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This book, aimed at a mixed public of physicists and mathematicians, starts 
with a 150-page chapter, called the Introduction, on optics. The purpose of 
this introduction is to illustrate the importance of symplectic geometry for 
physics. 

The primitive way in which the discussion starts with Gaussian optics may 
serve as an eye-opener for some. However, it may also make a somewhat 
artificial impression on those who already have seen the relation between 
Snell's law, Fermat's principle, and Hamilton's treatment of geometric optics 
in some early physics course. 

The subsequent epic story of Fresnel's discovery of the wave nature of 
light, leading to oscillatory integrals, is always very impressive. Here I am 
curious whether Fresnel himself really used complex notation as suggested in 
the book. Also I missed the end of the story, explaining light, and in particular 
its polarization, as rapidly oscillating solutions of Maxwell's equations. 

Instead the book takes a surprising and exciting turn to use Fresnel inte­
grals in order to pass to the standard representation of the metaplectic group 
on L2(Rn) . This move into quantum mechanics is followed by, among other 
things, a discussion of the Groenwald-van Hove theorem, saying that there 
is no way of extending the metaplectic representation to include any non-
quadratic polynomial. It is a great service to the public to treat this subject 
so completely in this book. 

Maxwell's equations do appear at the end of Chapter I, but only to treat the 
motion of a charged particle in an electromagnetic field as being Hamiltonian 
with respect to a symplectic form on the cotangent bundle, which differs from 
the standard one by a "magnetic term". 

Chapter I is concluded with the provoking question "Why symplectic ge­
ometry?" I would like to add to their answer that classical mechanics not 
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only is a high-frequency approximation to quantum mechanics, but also can 
be viewed as an aspect of partial differential equations of wave type, which is 
not inaccurate but rather loses some of the information without distorting it, 
in the way of a homomorphic image of a mathematical structure. For instance, 
the solution operator of a wave equation is a Fourier integral operator, with 
propagation of singularities described exactly by the corresponding classical 
Hamiltonian system. 

The third fundamental principle proposed by the authors, that of general 
covariance, touches upon the recent increased interest in the study of moduli 
spaces of geometric structures, such as Riemannian (or complex) structures 
modulo the group of diffeomorphisms. Momentum maps and symplectic struc­
tures appear in a natural way in many cases. For instance, the moduli space 
for Riemann surfaces has a Kàhler structure, the Weil-Petersson metric, which 
has turned out to be very useful. 

As a general remark, I think that it is safe to say that mathematicians are 
quite convinced now that symplectic structures are at least as useful as, say, 
the Riemannian ones. 

The remainder of the book is very different in structure from Chapter I; 
it contains primarily mathematical theory, applied only from time to time to 
physical examples. It starts in Chapter II with the geometry of the momen­
tum map, in a very nice and complete description. In accordance with the 
philosophy that the book review should rather express the reviewer's ideas 
than describe the content of the book, I would like to give the following com­
ments on the section on "collective motion", which is central to Chapter II 
and to part of Chapter IV on completely integrable systems. 

First: As motivation, a Hamiltonian is discussed which has a term which 
is only a function of the total angular momentum and inertia tensor, and a 
potential with a sharp minimum at certain specific distances. This then re­
sults in "a rigid body motion together with a superimposed rapid oscillation." 
Actually, Hamiltonians of this kind have been proposed long ago as an ex­
planation of Hamiltonian systems with constraints. The required asymptotic 
expansions have been worked out by, among others, Rubin and Ungar [1], see 
also Takens [2]. 

Second, the example of the spherical pendulum is shown to fall in the 
framework of collective motion. This observation does not help me in un­
derstanding the spherical pendulum better. I rather conclude from it that 
collectively integrable systems (or systems which are integrable because of 
symmetry, as I would call them) apparently can have quite interesting struc­
ture. In fact it strikes me that in the vast literature on integrable systems 
one often stops after having established that certain systems are integrable, 
instead of proceeding by taking a closer look at how they actually behave. 
In particular one would expect an analysis of the singularities of the fibra-
tion. The most singular fibers are the equilibrium points and the periodic 
solutions—in classical mechanics these special solutions traditionally got a lot 
of attention. In passing I cannot help but remark that the picture of the image 
of the momentum map for the spherical pendulum has been copied wrongly: 
it must have a corner at the minimum. 
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Third, if a system is integrable because of a noncommutative symmetry 
group, the phase space is fibered into isotropic tori of dimension smaller than 
the number of degrees of freedom of the system. From the point of view 
of perturbations ("breaking the symmetry"), this should be regarded as a 
degenerate situation. For instance the KAM theorem does not apply and no 
nearby quasiperiodic solutions will persist. (Only the singular fibers of the 
fibrations have more chance to survive.) This quite obvious remark about 
integrable systems is usually not made in the literature. 

Returning to the actual content of Chapter II, the treatment of the con­
vexity theorem, and the application to the asymptotics of multiplicities of 
representations in spaces of holomorphic sections of line bundles, is very nice, 
and remarkably light-footed in comparison to the highly nontrivial nature of 
the results. 

Chapter III, containing among others the principle of covariance mentioned 
in the Introduction, treats the motion of a classical particle in a Yang-Mills 
field. The latter in turn is a sort of "classical substratum" of a quantum field 
theory that is more complicated than the "classical" quantum theory, which 
at least deals with linear operators. So in some sense Chapter III is two steps 
away from the real thing—if one insists on the latter. 

In the meantime the moduli space for instantons (Yang-Mills fields satis­
fying a minimality condition) have been proved (by Donaldson and others) 
to give completely new information about the differential topology of 3- and 
4-dimensional manifolds, a surprising new development in pure mathematics 
which was caused by an invention of theoretical physicists. As mentioned 
before, momentum maps appear in this context too. 

Chapter III also contains a local normal form for Hamiltonian actions. This 
is one of the main new mathematical results in the book, found independently 
also by Marie. One would expect it to be useful also in the proof of the 
convexity theorems. 

Chapter IV deals with Lie algebra techniques leading to complete inte-
grability, such as the Kostant-Symes lemma. Systems of Calogero type are 
obtained as quotients of much simpler looking mechanical systems. The chap­
ter ends with a pleasant review of some of the well-known infinite-dimensional 
integrable systems, such as KdV. 

The last Chapter, V, is on filtered Lie algebras, which are deformed into 
their graded counterparts. The aim is to describe how the coadjoint orbits 
deform in the process, usually into families of lower-dimensional ones. For 
example, the wavelength is an invariant of light for the Galilean group, but 
not for the Poincaré group, due to the Doppler effect. Another spectacular 
application is Einstein's famous equation E = rac2. 

Chapter V also contains some basic standard facts about Lie algebras that 
are used throughout the book—it may be helpful to mention this here once 
again, because in the book cross-references are scarce. 

Trying to write a book myself, I have great admiration for the fluent style 
of the authors. They have a lot of interesting ideas, and present them in a very 
eloquent way. A drawback is that often details are being glossed over. Also, 
the reader who wants to get full understanding could at several points have 
been helped with more specific references than those given in the text. Finally 
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it is a pity that the reprint apparently has not been used to make corrections, 
because there are many minor, but sometimes irritating, misprints. 

REFERENCES 

1. H. Rubin and P. Ungar, Motion under a strong constraining force, Comm. Pure Appl. 
Math. 10 (1957), 65-87. 

2. F. Taken s, Motion under the influence of a strong constraining force, Global Theory of 
Dynamical Systems (Z. Nitecki and C. Robinson, eds.), Lecture Notes in Math., vol. 819, 
Springer-Verlag, Berlin and New York, 1980, pp. 425-445. 

J . J . DUISTERMAAT 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 18, Number 1, January 1988 
©1988 American Mathematical Society 
0273-0979/88 $1.00 + $.25 per page 

Semigroups of linear operators and applications, by Jerome A. Goldstein. Ox­
ford Mathematical Monographs, Oxford University Press, Clarendon Press, 
New York and Oxford, 1985, x + 245 pp., $42.50. ISBN 0-19-503540-2 

This year is the centenary of the founding of the analytic theory of one-
parameter semigroups: In 1887 Giuseppe Peano [Pe] wrote the system of 
ordinary differential equations 

dui/dt = oni/i H r-alnun + /i(£) 

dunjdt = an\Ui + • • • + annun + fn(t) 

in matrix form as du/dt = Au + ƒ and found the explicit formula 

u{t) = etAu{0) + f dse^-^fis) 
Jo 

for the solution, where etA = YïkLo tkAk/k\. The mapping t > 0 -+ T{t) = 
etA is called the semigroup generated by A. More generally a Co-semigroup on 
a Banach space X is a strongly continuous mapping from R+ into the bounded 
operators on X with the properties T(t + s) = T{t)T(s) and T(0) = 1. The 
generator of T is the operator A defined by A f = \imt-+oo (Tt f — f)/t where ƒ 
is in the domain D(A) of A if and only if the limit exists. These concepts were 
introduced by Hille in the thirties, and he studied the semigroup by means of 
the resolvent (A - A)"1 = /0°° dte~xtT(t). A fundamental theorem, proved 
by Hille and Yosida for contraction semigroups, and Feller, Miyadera, and 
Phillips for general semigroups around 1950, states that A is the generator of 
a Co-semigroup T if and only if A is a closed, densely defined operator, and 
there exist real constants M,u; such that the resolvent (A — A ) - 1 exists for 
A > u and 

| | ( A ~ a ; ) n ( A - A ) - n | | < M 

whenever A > u and n = 1,2,3,. . . . In this case \\T(t)\\ < Me"*, and 

T{t)f= lim ( I - - A ) f for all ƒ € X. 


