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The book contains much more than the mere proof of the two principal 
results. In the first two chapters Gromov explains basic facts about manifolds 
of nonpositive curvature and of course does this in his very own original style. 
Therefore this introduction contains exciting new ideas even for experts. 
Certainly the most important one is the definition of the Tits metric for points 
at infinity of a complete simply connected manifold of nonpositive curvature. 
If x and y are such points then <(x, y) is defined as the supremum of all 
angles under which x and y can be seen from a finite point. The Tits distance 
Td is then defined as the corresponding inner metric, i.e. as the infimum of the 
length (w.r.t. <) of all curves in the boundary connecting the points. One of its 
main features is that flat totally geodesic subspaces are reflected by this metric. 
They give rise to isometrically embedded round spheres in the boundary. In 
particular, the boundary of Rn with the Tits metric is the standard sphere 
Sn~1. For a symmetric space, Tits metric and Tits building contain the same 
information and determine each other. This explains the name. There is no 
doubt that the Tits metric will be an important tool for further investigations. 

The book by M. Gromov, V. Schroeder, and W. Ballmann is an extraor­
dinary one which contains a wealth of new ideas as well as plenty of 
inspiration for further work. (For example the study of the relation between 
Tits metric and fundamental groups of compact quotients seems to be very 
promising.) It is of course not a textbook in the usual sense. Although it starts 
quite easy it ends more or less like a research paper. But due to the excellent 
work of V. Schroeder the presentation is always clear. I think the book will 
have a strong influence on the further development of the theory of manifolds 
of nonpositive curvature. 

REFERENCES 

[B] W. Bâllmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2) 122 (1985), 
597-609. 

[Gr-Th] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, preprint, 
1985. 

[H] E. Heintze, Mannigfaltigkeiten negativer Krümmung, Habilitationsschrift, Bonn, 1976. 

ERNST HEINTZE 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 17, Number 2, October 1987 
©1987 American Mathematical Society 
0273-0979/87 $1.00 + $.25 per page 

Diophantine inequalities, by R. C. Baker, London Mathematical Society Mono­
graphs, New Series, vol. 1, Clarendon Press, Oxford, 1986, xii + 275 pp., 
$65.00. ISBN 0-19-853545-7 

The volume under review deals with analytic methods for diophantine 
inequalities. For diophantine inequalities, and in fact for many diophantine 
problems in general, the appropriate tool is Fourier analysis. Among the most 
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important situations are (i) when the underlying group G = Z, with the dual 
group G the torus T = R/Z, (ii) when G = T, G = Z, (iii) when G = G = R, 
and (iv) when G= G = Z/mZ. 

The Hardy-Littlewood circle method rests on Fourier analysis on Z, so that 
we are in case (i). Writing e(z) = e2"iz, we have jT e(na)da = 1 or 0 when 
« = 0 o r n G Z \ 0 , respectively. Thus given a polynomial P(x) = P(xl9..., xs) 
with integer coefficients, and given a bounded domain Sf c R*, the number 
Z = Z(P, ^ ) of integer points x e ^ with P(x) = 0 is given by 

(1) Z-ff(a)da 

with 

(2) ƒ ( « ) = I e(«i>(x)). 

In practice, the method depends on a judicious partition of T into intervals, 
into the so-called major and minor arcs, in order to estimate the integral in 
(1). An excellent account of the method may be found in a recent book of 
Vaughan [8]. The best known appUcation of the circle method is on Waring's 
Problem, i.e. the problem of representing integers n as sums of nonnegative 
k th powers: 

(3) w = x*+ ••• + xk. 

Here (1), (2) may be applied with P = xk + • • • + x* - w, and 9> the domain 
0 < xx< n1/k (i = 1 , . . . , s). Weyl's estimate for exponential sums leads rela­
tively quickly to G(k) < 2k + 1, where G(k) is the least value of s such that 
(3) may be solved for sufficiently large n, say for n > nx(k). The more 
sophisticated Vinogradov estimate leads to better results when k is large, in 
particular to G(k) < cxk logk, with an absolute constant cv The method is 
much more difficult to apply to problems which, in contrast to Waring's 
problem, are not of additive type. In this direction, the most outstanding 
achievements were obtained by Davenport [3] and by Heath-Brown [5] on 
cubic equations. 

In the present book, whose content is entirely different from that of 
Vaughan, diophantine problems on all the four groups mentioned above are 
studied, with emphasis on (ii), (iii), (iv). These problems, which are in general 
less well known than the diophantine equations treated by the Hardy-
Littlewood method, have a character and charm of their own. The methods 
and results are sometimes parallel to the ones in the case (i), but very often 
extra difficulties arise. We are still dealing with problems where the variables 
are integers or integer ^-tuples, but instead of polynomials P with integer 
coefficients, we have polynomials with coefficients (and therefore values) in a 
group G. 

Let us begin with the case (ii), so that G = T. Given £ e T, say £ the coset 
of an element a e R in R/Z = T, let ||£|| denote the distance from a to the 
nearest integer. Now if P(x) is a polynomial with coefficients in T, and if 
^ c R5, we are interested in the number R = P(P, ^ ,8 ) of integer points 
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x e 3f which are solutions of the diophantine inequality 

||i>(x)||<«. 
The simplest idea would be to work with the function <j> : T -» R which is 1 
when ||£|| < 8, and 0 otherwise. Since </> has no nice Fourier expansion (even if 
we redefine <J>(£) = \ for £ with ||£|| = 8), it is better to work with a smooth 
function <J>* which is close to </> and whose Fourier expansion converges 
rapidly. Suitable functions </>* were introduced by Vinogradov, and by Beur-
ling and Selberg. If, say, <£* < <J>, then 

Given the Fourier expansion <J>*(£) = £„ e z ave{v^\ we obtain 

(4) * > E «„ƒ(") 
ceZ 

with 

(5) /(*)- I (.*«), 
X € ^ 

in analogy with (1), (2). 
There is usually no need to apply Fourier analysis to linear problems. 

Dirichlet's Theorem says that given a e R and N > 1, there are integers x, y 
with 1 < x < N and \a - (y/x)\ < l/(Nx\ i.e. with \ax - y\ < N~l. Thus 
given a e T and JV > 1, there is a natural x < iV with ||ajc|| < iV-1. Consid­
erable difficulties arise if we try to approximate a e R by fractions of the type 
y/x2, i.e. if we try to make \\ax2\\ small. Heilbronn [6], improving on earlier 
work of Vinogradov, used the method outlined above to prove the existence of 
a n x i n l < x < i V with ||ax2|| < c2(e)iV"(1/2)+e. More generally, given natu­
ral k, there i s a n x i n l < x < J V with ||OJC*|| < c2(k,e)N~a/K)+% where 
K = 2k~l. The exponent here is almost certainly not best possible for k > 1, 
and it may be conjectured that the correct exponent is -1 4- e. For small values 
of k > 1 the exponent -(l/K) + e appears to be extremely difficult to 
improve, and few mathematicians expect a big improvement soon. On the 
other hand, it had been annoying for some time that for polynomials P(x) = 
akx

k + • • • +axx in place of axk, only an exponent even worse than -(1/K) 
+ e could be established. R. C. Baker, in technically brilliant work [1], 
("solution of Davenport's problem") did in fact obtain the exponent (-1/K) 
+ 6 for general P with constant term zero. All this is achieved using Weyl type 
estimates, but for large values of k Vinogradov's estimate yields the exponent 
-1/K' with K' = c3k

2logk. This is in analogy with the two types of 
estimates for G (A:) in Waring's Problem. 

The results mentioned so far are contained in Chapters 2-6 of the work 
under review. Simultaneous approximations are treated in Chapters 7 and 8. 
Dirichlet's Theorem say that for av..., ah in T and for N > 1, there is an x in 
1 < x < N with IKxH < N~1/h (i = 1,...,/i); this is best possible. As a 
simultaneous approximation version of Heilbronn's Theorem, it may be shown 
that there is a natural x < N with 

\\atx
2\\<c4(h9e)N-W2+h)+' (i = 1 , . . . , h). 
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Similar, but weaker, results may be established with atx
2 replaced by poly­

nomials P((x) of degree k and with zero constant term. The results may be 
interpreted geometrically, and the proofs depend on a "lattice method" from 
the geometry of numbers in conjunction with the usual Fourier transform. 

In Chapters 9 and 10, quadratic forms in several variables, as well as 
additive forms, are considered. For example, given real quadratic forms 
Qx,...,Qh in s variables, and given N, there exist integer points x with 
maximum norm |x| < N and 

(6) n e w || <*-«/*>+. (i = i,...,h), 
provided that s > s^h, e). The exponent is essentially best possible. This is a 
typical "large number of variables" result, for the numbers s1 = sx(h, e) 
obtainable (but no person in his/her right mind would actually try to compute 
it) by present methods is huge. No precise analogue of (6) is known for forms 
of even degree k > 2. For forms of odd degree d, there is a stronger result with 
arbitrary exponent -E, derived in Chapter 14. 

Now let us turn to the case (iii) with G = R. Given a polynomial P(x) with 
real coefficients and a domain Sd, we write S = S(P,@,8) for the number of 
integers points x e Sb with 

| P ( x ) | < * . 

With 

r(i) = max(0,l -11/51) = « " ^ e(aè)(^^Jda, 

we have 

and therefore 

with ƒ given by (2). Davenport and Heilbronn [4] used this approach to show 
that an inequality 

K*l + *•* +«5*11 < 5 

with real al9...,a5, not all of the same sign, has a nontrivial solution. The 
same conclusion was later shown to be true for a general indefinite quadratic 
form in at least 21 variables. One of the outstanding open problems is to show 
that 5 variables suffice, and perhaps 3 variables suffice if the coefficients are 
not all in rational ratios. ( Note added in proof. G. A. Margulis dealt with this in 
a recent manuscript, "Indefinite quadratic forms and unipotent flows on 
homogeneous spaces".) This topic is not explored in the present treatise, but in 
Chapter 14 one finds the following "many-variable" result: given forms 
Pl9...,Phof odd degree k with real coefficients, the simultaneous inequalities 

(8) |^WI<* 0 = 1,...,*) 
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have a nontrivial integer solution, provided the number of variables exceeds 
s2 = s2(h, k). This contains a well-known theorem of Birch [2] on systems of 
diophantine equations, and in fact the proof depends on a quantitative version 
of Birch's theorem, which is derived in Chapters 11 and 13 by an adaptation of 
the circle method. 

The situation (iv) with G = G — Z/mZ is in principle the simplest one. 
When ^ c ( Z / w Z ) 5 , the number T = T(P,9) of x e 9 with P(x) = 0 
(mod m) is given by 

(9) r = m - 1 E f (a) 
aeZ/wZ 

where 

(10) ƒ(*) = I e(±P(xj\. 

In practice, this method depends on estimates for exponential sums in finite 
fields, such as the ones derived by Weil and by Deligne, as well as a recent one 
by this reviewer presented in Chapters 15,16 and 17. 

Much work has recently been done on "small" solutions of congruences. In 
Chapter 9 one finds Heath-Brown's result that a quadratic congruence 
Q(xl9 x2, x3, x4) s 0 (mod/?) to a prime modulus has a solution x # 0 with 
|x| < c5p

1/2 logp, but derived with Fourier analysis on Z rather than Z/pZ. 
"Large number of variables" theorems are derived in Chapters 12 and 18. For 
example, if P,(x) = aax^ + • • • +aisx* (i = 1 , . . . , h) are additive forms, then 
the congruences Px(x) = • • • = Ph(x) = 0 (mod m) have a solution x =£ 0 with 
|x| < m(1//c)+e, provided that s > s4(h, k, e). But when Pl9...,Ph are arbitrary 
forms of degree k, then the system of congruences has a solution x # 0 with 
|x| < m (1 /2 )+e when s > s5(h, k> e). It would be of great interest to have 
reasonable bounds on the required number of variables; some progress on this 
has been made in recent work [7]. 

The technical difficulties in this area are rather formidable. The author 
presents a wealth of material, and he carries out the proofs with the necessary 
details. He gives an exposition of the anything but simple Vinogradov method, 
he presents his own highly technical "solution to Davenport's problem," and 
he is brave enough to devote three chapters toward the end to exponential sum 
estimates. There is a danger that readers may be turned off by highly complex 
proofs which sometimes run through several chapters, and thus the exposition 
may not gain as many friends for the subject as it deserves. On the other hand, 
the author has done a magnificent job presenting so much material so 
thoroughly. 
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Nonstandard or infinitesimal analysis was invented by the late Abraham 
Robinson in 1960. Since that time there has been continued interest in the 
subject and a number of impressive results have been established using 
nonstandard methods. These results testify to the vision of the man of whom 
Gödel wrote, "(He was) the one mathematical logician who accomplished 
incomparably more than anybody else in making this science fruitful for 
mathematics. I am sure his name will be remembered by mathematicians for 
centuries." The book under review is a welcome addition to a growing Hst 
devoted to the subject. 

Nonstandard analysis has had a controversial history. It had its roots in the 
use of infinitesimals by Leibniz and Newton in the development of calculus. 
Infinitesimals are "numbers" which are smaller in absolute value than any real 
number. Leibniz regarded them as entities in some "ideal" structure which also 
contained the infinitely large numbers and the reals. He also implicitly made 
the important but somewhat vague hypothesis that this structure satisfied the 
same rules as the ordinary real number system. The challenge facing Robinson 
was thus to 

(a) demonstrate the existence of a set *R, now called the 
hyperreal numbers, which carried analogues of all the struc­
tures on the reals R (for example, the ring and the set 
theoretic structures); 

(b) ensure that statements true in the real number system are 
mirrored in a natural way by statements true in the structures 
on *R. 


