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PROPERTIES OF PROPERLY EMBEDDED MINIMAL 
SURFACES OF FINITE TOPOLOGY 

DAVID HOFFMAN AND WILLIAM H. MEEKS III 

Until the recent discovery of a sequence of properly embedded minimal 
surfaces with finite topology (Hoffman [4, 5]; Hoffman and Meeks [6, 7]), 
the only known examples were the plane, the catenoid and the helicoid. The 
existence of these new examples, which we will call Mk, k > 1, and others 
we have found (Callahan, Hoffman and Meeks [1]) makes it natural to ask 
qualitative questions about their behavior. 

It is a fundamental fact, due to Osserman [12], that if a complete mini­
mal surface has finite total curvature, then it is, conformally, a closed Rie-
mann surface punctured in a finite number of points; finite total curvature 
implies finite topology. The minimal surface Mk has total curvature equal to 
—47T(A; + 2). It is conformally a closed surface of genus k punctured in three 
points. 

A natural question to ask is whether or not each of the surfaces Mk lies 
in a one-parameter family of complete embedded minimal surfaces of finite 
total curvature. It is known that the plane and the catenoid are the unique 
embedded examples of finite total curvature with their respective topologies. 
In particular they cannot be perturbed through embedded examples. However 

THEOREM 1. The surfaces Mk each lie in a smooth one-parameter family 
of embedded minimal surfaces. 

In the case of genus k = 1, the surface Mi is conformally the square torus 
C/Z x Z, punctured in the three half-lattice points. It can be deformed 
through a family of embedded minimal surfaces which are, conformally, rect­
angular tori punctured in the three half-lattice points. In general, the surfaces 
Mk have two catenoid-type ends and one flat end. (By an end of a complete 
minimal surface of finite total curvature, we mean the image in R3 of a neigh­
borhood of a puncture point. An embedded end is a "catenoid-type end" if 
it converges at infinity to an end of the catenoid. It is called a "flat end" if 
it converges at infinity to a plane. For embedded ends on complete minimal 
surfaces of finite total curvature, these are the only possibilities.) They con­
tain k + 1 straight lines which meet at a common point P and diverge into 
the flat end. The perturbations have three catenoid-type ends and contain no 
lines. The symmetry group of Mk is the dihedral group D(2k + 2), generated 
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PERTURBED GENUS ONE EXAMPLES 

by rotation by 7r about one of the lines and a reflection in a plane that passes 
through P and bisects the angle made by two successive lines. This group has 
4k + 4 elements. The symmetry group of a perturbation of Mk is generated 
by reflections through k -f 1 vertical planes and has 2k + 2 elements. 

That the perturbations of Mk have a smaller symmetry group than Mk 
itself is an illustration of the fact that the surfaces Mk have maximal symme­
try. 

THEOREM 2. Suppose N is a complete embedded minimal surface of finite 
total curvature, with genus k and three ends. If the symmetry group of N 
contains at least 4k + 4 elements then, up to homothety and rotation, N is 
equal to M^. 

The construction of the examples Mk was greatly aided by the discovery 
that symmetries of the Gauss mapping of complete embedded minimal sur­
faces of finite total curvature correspond to symmetries of the surface. To be 
specific, let Sym(M) be the group of symmetries of M. Let Iso(M) be the 
group of intrinsic isometries of M. Finally, let L(M) be the group of confor­
mai diffeomorphisms h of M which have the following property: there exists 
an orthogonal motion A of R 3 such that h is the lift to M of A via the Gauss 
map G\ 

Goh = AoG. 
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GENUS FOUR EXAMPLE GENUS NINE EXAMPLE 

SCHERK'S SECOND SURFACE 

THEOREM 3. If M is a complete embedded minimal surface of finite total 
curvature, then 

L(M) = Iso(M) = Sym(M). 

Our computer-generated pictures of the examples Mk suggested that as k 
grew large, the surfaces began to resemble a catenoid cut by a flat plane at 
the waist, with the circle of intersection replaced by a series of tunnels. In 
fact this can be made mathematically rigorous. 

THEOREM 4. The surfaces Mk converge, as a point set, to the union of a 
plane and the catenoid. 

All the interesting geometry in the above convergence procedure is hap­
pening near the limiting waist-circle of intersection, where the total Gaussian 
curvature on the surfaces Mk is concentrated and is blowing up as k goes to 
infinity. To see what is actually happening in this singular convergence, let 
Nk be the surface produced as follows. First homothetically expand the sur­
face Mk by a factor which makes the maximum absolute value of the Gauss 
curvature equal to one. Then translate the surface so that a point of extreme 
curvature occurs at the origin. 

THEOREM 5. A subsequence of the surfaces Nk converges, up to similarity 
transformation, to Scherk's Second Surface: 

sinh(x)sinh(2/) = sin(>z). 

If the points of maximal curvature on each Mk are chosen carefully, the entire 
sequence will converge. 

Each end of a complete immersed minimal surface M of finite total curva­
ture is a properly immersed, once-punctured, compact disk with a well-defined 
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limiting normal at the puncture point. It was shown in [2] that the image of 
a sufficiently small circle about the puncture point has a well-defined linking 
number with the line through the origin in the direction of the limiting nor­
mal. Define n(M) to be the sum of all these linking numbers over all the ends 
of M. The total curvature of M can be written as 

C(M) = 2TT(X(M) - n(M)) = 2TT(2 -2k-r- n{M)), 

where x(M) is ^ne Euler characteristic of M, r is the number of ends, and k 
is the genus of M. 

THEOREM 6. A complete connected minimal surface M of finite total 
curvature cannot have a point of self-intersection with multiplicity greater than 
n(M) — 1. Ifn(M) = 2, M is the catenoid. Also, n(M) and r are either both 
even or both odd, even when M is nonorientable. 

The first statement of this theorem was also proved independently by 
R. Kusner [11]. The second statement follows easily from the first using 
Schoen's characterization of the catenoid [14]. The third statement has a 
purely topological proof. 

The techniques used in constructing the examples Mk use the special prop­
erties of finite total curvature surfaces in an essential manner. At the present 
time, the only known example of a complete embedded minimal surface of 
finite topology with infinite total curvature is the helicoid. The following the­
orems can be seen as a beginning to the development of methods for dealing 
with properly embedded minimal surfaces of finite topology and infinite total 
curvature. 

By an annular end of a surface, we mean an end that is homeomorphic 
to a compact disk punctured at one point. If the surface has a conformai 
structure, each annular end is conformally equivalent to either a punctured 
disk or a disk from which a smaller closed disk has been removed. 

THEOREM 7. A properly embedded minimal surface can have at most two 
pairwise disjoint annular ends with infinite total curvature. 

In particular, since an end with finite total curvature is conformally a 
punctured disk, no properly embedded minimal surface can have more than 
two annular ends which are conformally disks minus closed disks. Since a 
surface of finite topology can have only annular ends, it follows that a properly 
embedded minimal surface of finite topology is conformally a closed Riemann 
surface, punctured in a finite number of points, from which two or fewer disks 
have been removed. 

We conjecture that: 
1. An annular end of a properly immersed minimal surface must be con­

formally a punctured disk. 
2. On a properly embedded minimal surface with more than one end, every 

annular end has finite total curvature. As the example of the helicoid shows, 
the hypothesis of more than one end is necessary. 

The final theorem does not require the hypothesis of embeddedness. 
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THEOREM 8 (THE STRONG HALF-SPACE THEOREM). If two properly 
immersed minimal surfaces are disjoint, then they are parallel planes. In 
particular, a properly immersed nonplanar minimal surface cannot lie in a 
half-space. 

This theorem fails without the hypothesis of properness, as demonstrated 
by the examples of Jorge and Xavier [3] and Rosenberg and Toubiana [13], 
which are complete minimal surfaces lying between two parallel planes in R3. 
(The Jorge-Xavier example has one annular end and the Rosenberg-Toubiana 
example has two annular ends. Each end in their examples is conformally 
a disk minus a disk. This illustrates that Conjecture 1 above requires the 
hypothesis of properness.) Also the result does not generalize to minimal 
hypersurfaces in R n . For example, the three-dimensional catenoid in R4 lies 
between two parallel planes. 

These results will appear in [8, 9, and 10]. 
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