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will find several new and interesting considerations discussed. I certainly did. I 
noticed only a few typos. The bibliography is reasonable, but might be 
criticized for lacking more current references to the work of western scholars. 
However this would be a petty criticism to make in light of the author's 
personal circumstances. 

From 1979 until just recently, Mark Freidlin struggled under severe restric­
tions on his academic activity imposed by the Soviet authorities. He is a 
refusenik, his applications to emigrate having been denied and having brought 
him into disfavor with the authorities. Both he and his wife were unemployed 
during this period, barred from participation in academic activities, receiving 
little of their mail and quite possibly denied access to university library 
facilities. It is a wonder that he was able to continue to produce timely and 
high-quality scientific work and of such size and scope as the book being 
reviewed here. This book represents not only an impressive contribution to the 
mathematical literature, but a monument to human courage and dignity. In 
March, 1987 he was finally granted permission to emigrate and will be taking a 
faculty position in this country. 
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From its very beginnings, two main themes have dominated analysis: the 
solution of equations and the study of (restricted) minima. They were never far 
apart, because necessary conditions for a minimum often appear in the form of 
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equations, and, conversely, many of the interesting equations represent first-
order necessary conditions for certain minimization problems. Many of the 
other topics of analysis are also closely related to these first two. Implicit and 
inverse function theorems as well as fixed point and open mapping theorems 
and topological degree theory provide sufficient conditions for the existence of 
solutions of equations and of their perturbations. In addition, open mapping 
theorems are also used to eliminate candidates for a restricted minimum from 
competition and, by way of contradiction, to establish necessary conditions for 
a restricted minimum. 

The theory of restricted minima—nowadays referred to as optimization—has 
in its "classical" form only involved equality restrictions. This was the case 
with the calculus of variations as well as with finite-dimensional problems. The 
few exceptions—such as Newton's treatment of the surface of least resistance 
that involved functions with nonnegative derivatives [2, p. 658]—by their very 
rarity and use of special devices only accentuated the general stress on 
equalities and equations. The first significant departure from this framework 
occurred during the second world war when the study of problems of economic 
and logistical nature—to a much greater extent than in physics—increasingly 
involved inequality restrictions. The simplest of such problems, those of linear 
programming, consist in minimizing (p0(z) subject to the inequalities (p,(z) < 0 
for i = 1 , . . . , m, where <p = (<p0,..., <pw): Rk -> Rm+l is an affine function. 
Equivalently, by introducing "slack variables" yt > 0, one seeks to minimize 
f0(x) subject to fi(x) = 0 for i = 1 , . . . , m, where now 

x = (z,y) = (zl9...,zk9y09...9yJeC:=Rkx[0,co[m+1c:R»9 

ft(x) = ^(z) + yt for * = 0 ,1 , . . . ,m, ƒ = ( / 0 , . . . , ƒ „ , ) . 

Geometrically, this corresponds to defining the 0th component in Rm+l as 
vertical and searching for x e Rn such that f(x) is the lowest point on the 0th 
axis that belongs to f(C). Since C is convex and ƒ affine, the set f(C) is 
convex, and it is clear that /(x) lies on its boundary. Thus, by the convex 
separation theorem, there exists a "Lagrange multiplier" \ = ( \ 0 , . . . , \ w ) e 
Rm+1 such that A ¥= 0, Xt> 0 and x minimizes the scalar product (A, ƒ(*)) 
over C. Exactly the same argument applies if, instead of assuming that ƒ is 
affine and C is as indicated above, we postulate that f(C) is convex; e.g., if we 
assume that the set K c Rk and the functions <p,: K -» R for / = 0 , . . . , m are 
convex. This last problem, no longer linear, is the more general convex 
programming problem, which has the property that any local solution is also 
global and first-order necessary conditions are also sufficient. Linear and 
convex programming problems, involving inequality constraints, are particular 
examples of optimization problems with inclusion constraints of the form 
<p(x) e A which appear ever more frequently in the theory and applications of 
optimization. 

Convexity theory permeates many branches of analysis and in particular of 
optimization theory, even when the problems themselves are nonconvex. Thus 
the existence theorems in the calculus of variations and optimal control apply 
to "generalized trajectories" and "relaxed controls" obtained by replacing the 
set of "admissible" derivatives of the state functions at a point by its closed 



BOOK REVIEWS 353 

convex hull. Some partial differential equations, especially of the elliptic type, 
can be studied as the Euler-Lagrange equations of a variational problem 
defined by a convex functional. Convexity theory also gives rise to one of the 
first examples of set-valued derivatives of nondifferentiable functions. If 
C c Rn and f:C->R are convex then for every interior point x e C w e can 
define the subdifferential df(x). This convex set consists of all vectors p such 
that z -» f(z) — (p,z) achieves its minimum at x, and df(x) becomes the 
singlet {ƒ'(*)} if ƒ is Fréchet differentiable at x. The subdifferential of a 
convex function possesses many of the properties of the Fréchet derivative: 
thus, if x0 in the interior of C minimizes ƒ over C then 0 e df(x0); and 
f(x)—f(x0)= (p,x-x0) for some z on the segment [x0,x] and some 
p e df(z). The inclusion 0 e 9/(x0), whose solutions x0 yield the minimum, 
is just one example of inclusion relations that are replacing equations in a 
number of applications that include partial differential equations and multidi­
mensional variational problems [1]. 

The mapping x -> 9/(x) (for ƒ a convex function) is an example of a 
set-valued function (also called a multifunction or a correspondence). If X and 
Y are given sets and F(x) is a subset of Y for every x e X then F is referred 
to as a set-valued function or map from X to Y; it is called strict if F(x) # 0 
for all x e X. F can be treated as an ordinary function from X to 2Y but it is 
often more convenient to view it in the light of the original definition. 
Set-valued maps increasingly make their appearance in various branches of 
analysis. The first existence theorems in optimal control werç derived from 
consideration of differential inclusions. As an example, consider the problem 
of minimizing h0(x(l)) over the set of all absolutely continuous x: [0,1] -> Rn 

such that 

±(t)=f(t9x(t)9u(t)) a .e . in[0 , l ] , 

x(0) = 0 and Ax(x(l)) = 0 e Rm, 

where u: [0,1] -> U c Rk can be chosen arbitrarily. If we set F(t, x) := 
ƒ(/, x,U) then the differential equation above is obviously equivalent to the 
differential inclusion x(t) e F{t, x(t)) a.e. While the original problem often 
has no minimizing solution even under very "nice" conditions, the relaxed 
problem, with x(t) e F(t, x(t)) replaced by x(t) e F(t9 x(t)\ where F{t, x) is 
the convex hull of F(t, JC), has a minimizing solution under fairly general 
conditions, e.g., if there exists a feasible solution, ƒ and ht are continuous and 
bounded and U is compact. Thus the set-valued mapping (/, x) -» F(t, x) and 
the differential inclusion x(t) e F(t,x(t)) a.e. become important tools of the 
optimal control of differential equations. 

As was just mentioned, the differential equation x(t) = ƒ(*, x(t)9 u(t)) a.e. 
for some u: [0,1] -» U is equivalent to the differential inclusion x(t) e 
F(t, x(t)) a.e. However, in many settings (e.g. in the study of necessary 
conditions), it is desirable to restrict u(-) to be measurable and thus to search 
for a measurable w: [0,1] -> U satisfying the inclusion 

u(t) G {v e I / | i :(r) = / ( / ,x(f )>ü)} a.e in [0,1]. 
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This brings up the important problem of the existence of particular types of 
selections of set-valued mappings. In the most general case of an arbitrary 
strict set-valued mapping F between arbitrary sets X and 7, the resolution of 
the problem hinges on the axiom of choice. In less general settings, we have 
continuous and measurable selection theorems. For example, if X is metric and 
Y a Banach space then a theorem of Michael ensures that there exists a 
continuous selection ƒ : X -> Y of a set-valued mapping F from X to Y 
whenever each F(x) is closed and convex and F is lower semicontinuous (i.e., 
for every * 0 e X, y0e F(x0) and any sequence (*,) in X converging to x0 

there exists a sequence yt e F(xt) converging to j>0); if X and Y are metric and 
compact, X has a positive Radon measure /x defined on it, and F is 
ja-measurable (i.e., {x & X\F(x)C\A ¥= 0 } is ^-measurable for each closed 
A a Y), then there exists a /x-measurable selection ƒ of F. 

The theory of optimization, and in particular that of optimal control, also 
gave rise to nonsmooth analysis, which attempts to extend the methods and 
results of the differential calculus to nondifferentiable functions. Derivatives of 
nondifferentiable functions have long been used in the sense of the theory of 
distributions. However, the latter treats functions as elements of the class of 
linear functionals on a particular topological vector space. In this setting, the 
global properties of the functions come to the fore and the local properties are 
largely neglected. On the other hand, the stress of nonsmooth analysis is on the 
local behavior of the functions. We have already mentioned the subdifferential 
of convex analysis as one generalization of the concept of the derivative. A 
more general concept is Clarke's generalized gradient of a real-valued function 
on a Banach space, which acquires particular importance for locally 
Lipschitzian functions. If ƒ is such a function in some neighborhood of a point 
x e Rn

9 then one way to define its generalized gradient df(x) is to set 

3€/(x):= œ { / ' ( z ) | | z - * | < e, f'(z) exists}, 

3/(x):= nayoo, 
e>0 

where co is the symbol for the closed convex hull. (If <p is convex then the 
generalized gradient coincides with the subdifferential.) A similar definition 
yields Clarke's generalized Jacobian of a locally Lipschitzian ƒ: V <z Rn -± Rm. 
Still more general definitions, and their extensions to functions on or between 
Banach spaces, are various derivate containers [6-8] based on derivatives of 
uniform C1 approximations to the given function in the neighborhood of x, or 
Ioffe's, Kruger's and Mordukhoviö's approximate subdifferentials [3-5]. A 
typical result involving many set-valued derivatives is the inverse function 
theorem stating that if all elements of a generalized derivative of ƒ at x are 
invertible with a uniform bound on the norms of the inverses, then ƒ is a local 
homeomorphism with a Lipschitzian inverse. 

A standard tool in deriving existence theorems or in the study of necessary 
conditions is a compactness argument. However, in many cases when that 
argument is inapplicable, it has been found that the existence of an "ap­
proximate" minimum suffices. The following "e-variational principle" of Eke-
land, barely 13 years old, has found many applications in several fields, 
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including the calculus of variations, optimal control and Hamiltonian systems. 
Let A" be a complete metric space, U: X -»]-oo, oo] a lower semicontinuous 
function bounded below and not identically oo, e > 0, and U(xe) < inf U + e. 
Then for every k > 0 there exists some ye e X such that 

U(yB)<U(x.)9 d(xe,ye)^l/k, U(ye)< U(x) + ked(x, ye) if x * ye. 

In the special case when X is a Banach space and U finite and Gâteaux 
differentiable at ye, it follows that ^'(jOII* ^ ^e> II II* denoting the norm in 
X*. 

The book of Aubin and Ekeland goes beyond most of the above topics in an 
attempt to present a picture of those parts of nonlinear analysis of greatest 
interest to the authors, of use in applications, and to which they had contrib­
uted important results. Their declared goal is to introduce students to nonlin­
ear analysis "without going through the whole of linear analysis as a pre-
Hminary." They further state in the preface: "The ideas of nonlinear analysis 
are simple, their proofs direct, and their applications clear. No more prere­
quisites are needed than the elementary theory of Hilbert spaces; indeed, many 
results are most interesting in Euclidean spaces." 

The statement about the prerequisites should not be interpreted literally. 
From the very beginning (Background Notes) the authors use the concepts and 
the results of the theory of measure and integration and presuppose acquain­
tance with basic concepts and properties of locally convex spaces (convex 
separation theorem, transpose of a linear operator, Banach contraction theo­
rem, etc.). However, once these and similar qualifications are made, the book 
appears to be entirely self-contained, even when presenting very recent and 
advanced results. The basic framework involves functions between infinite-
dimensional Banach spaces but, at times, either finite-dimensional or purely 
topological spaces make their appearance. 

Chapter 2, on smooth analysis (dealing with Cr functions), has Newton's 
method for solving equations as a recurring theme. The method is used, in the 
conventional way, to prove the inverse function theorem, which then serves, 
using Milnor's approach, to derive various versions of Brouwer's fixed point 
theorem and Morese's lemma on singularities of a function. The study of 
bifurcating solutions of the equation ƒ(*, X) = 0 is then followed by a proof of 
Thorn's transversality theorem. The latter is derived using Smale's approach 
based on his generalization of the Brown-Sard theorem to Banach manifolds. 
The chapter ends with Smale's "continuous" version—in the form of a 
differential equation—of Newton's method for solving the equation f(x) = 0 
in Rn. 

Chapter 3 is devoted to set-valued maps. If F is a set-valued map from X to 
Y then its image is Ux e XF(X) a n ^ its graph Graph(F) is {(x9 y) | x e X, y e 
F(x)}; the map F is said to have property P if Graph(F) has that property. 
For X and Y Banach spaces, the authors study set-valued closed convex maps 
F and, in particular, convex processes, which are set-valued maps F whose 
graphs are convex cones so that 

F(x x) + F(x2) c F(xx + JC2), F(Xx) = XF(x) for X > 0. 
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Convex processes are set-valued analogues of linear operators. Among the 
theorems the authors derive are: any strict closed convex process F between 
Banach spaces is Lipschitzian, i.e., there exists some k > 0 such that, for all xx 

and x2, F(x2) is in the kd(xly .^-neighborhood of F(x1); and generalizations 
to set-valued maps of theorems about positive matrices such as those of 
Perron-Frobenius and von Neumann-Kemeny. Chapter 6, on solutions of 
inclusions, includes a discussion of game theory, of Ky Fan's inequality, and of 
fixed point theorems for set-valued maps [existence of x satisfying x e F(X)] 
such as Kakutani's, which are applied to a Walras model of the economy. The 
chapter concludes with a study of monotone maps in a Hubert space [such that 
((y ~ #)>(* ~~ P)) > 0 whenever q e F(p\ y e F(x)] and of some related 
differential inclusions. 

Convex analysis and convex optimization are discussed in Chapter 4. There, 
again, set-valued mappings are a basic tool to the extent that even an ordinary 
convex function x -> <p(jc) is often identified with the set-valued mapping 
x -> <p+(x) := <p(x) + [0, oo[. The authors focus on the study of the "marginal 
function" y -> W(y) := infx e x V(x, y) corresponding to a convex V(-, •) and 
on the dependence of the minimizers xy of x -> V(x, y) on y. In their study of 
differentiabihty properties the authors stress the geometric rather than the 
purely analytic concepts and approaches. Thus they first define the tangent 
and normal cones to convex sets and then define derivatives of a set-valued 
convex function F in terms of the tangent cones to the graph of F. Specifi­
cally, if y0 e F(x0) then the derivative of F at (x0, y0) is defined as the 
set-valued map whose graph is the tangent cone to Graph(F) at (x0, y0). The 
chapter introduces the conjugate function 

/>->*"(/>):= sup [< /> ,* ) -K(x ) ] 
x<=X 

of a convex lower semicontinuous V (which generalizes the Legendre trans­
form) and uses conjugate functions in the study of Lagrange multipliers for 
restricted minimization problems and of the regularity of their solutions. The 
authors also study Lagrangians and Hamiltonians of convex problems that 
generalize those of the calculus of variations. 

Chapter 7, on nonsmooth analysis, is dominated by the task of proving an 
inverse function theorem for a set-valued map F from I to 7 without 
convexity assumptions. This theorem provides sufficient conditions for the 
existence of a solution x to the inclusion y & F(x) when y0 e F(x0) and y is 
in some neighborhood of y0. A basic assumption is that the derivative 
CF(x0, y0) has as its image all of Y. This derivative (a generalization of the 
one in the convex case) is defined as the closed convex process from X to Y 
whose graph is Clarke's tangent cone CK(x0, y0) to K:= Graph(F) at (x0, y0\ 
where CK(z0) is the set of all v such that 

lim —dK(z + hv) = 0 

and dK(z) is the distance of z to K. 
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Chapter 5 deals with the e-variational principle of Ekeland that we have 
stated before. The applications include an existence theorem for minimum of a 
lower semicontinuous Gâteaux differentiable function based on a weakened 
version of the Palais-Smale condition (C) and a strengthened version of a 
"mountain pass theorem" of Ambrosetti and Rabinowitz. Other applications 
include a theorem on the Fréchet differentiability on a residual set of a convex 
lower semicontinuous function on an open convex subset of a smooth Banach 
space, and a "generic" uniqueness and existence theorem for solutions v of the 
equation F(x, v) = U(x) applying to all values of the parameter JC in a 
residual set. [A residual set is a countable intersection of dense open sets.] 

Finally, Chapter 8 applies the methods of Chapter 5 to the study of the 
existence of periodic solutions of Hamiltonian systems. 

A fair number of the concepts and results presented in this book are due to 
the authors. The various concepts of derivatives of set-valued mappings (in 
Chapters 4 and 7) are due to Aubin, as is the set-valued inverse function 
theorem of Chapter 7 and an alternate model of the Walras equilibrium 
(Chapter 6). Ekeland's results in this book include: the e-variational principle; 
jointly with Lebourg, the "generic" theorems on Fréchet differentiability and 
existence and uniqueness of solutions in Chapter 5; and many of the results on 
Hamiltonian systems in Chapter 8 (some of them obtained jointly with F. H. 
Clarke, who apparently initiated this line of investigation). The results first 
appearing in this book include theorems of Chapter 5 based on the authors' 
weak version of conditions (C) of Palais and Smale and, in particular, the 
strengthened version of the Ambrosetti-Rabinowitz theorem. 

This book differs from most books on analysis by the pervasive use of 
set-valued mappings which, together with the e-variational principle, are a 
principal tool of investigation. This probably reflects the influence of convex 
analysis whose methods and concepts are extended by the authors to non-
smooth (nonconvex, non-C1) analysis. This also gives the book a certain kind 
of unity despite the relative diversity of the topics that are brought together in 
it. 

The authors, with prior books in their bibliographies, are good expositors. 
Each chapter starts with a glimpse into the basic results to follow and, 
frequently, with motivating comments. The proofs are often ingenious im­
provements on the original ones. The notes at the end of the book, grouped 
according to chapters and even sections, provide interesting information on the 
origins and evolution of many topics. On the other hand, the book would be 
much easier to follow if it contained a list of notations or, as an alternative, a 
much expanded index. As in any publication of this size, a few typographical 
errors remained undetected (but can usually be easily corrected by the reader). 
A random sample includes: p. 2, (2) [JC e k]; p. 58 [JC -> /(A, x) on the second 
Une below (1)]; p. 145 [X* to X at the end of Corollary 26]; p. 240, 1. 4 [JT 
instead of C]; p. 297,1. 3* [(y, q)]. On p. 21,1. 6, a further subsequence must 
be chosen to ensure that lim xnk(u) = 0 a.e. 

This book is clearly an important contribution to the literature on the 
subject. In many ways it is a pioneering endeavor, and it offers a large number 
of tools and results for the advanced student as well as for the mature 
researcher. 
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This monograph uses C*-algebraic techniques to study operator-theoretic 
problems. In particular, it uses the theory of completely positive and com­
pletely contractive maps to study dilations of operators. If T is a bounded 
linear operator on a Hubert space H, then a dilation of T is a bounded linear 
operator S on a Hubert space K containing H such that Tx = PSx for each x 
in if, where P is the orthogonal projection of K onto H. Sometimes informa­
tion about T can be obtained by dilating T to a "nice" operator 5, using 
known facts about S, and then compressing back to H. Let L(H) denote the 
algebra of all bounded linear operators on Hilbert space H. The two earliest 
dilation theorems are due to Naimark [3] and Sz.-Nagy [5]. Naimark proved 
that a regular, positive, L( H )-valued measure on a compact Hausdorff space 
can be dilated to be a spectral measure. Sz.-Nagy proved that if T belongs to 
L(H) with the norm of T less than or equal to one, then T can be dilated to a 
unitary U such that Tnx = PUnx for all n > 1 and all x in H. Sz.-Nagy used 
this to prove von Neumann's inequality: If the norm of T is less than or equal 
to one and p is a polynomial, then ||/?(T)II < WpW^, where WpW^ denotes the 
uniform norm of p on the unit circle. Dilation theorems of various types are 
now standard in operator theory. See the book of Foia§ and Sz.-Nagy [6] or 
Halmos' Problem Book [2]. 

In 1955 W. F. Stinespring introduced a C*-algebraic approach to dilation 
theory and used it to prove Naimark's theorem [4]. Besides the applications to 


