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ANTIMONOTONICITY: CONCURRENT CREATION 
AND ANNIHILATION OF PERIODIC ORBITS 

I. KAN AND J. A. YORKE 

ABSTRACT. One-parameter families fx of diffeomorphisms of 
the Euclidean plane are known to have a complicated bifur­
cation pattern as X varies near certain values, namely where 
homoclinic tangencies are created. We argue that the bifurca­
tion pattern is much more irregular than previously reported. 
Our results contrast with the monotonicity result for the well-
understood one-dimensional family gx(x) = Àx (I - x ) , where 
it is known that periodic orbits are created and never annihi­
lated as A increases. We show that this monotonicity in the 
creation of periodic orbits never occurs for any one-parameter 
family of C area contracting diffeomorphisms of the Euclid­
ean plane, excluding certain technical degenerate cases where 
our analysis breaks down. It has been shown that in each 
neighborhood of a parameter value at which a homoclinic tan-
gency occurs, there are either infinitely many parameter values 
at which periodic orbits are created or infinitely many at which 
periodic orbits are annihilated. We show that there are both 
infinitely many values at which periodic orbits are created and 
infinitely many at which periodic orbits are annihilated. We 
call this phenomenon antimonotonicity. 

I. INTRODUCTION 

The orbit of point x under a diffeomorphism of the plane ƒ is 
the sequence {ƒ (x)}, where for k > 0, ƒ denotes the /c-fold 
composition of ƒ , f~ denotes the /c-fold composition of ƒ" l 

and j is the identity map. Let p be a periodic point with period 
n. The stable manifold Ws{p) of the point p is the set {x : 
l inifc^ fnk(x)=p}. Similarly, the unstable manifold Wu(p) of 
p is {x : l i m ^ ^ f~n = p} . We assume that p is a hyperbolic 
saddle, that is, the eigenvalues ex, e2 of Dfn{p) are such that 
I^J < 1 < \e2\. Since ƒ is a diffeomorphism of the plane, both 
Ws(p) and Wu(p) are curves. There exists a homoclinic tangency 
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of p at q if Ws{p) and Wu(p) intersect tangentially at q. The 
homoclinic tangency of p at q for a one-parameter family fk 

at A = A0 is called nondegenerate if W5(p) and Wu(p) have 
quadratic contact at # and Ws(p) has nonzero velocity transverse 
to Wu{p) at q as A varies [R]. Any value A0 at which this occurs 
is called a nondegenerate tangency value. 

A one-parameter family of maps gÀ is called monotone increas­
ing (decreasing) on an interval J of parameter values if there are 
no bifurcations for X e J in which periodic orbits are annihilated 
as X increases (decreases, respectively). We say fk is antimono­
tone at X0 if periodic orbits are both created and annihilated as X 
increases in each neighborhood of the parameter value X0 . 

The only smooth family for which monotonicity has been 
proved is the quadratic family gÀ(x) = Xx(\ - x) (Douady, Hub­
bard, Milnor, Thurston, Sullivan, see [MT]). By contrast we have 
the following theorem. 

Antimonotonicity Theorem. Each dissipative C planar diffeomor-
phism family is antimonotone at each nondegenerate homoclinic 
tangency value. 

Note that this result says nothing about what happens near de­
generate homoclinic tangency values, but we believe this situation 
is essentially the same as for the nondegenerate case. 

We sketch the proof for a model case. A paper detailing the 
proof of the general result is in preparation. If two curves are 
tangent at X = X0 and move apart, so that they do not intersect as 
X increases (decreases) beyond X0, then we say contact is broken 
at X0 (contact is made at X0, respectively), and we say X0 is a 
contact-breaking value (contact-making value, respectively). 

Bubble Lemma. If X0 is a nondegenerate tangency value at which 
contact is made, then there are nondegenerate tangency values ar­
bitrarily close to X0 at which contact is broken (and vice versa). 

The theorem follows immediately from the Bubble Lemma be­
cause in each neighborhood of a contact-making nondegenerate 
tangency value, infinitely many periodic orbits are created (and 
near contact-breaking ones, infinitely many are annihilated) [N, 
GS]. Thus, in each neighborhood of a nondegenerate tangency, or­
bits are both created and annihilated, as is illustrated in Figure 1 
for the example of the Henon family. 
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FIGURE 1. SMALL BUBBLE IN HENON FAMILY HÀ(X , y) = 

(k — X + 0 . 3 y , . x ) . 5,000 PREITERATES, X-COORDINATE 
OF 80,000 ITERATES PLOTTED PER X VALUE. 

II. PRELIMINARIES 

For each Cantor set C c M Newhouse [N] defines a number in 
[0,oo) called the thickness T(C) associated with C . A "middle-
0" Cantor set Ce = I \Ga is constructed inductively as follows: 
I = [0, 1] and Ia 0 and Ia { are the left and right component 
of Ia\Ga, respectively, where Ga is an open interval of length 
0 • | / J in the middle of Ia . The thickness of C0 is (1 - 0)/20 . 
Newhouse proves the following lemma. 

Thickness Lemma. Let F and H be Cantor sets in R, with H n 
hull(-F) and hull(//) n F both nonempty, and x(H) • x(F) > 1. 
Then H nF is nonempty. 

A Newhouse horseshoe family NÀ is defined as follows. (See 
Figure 2 on page 472 for symbols, coordinates, and the role of 
the constants, and see Figure 3 on page 472 for the first iterate 
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FIGURE 2. COORDINATES FOR N, 

N(A) N(B) 

FIGURE 3. FIRST ITERATE OF N, 

Nx). Define Nx(x, y) = (ax, By) for (x,y) e A; Nx(x,y) = 
(l-ax,P(l-y))for(x,y)eB; Nx(x, y) = (y,-X + y(l- x) 
+ S(y - 1/2) ) for (x, y) G C ; and continue Nx smoothly to 
the rest of R2 . 

We choose afi < 1 so NÀ is dissipative (i.e. |detD(A^)| < 1) 
throughout A U B , and we choose a, fi ,y,ô9 e such that iVA is 
one-to-one on AuBöC. This implies ft > 2. Let A denote the 
maximal invariant subset of AuB \ A is a Cantor set and is the 
product Au x As of two Cantor sets. Au is the projection of A 
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onto the x-axis and As onto the y-axis. We assume that a and 
P are selected so that T(A5) • T ( A J = (fi - 2)~{a{l - 2a)"1 > 1. 

A primary stable (unstable) segment is a line segment of the 
form [0, 1] x {y} where y e As, ({x} x [0, 1] where x G \ , 
respectively). A primary unstable parabola is a parabolic arc of the 
form Nx(x, [1/2 - e, 1/2 + e]) where x e Au. 

Newhouse and Robinson show in [N, R], that in effect, there 
exist parameter values A near homoclinic tangencies where for a 
proper choice of coordinates the map is similar to Figure 3. We 
are assuming that the map changes in a regular way as A varies, 
thereby avoiding technical complications. 

III. PROOF OF BUBBLE LEMMA 

ASSUMING NEWHOUSE HORSESHOE FAMILIES OCCUR 

Let A0 be a nondegenerate tangency value, which we assume to 
be a contact-making tangency. We assume that on a small interval, 
arbitrarily near ÀQ, there is a Newhouse horseshoe family. We 
rescale that small interval to be [0 ,1 ] . The primary tangencies 
(the tangencies of primary parabolas with primary stable segments) 
are all contact-making. We will show that arbitrarily near A = 0, 
there is a nondegenerate tangency which is contact-breaking and 
is not primary. 

The parabolic arc of the form v(t, £) = (1/2 + t, J3~n+Ç + ôt2) 
for 0 < £ < (\~2/p)p{-\ St2 < r n -2p-n~l - £ , \t\<e, 
lies in a gap in the Cantor set of primary stable leaves as shown in 
Figure 4. 

V(f£) 

FIGURE 4. THE ARC v(t, Ç). 
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Let r(£) denote the set of parameters such that v(t,Ç) lies 
on a primary parabola. For each A the vertices of the primary 
parabolas have y-coordinates at ( -A+yAJ, so we see that r(£) = 
-yAu-Ç-P~n and the thickness of T(Ç) is equal to T ( A J . The 
nth image of v(t9 £) under Nx is 

-À-yan-\l/2 + t) + y 

+ ô(p-l+Çpn-l+Sn~lt2-l/2)2). 

There is a £ = J , f = 7 at which the y-coordinate has a sta­
tionary inflection point as shown in Figure 5b, and J and 7 sat­
isfy Aôpn~\p~l +ZPn~l - 1/2) = -3(yan~lpn-l)2/\ and 7 = 
(-yan-lpn-l)2/3/4ô/3n-{. Notice 

? = (1/2)(1 - 2//?)/?1"" + (ap)2n/\r2n) 

so for large n we have 0 < J < (1 - 2/P)pl~n . 

Claim. For fixed £ < £, with J - £ sufficiently small, there ex­
ists a l e T{£) such that the nth iterate of the primary parabola 
containing v[t9Ç) has a tangency with a primary stable segment. 
This tangency is contact-breaking and is nondegenerate for { < £. 

The first part of this claim follows from the fact that the local 
maximum y(£,A) (see Figure 5a) of the y-coordinate of 
vn(t9Ç9k) depends linearly on A. That is, 

{y(Z, k)\k e r« |)} = {y(Ç, 0) - k\k e r « ) } , 

and so {y(Ç9 A)|A G T(£)} has thickness T(AM) . By the Thick­
ness Lemma, there exists some A e r(£) such that y(Ç9A) e A5. 
Note that A is 0(fi~n). Since 1 is in r (£) , there is a primary 
unstable parabola which contains v(t9Ç)9 so ^(f, £, A) is con­
tained in the unstable manifold of A and is tangent to a pri­
mary stable segment of A. As A varies near 0, the position of 
this primary unstable parabola is v(t, Ç + A). Nondegeneracy and 
contact-breaking can be verified by considering the y-coordinate of 
d(vn(t9 £+k, X))/dk and noting that for sufficiently small £-£ > 0 
and large n this derivative is negative for / sufficiently close to 
7. 

We have shown that there is a primary stable leaf S and a pri­
mary unstable parabola U so that the nth iterate of U has a 
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a:S<S 

b:^k 

c:k>Z, 

FIGURE 5. THE INFLECTION VALUE £, 

FIGURE 6. CONTACT-BREAKING TANGENCY q AT X - X. 

contact-breaking tangency with S (see Figure 6). Since the sta­
ble and unstable manifold of the fixed point p at (0, 0) contain 
curves arbitrarily close to S and U, respectively, we see that p 
will have contact-breaking tangencies at parameter values arbitrar­
ily near X. Finally, for n large, this X is near 0. 
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