhat peripheral to the main concerns of the 
day; namely, locally presentable categories, 2-categories, sketches, 
and categorical logic. It has prompted some thoughts about history 
and mathematics. 

2. THE ROLE OF HISTORY IN MODERN MATHEMATICS 

"The business of mathematicians is to prove theorems." This 
view was promulgated by mathematicians of the generation of my 
teachers; that is, those mathematicians who were active during and 
after World War II. (My degree was in 1957.) What this slogan 
means is that mathematicians, especially young ones, should not 
think too much about many aspects of their work which an outsider 
might consider important, such as: where does their particular 
topic come from, what is it good for, what other relevant work is 
there other than obvious sources, what is it really about, etc. 

It is certainly true that spending overly much time investigat­
ing the history of previous work can get in the way of making 
new advances. So, "don't worry about it," is what we, conditioned 
by our own history, tell PhD students; just do your work—prove 
your theorems—get a degree—there is plenty of time later to worry 
about the "meaning of it all." The argument for this slogan is that 
it works. It may produce a lot of dross, but every once in a while 
there is a gem. The main practical defense for this line of reasoning 
lies in arguments about "the unreasonable effectiveness of mathe­
matics." Just when scientists or engineers need some new kind of 
mathematics, there it is, developed either long ago or recently by 
mathematicians who worked on the required mathematical struc­
tures just for the joy of it. Furthermore, it seems that efforts to 
concentrate on specific problems from science or engineering usu­
ally do not produce "good" mathematics. Mathematically, such 
concentration leads to results that are too specific to be of further 
interest. 
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On the other hand, there is the equally familiar assertion that 
mathematicians have been on an ego trip for the last twenty or 
thirty years—meaning that they are pretty much useless in general 
scientific discourse because they just want to feed on their own 
work and let the rest of the world go by. The theories that are 
constructed are so general that the path from them to anything that 
conceivably could concern the rest of the world is impossibly long. 
From this viewpoint, much of current mathematics is irrelevant, 
particularly in subjects like algebraic topology, algebraic geometry, 
and category theory. Category theory is especially suspect just 
because it searches for unifying trends and common threads in 
various branches of mathematics, which appears to add another 
level of abstractness to the whole subject. 

The problem here lies in a strange isolation and provincialism 
of mathematics as a whole. I would distinguish three kinds of 
provincialism: historical, scientific, and mathematical. 

(i) Historical provincialism means ignorance of the continuing 
flow and interplay of mathematical developments and science over 
a span of decades or centuries. 

(ii) Scientific provincialism means ignorance of the interrela­
tions between mathematical work and work going on in scientific 
and engineering fields. 

(iii) Mathematical provincialism means ignorance at the most 
basic level of developments in mathematics outside the realm of a 
particular mathematical speciality. 

How is one to balance the need to be absolutely knowledgable 
about mathematical developments in one's own field, develop­
ments which have not yet even appeared in preprint form, with the 
equally pressing need to be part of a larger, coherent mathematical 
culture? The existing mathematical culture is so vast and diverse 
that no one can hope to be conversant with more that a small part 
of it. Thus, mathematical provincialism seems to be a necessary 
prerequesite for serious advances in research. But it can happen 
that mathematical work never gets beyond preprint form, or pub­
lication in a journal with very restricted circulation. In this age of 
financial crunch for libraries, when even the UIUC with one of the 
biggest mathematical journal libraries in the world is steadily cut­
ting back on journal subscriptions, only main-stream papers have 
a chance at wide circulation. (Perhaps this problem will be solved 
by electronic publication, but it has not happened yet.) This means 
that early work on what is later perceived as a main-stream topic 
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may be lost, or at least misplaced. This is an interesting aspect of 
the present book (see below). From the point of view of current 
research, knowledge in a book is dead, but a book at least pro­
vides a context. In fact, by the time a particular piece of work 
in a rapidly developing field has appeared in published form, it is 
already too late to contemplate contributing to the future develop­
ment of this work. Physicists at least commission review articles 
to codify advances that are thought to be worth adding to general 
knowledge. Mathematicians have conferences, colloquia, visiting 
lecturers, and occasional review articles that somehow elude topi­
cality, etc. But, all too often, these attempts at building a general 
mathematical culture are "context-free" in the sense of not being 
placed in a mathematical context, much less being placed in a more 
general scientific cultural context. 

The mathematical community is not even close to solving the 
problem of mathematical provincialism, much less that of scien­
tific and historical provincialism. It is not even clear that a solu­
tion is desired, or desirable. Scientific provincialism and historical 
provincialism are overcome only by a few individuals. The equally 
context-free education we offer our graduate students serves to per­
petuate this tradition by handing on from one generation of math­
ematicians to the next the idea that there is no cultural tradition 
in which they are expected to participate. For a discussion of pi­
oneering effort to ameliorate this condition, see [3]. 

There is also the problem of fashion. So called good mathe­
matics, at a particular time, often means that which is currently 
fashionable. In category theory, homological algebra was fashion­
able and then topos theory had its turn. Right now, it may be 
that categorical computer science is becoming fashionable, at least 
in certain categorical and theoretical computer science circles. As 
in all aspects of human existence, what is fashionable is deter­
mined by certain leaders of fashion. Sociology has yet to explain 
how these leaders achieve their rank, but their existence cannot 
be denied. In mathematics, we like to think that leadership fol­
lows merit, and often, but not always, that is so. Fortunately, the 
sources of funding for mathematics are relatively uncontaminated 
by the urge to build large empires devoted to a single subject, so 
we are spared embarrassments like that being suffered by the as­
tronomers. 

As an example of fashion and empire building, consider the 
Weil conjectures, which were proved in 1974 by Deligne after a 
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concerted effort of many years by French, German, English, and 
American mathematicians. What has happened to these theorems? 
What about all of the exquisitely tuned machinery that went into 
their proofs? The current fashion is somewhere else. In the case 
of category theory, for many years the subject was dominated by 
topos theory, because there seemed to be so much to do there that 
there was not time to think about other topics. Recent conferences 
show a distinct shift in attention, and many topics from fifteen or 
twenty years ago are reemerging. Presumably good work on these 
other topics during the intervening years has been lost. 

The problems mentioned here are not the kind that admit a so­
lution. They are just properties of the historical situation in which 
we find ourselves. André Weil once said that a mathematician 
should do his work and write it up in beautiful form and then 
burn the papers; since the only effect of publishing it would be to 
spoil somebody else's pleasure in discovering the results for him­
self. This ignores the fact that a mathematician's public stock is his 
papers and publicly recognized theorems. Things may get better 
when there is electronic publishing together with highly intelligent 
search procedures, but today, publication is all. 

3. THIS BOOK IN A HISTORICAL CONTEXT 

The book under review nicely illustrates several of these themes. 
First of all, it starts with a ten page introduction that does an 
excellent job of setting the scene and explaining the contents of 
the book. It carefully explains the circumstances concerning one 
of its main results ("Lair's Theorem" 4.3.3), which was first pub­
lished (in Lair [11]) in 1980 in a house organ whose possibly only 
American subscriber at that time was the UIUC. (It is no longer a 
subscriber because of funding restrictions.) This result was found 
independently by Makkai and Paré, and its discovery was instru­
mental in their deciding to write this book. Only later did they 
discover the earlier work. It is possible that, had this earlier work 
been widely circulated and become common knowledge at that 
time, then the present book would never have come into being, 
which would have been unfortunate because it is a very interesting 
book. Nevertheless, there is a historical gap in the record in the 
book and in Lair's work. In 1972, J. Isbell published a long paper 
[10] whose treatment theories in terms of cones and cocones cer­
tainly should have been referenced by both works. Furthermore, in 
1977, F. Ulmer, in a long preprint [15] which was never published, 
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came close to describing major parts of the theory in somewhat dif­
ferent terms in his theory of bialgebras. Bialgebras are probably 
equivalent to sketches (which of course were invented long before 
by Ehresmann [5] in 1968). Neither Lair nor Makkai and Paré 
cite the earlier works of Isbell and Ulmer, although at the times of 
their appearances, both works were well known. Makkai and Paré 
do carefully delimit the relations of their work with three other 
important sources: Gabriel and Ulmer [6], Artin, Grothendieck, 
and Verdier [1], and Diers [4]. With regard to Gabriel and Ulmer, 
which is a major source for many parts of their work, they say: 

We feel that a difference between [G/U] and the 
present work is the absence in the former, and the 
presence in the latter, of a 2-categorical view of 
the subject. 

The main theme of the book is that the three notions: models 
of an L^ ^-theory, models of a sketch, and accessible categories, 
all describe the same collection of phenomena. In the true spirit 
of category theory, not only are the notions equivalent, but the 
two corresponding notions of homomorphisms are also equiva­
lent, yielding a 2-category of accessible categories. This is crucial, 
since a main concern is to determine the closure properties of 
these notions, expressed here in terms of closure properties of the 
category of accessible categories. The fact that a 2-category is in­
volved means that the much richer constructions of 2-limits and 
2-colimits can be investigated and often shown to exist. One of 
the main results of the paper (the Uniform Sketchability theorem) 
shows how this reflects itself in terms of sketches. I did not find 
a similar discussion of what it means about L^ ^-theories. Very 
little attention has ever been paid to the logical syntax related to 
the semantics of constructions involving models of several logical 
theories. 

All of this is explained very nicely in the introduction, but what 
is missing is some historical insight into why accessible categories 
might be interesting. The main source, which is unreferenced in 
the present book and in Lair [11], is a theorem proved in 1964, 
called Lazare's theorem for flat modules, which says that a flat 
module is a filtered colimit of finitely generated free modules. 
A direct proof of this theorem is rather complicated. The proof 
was simplified by Ulmer in work that became part of Gabriel and 
Ulmer [6], where it is shown that suitable flat functors are filtered 
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colimits of representable functors. (Closely related to this is the 
well-known fact that in the category of sets, finite limits commute 
with filtered colimits.) This is the origin of the idea of looking at 
objects which are filtered colimits of simpler objects, simple be­
ing characterized in terms of presentations. What it comes down 
to is that the category of the simpler objects over a more com­
plicated object should be filtered. This leads then to the basic 
ingredients of an accessible category; namely, a subcategory B of 
locally presentable objects in a larger category A all of whose ob­
jects are filtered colimits of objects in B. (Another difference be­
tween Gabriel and Ulmer [6] and the present book is that Gabriel 
and Ulmer's locally presentable categories are cocomplete, and 
this cocompleteness plays an important role in constructions in 
showing the appropriate comma categories are filtered. Accessible 
categories are not assumed to be cocomplete while filteredness of 
comma categories is assumed.) If A is given as the category of 
models of a sketch, then B is the subcategory of "representable 
functors," whereas if A is the category of modules of an L^ oo-
theory, then, at least in special cases, B is the subcategory of 
modules of suitably small cardinality. (In fact, there is no clear 
general statement in the book concerning B in this case.) 

What about the other two ingredients? L^ ^-theories are log­
ical theories of the form familiar to all mathematicians. The only 
unfamiliar aspect is that instead of having expressions with univer­
sal and existential quantification over single variables, or possibly 
iterated quantification over several variables, simultaneous quan­
tification over arbitrary sets of variables is allowed. Furthermore, 
conjunctions and disjunctions of arbitrary sets of formulas are per­
mitted. Homomorphisms of models of such a theory must be care­
fully described. (In this book, reference is just made to Makkai 
and Reyes [12]—a not very satisfactory solution.) Sketches, on 
the other hand, are a technical device in category theory to de­
scribe mathematical structures in terms of commutative diagrams 
involving specified limits and colimits of basic objects. Models 
of a sketch are essentially functors that preserve these specified 
limits and colimits, while homomorphisms are just natural trans­
formations. The significance of the connection between these two 
ingredients is described very nicely in the introduction: 

The equivalence of sketches and infinitary logic, 
outlined above, is an important fact. It shows that 
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the notions of limit and colimit, earlier recognized 
as the most fundamental operations in category 
theory, are coextensive in their expressive power, 
when deployed in sets, with the 'traditional,' or 
'symbolic,' logical operations when the latter are 
meant in the infinitary sense. This equivalence is 
all the more striking since the development of the 
two respective frameworks was almost totally in­
dependent of each other. It is intriguing that the 
division of the categorical-logical operations into 
the two classes, that of limits and that of colim-
its, has nothing to do with the traditional division 
into (Boolean) connectives on the one hand and 
quantifiers on the other. 

Sketches and L^ ^-theories are two different, but equivalent, 
syntactic devices to describe the same semantical situation—that 
of accessible categories. Since all three are equivalent, why not 
just drop the two requiring category theory and stick to L^ oo-
theories which can be understood immediately by any mathemati­
cian. One answer is that there is a constant struggle in mathematics 
between syntax and semantics. A systematic treatment of this di­
chotomy has been a constant theme in category theory since the 
original work in the early 1960s of Lawvere [12] and Benabou [2] 
on algebraic theories. Syntax is algebraic and formal, providing 
rules for the formal manipulation of symbols, leading to compu­
tational proofs. Semantics is more geometric; it provides concepts 
to be manipulated logically and imaginatively, leading to concep­
tual proofs. The existence of powerful symbolic computers has 
changed our attitudes toward syntax and provided motivation for 
strengthening our computational tools. Sketches are indisputably 
stronger computationally than L^ TO -theories. That is precisely 
the point of the emphasis on the 2-categorical aspects of the re­
lationships between sketches and accessible categories. Sketches 
themselves are the objects of a well-behaved category. There is no 
similar, simple machinery available for L^ ^-theories. In par­
ticular, there is no good notion of "morphism" from one L^ oo-
theory to another, so there is no naturally occurring category of 
^oo oo-theories to be mapped by a functor to categories of models. 

It is useful to see this dichotomy and interplay between syn­
tax and semantics at the research level where it can be dealt with 



BOOK REVIEWS 139 

seriously, since it promises to become a central topic in the dis­
cussion of the introduction of symbolic computation programs in 
calculus. A computer just manipulates syntactic entities, apply­
ing formal rules to reduce expressions to normal forms. It is not 
concerned with why some computation is appropriate, or with un­
derstanding the meaning of the result. But, presumably, we want 
students to understand concepts (i.e., semantics) rather than just 
the following rules blindly as a computer does. How can they 
ever learn this, if they have constant access to computers which 
do exactly what the students are told not to do? The solution is 
that our teaching must include a much more extensive and ex­
plicit discussion of the connections between syntax and semantics 
in mathematics. In particular, we must be able to explain clearly 
to ourselves the difference between rules and concepts before we 
can hope to explain it to students. 

This is not the place to comment in detail about the more tech­
nical aspects of the book. Let us just mention a few topics that are 
treated. 

(i) A central motivation for this work is to determine whether, 
given a sketch S, the category of models of S in an accessible 
category A is itself accessible. If A is complete (and hence lo­
cally presentable) then the answer is yes. Otherwise, the answer 
depends on the existence of big cardinals. If there are no measur­
able cardinals, then there are counterexamples. The question of 
accessible completions of accessible categories also depends on the 
existence of measurable cardinals. 

(ii) Another obvious question is whether accessible functors 
have adjoints. The answer is yes if they preserve all limits. (Tech­
nically, accessible functors satisfy the solution set condition.) As 
a consequence, an accessible category is complete if and only if it 
is cocomplete. 

(iii) The category of accessible categories is closed under all 
kinds of ordinary and 2-categorical limit constructions. The sit­
uation is quite different for colimit constructions. Some results 
are given in the book, but this is still a topic for further research. 
Notions from 2-category theory are notoriously opaque, and the 
serious reader may find it necessary to seek more help than is pro­
vided in this book. 
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A convex body is a compact convex subset of R" with a non­
empty interior. The study of convex bodies has deep roots in the 


