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STRUCTURE THEORY AND REFLEXIVITY 
OF CONTRACTION OPERATORS 

B. CHEVREAU, G. EXNER, AND C. PEARCY 

1. Introduction. Let ^ be a separable, infinite-dimensional, complex 
Hilbert space, and let J ? ( ^ ) denote the algebra of all bounded linear oper­
ators on ^ . The purpose of this note is to announce several new, and rather 
general, sufficient conditions that a contraction T in J&ffi) be reflexive, and, 
at the same time, to give various characterizations of the class of those con­
tractions that possess an analytic invariant subspace (definition given below). 
Complete proofs and other results will appear in [7]. The principal new idea 
involved is a considerable improvement of the main construction of §3 of [9]. 
The new reflexivity theorems also depend on techniques from [9, 3, 1, and 4], 
and yield, in particular, the following improvement of the main result of [4]. 

THEOREM 1.1. If T is a contraction in Sf{%f) such that the spectrum 
o~(T) of T contains the unit circle T, then either T is reflexive or T has a 
nontrivial hyperinvariant subspace. 

If T e Sf{%?) we denote by sfT the dual algebra generated by T (i.e., $/T 

is the smallest unital subalgebra of Sfi^f) containing T that is closed in the 
weak* topology (which accrues to Jzf^) by virtue of its being the dual space 
of the Banach space ^ i ( ^ ) of trace-class operators)). It follows that S$T is 
the dual space of QT = ^ i ( ^ ) / " L ^ r , where ^S^T is the preannihilator of S/T 
in ^ i ( ^ ) , under the pairing 

(A, [L]) = tr(AL), A e sfr, L e %{&\ 

where [L] denotes the element of the quotient space QT containing the trace-
class operator L. Thus, if x and y are vectors in ^ , then [x <8> y] denotes 
the element of QT containing the rank-one operator x 0 y. The dual algebra 
S/T is said to have property (Ai^ 0 ) if for any sequence {[ i jDj l i of elements 
from QT there exist vectors x and {yj}JLx in %? satisfying 

(l) [£i] = [*®y;], i = i , 2 , . . . . 

If, moreover, there exists p > 1 (independent of the family {[1^]}) with the 
property that for every s > p, the vectors {x} and {%} satisfying (1) can also 
be chosen to satisfy 

/ oo \ l / 2 

Nl< ( « £ I M J . Ilwll < («IPilll)1/a, J = I>2,..., 

then we say that S$T has property (Ai^0(p)). 

Received by the editors September 15, 1987 and, in revised form, December 16, 1987. 
1980 Mathematics Subject Classification (1985 Revision). Primary 47A15; Secondary 47A20. 

©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

299 



300 B. CHEVREAU, G. EXNER, AND C. PEARCY 

Recall that if T is an absolutely continuous contraction in « S * ^ ) , and 
H°°(T) is the usual Hardy algebra of functions on T, then the Sz.-Nagy-
Foias functional calculus $T- H°°(T) —• S#T is a weak* continuous algebra 
homomorphism with range weak* dense in J^r. The class A = A ( ^ ) is 
denned to be the set of all those absolutely continuous contractions T in 
Sf {%?) for which $T is an isometry; in other words, the set of such T for 
which | | /(T)| | = H/lloo for every ƒ in H°°(T). Various sufficient conditions 
for an absolutely continuous contraction T to belong to A are known [2], One 
such is that a(T) fl D is dominating for T, where D is the open unit disc in 
C. The class AI ,N 0 [resp. Ai^0(/o)] is defined to consist of those T in A ( ^ ) 
for which s/T has property (Ai,«0) [resp. (Ai^0(p)]. 

2. Analytic invariant subspaces. It turns out that another concept 
plays a central role in the derivation of our results—namely, the notion of 
an analytic invariant subspace (cf. [10, 3]). If T is a contraction in -2*(^) , 
./# G Lat(T), and there exists a nonzero conjugate analytic function e : A —• e\ 
from D into JP such that 

(T\Jt - A)*eA = 0 , VA G D, 

then ^# is said to be an analytic invariant subspace for T. If, in addition, 
VAGD

 eA = ^ \ then ./# is said to be a full analytic invariant subspace for T. 
If T G &{&}, we write ap(T), oy(T), and cre(T) for the point spectrum, 

right spectrum and essential (Calkin) spectrum of T respectively. Moreover, 
following [8], we write #j.'(T) for the set of all A in C for which T - A is a 
Fredholm operator with (strictly) positive index. Recall also that a subspace 
3T of %? is said to be semi-invariant for T if 3T = J£ QJK, where ^,Jf G 
Lat(T) and *# D Jf\ we denote the set of all semi-invariant subspaces for 
T by SiT(T). (Of course, & itself and all elements of Lat(T) belong to 
<5if{T).) As usual, if 3t G ̂ (T), we write ï > for the compression of T 
to jr. 

THEOREM 2 . 1 . If T is an absolutely continuous contraction in £?(£?), 
the following statements are equivalent 

(a) T has an analytic invariant subspace. 
(b) T has a full analytic invariant subspace. 
( c ) T G A M o . 
(d) T G Ai,N0(p) for some p > 1. 
(e) There exists X G &f(T) such that (rp(T^) = D. 
(f) There exists 3T G <9Lf{T) such that T j G A and 

( a r ( T ^ ) n D ) U ( D \ ^ ( T ^ ) ) 

is dominating for T. 

Some of the implications in this "wheel of equivalences" are easy; the deeper 
ones depend on additional, more technical, characterizations of the class AI,N0 

in terms of certain properties Er
e and FQ^ which appear in [9 and 7], as well 

as on techniques and results from [8, 4 and 5]. 
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3. Results on reflexivity. Recall that an operator T in Sf(2f) is said to 
be reflexive if every operator 5 in £?{%*) such that Lat(S) D Lat(T) belongs 
to WT, the closure of S#T in the weak operator topology. If T is a contraction, 
we denote by Ta the direct summand of T that is the absolutely continuous 
part of T (i.e., Ta is the direct sum of the completely nonunitary part of T 
and the absolutely continuous part of the unitary part of T). 

THEOREM 3 . 1 . Each of the following is a sufficient condition that an 
arbitrary contraction T in £?(<%*) be reflexive: 

(A) T (or T*) satisfies any one of the conditions (a)-(f) of Theorem 2.1. 
(B) Ta (or T*) satisfies (c) or (d) of Theorem 2.1. 
(G)Tae(C0. U C . o ) n A . 
(D)T a€(Ci. UC. i )nA. 
(E) T is hyponormal and Ta G A. 

Theorem 1.1 follows from Theorem 3.1(C) via the fact that any contraction 
T with a(T) D T not in the class (Co. U C.o) H A has nontrivial hyperinvariant 
subspaces (cf. [2, Theorem 4.3]), and on the basis of Theorem 3.1 we make 
the following conjectures. 

CONJECTURE 3.2 [6]. Every T in A is reflexive. 

CONJECTURE 3.3 . Every hyponormal operator is reflexive. 
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