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The problem of the existence of limit cycles for certain nonlinear differential 
equations is one of the most fundamental areas of research in differential 
equations. This question has intrigued mathematicians since the discovery of 
Henri Poincaré [4] that certain nonlinear systems do in point of fact admit an 
oscillatory behavior. Indeed this work has motivated the creation of the fields 
of topological dynamics and general stability theory. 

Part of the Hilbert sixteenth problem set forth at the 1900 International 
Congress of Mathematicians was concerned precisely with this topic. Ex­
plicitly, David Hilbert posed the problem of finding the maximum number of 
limit cycles for a first-order differential equation of the form 

(*) dy/dx = P(x,y)/Q(x,y), 

where P(x, y) and Q(x, y) are polynomials. To give the uninitiated reader an 
idea of the difficulty of this still unsolved problem, we should note that two 
decades passed after the problem was initially posed before the mathematician 
Henri Dulac [2] succeeded in proving that such an equation admitted only a 
finite number of limit cycles. (The book under review has an extensive list of 
references where the interested reader can find more details about the above 
works.) Even in the case in which P(x, y) and Q(x, y) are quadratic poly­
nomials this problem still remains unsolved. The maximal number of limit 
cycles for such quadratic systems has been conjectured to be 3, 4, and 5 at 
various times. (See [5] and the references therein.) 

From a more applied point of view, oscillatory phenonema have been 
discovered in great abundance in "nature", perhaps some of the most striking 
occurring in electrical engineering, and in particular in electronics. It was B. 
van der Pol [6] who first wrote down, in the mid-1920s, a nonlinear differential 
equation to describe the stable oscillations in the triode vacuum tube which 
had a tremendous impact on the field of electronics design and of course on 
applied mathematics. (It was actually the physicist A. Andronov [1] who 
proved that the closed isolated trajectory discovered by van der Pol was indeed 
a limit cycle in the sense of Poincaré.) It was van der Pol's discovery that 
provided a major impetus to the study of nonlinear ordinary differential 
equations in both engineering and mathematics, and in particular, to the 
nonlinear phenomenon of limit cycles. We should add that the van der Pol 
equation has become a standard topic in modern engineering electronics 
courses as well as in differential equations. 

The book under review covers some of the basic material on the theory and 
properties of limit cycles, e.g., the Poincaré-Bendixson theorem, multiplicity 
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and stability theory, structural stability, and some standard results on the 
existence and uniqueness of limit cycles. What I think makes the book unique 
is that it considers in great detail quadratic systems of ordinary differential 
equations, i.e., systems in which P(x, y) and Q(x, y) of equation (*) above are 
quadratic polynomials. China has been a center of research on this important 
topic, and this book brings together for the first time many results previously 
scattered throughout the literature. Quite importantly, via certain normaliza­
tions the authors classify quadratic systems into three types, and much of the 
work is centered about discussing the various possibilities of the limit cycle 
structure in the different cases. I like very much the authors' ingenious use of 
the method of Dulac functions in deducing the nonexistence of limit cycles in 
certain circumstances. (This is probably a nice way of introducing a student to 
the Dulac theory in a very natural, concrete fashion.) 

Of course, the subject of quadratic systems has been studied outside of 
China as well. For example, L. Markus [3] has an interesting paper on the 
global topological classification of the system (*) when the polynomials are 
homogeneous. His point of view makes heavy use of the theory of nonassocia-
tive algebras. There has also been some nice work done in the Soviet Union on 
the subject. (See the extensive hst of references in the book.) 

I think it is essential to note that besides the purely mathematical impor­
tance of studying and understanding in detail the first nontrivial case of a 
nonlinear system of differential equations, the subject of quadratic systems is 
very interesting precisely because many nonlinear phenonema in science and 
engineering admit mathematical models which are quadratic. In particular 
some of the work covered in this book on quadratic systems has recently been 
found to be quite useful in aircraft control, especially in connection with the 
nonhnear feedback inversion techniques developed for the stabilization of 
modern aircraft. It turns out that almost always one cannot invert the complete 
dynamical system describing the behavior of the given aircraft, and in many 
cases the part not inverted (the "residual part" of the control system) has the 
form (*) in which the P(JC, y) and g(jc, y) are quadratic polynomials. The 
engineering problem then is that one must design a feedback compensator for 
the quadratic residual part of the system. Besides the verification that this 
residual part is stable (and what to do if is isn't!), a key question is the 
existence of limit cycles for the given admissible values of the system parame­
ters. It is precisely such problems that this book considers in exquisite detail, 
and which therefore make it so useful. 

In summary, I believe that the book under review is an important survey of a 
unique school of differential equations. Moreover, because the mathematicians 
involved have done such a beautiful job of studying the case of quadratic 
systems which has a number of very interesting physical applications, I am 
sure that this book should become very popular both in the mathematics and 
engineering communities. 
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On a topological or differentiable manifold local objects (functions, vector 
fields, differential forms,... ) can be extended to global ones by a partition of 
unity. On complex or algebraic manifolds this is generally not possible. The 
obstructions for doing this He in a (first) cohomology group. Therefore it is of 
prime interest to know conditions guaranteeing the vanishing of such cohomol­
ogy groups. 

If the manifold is Stein or affine this is always the case but for compact 
complex manifolds the situation is completely different. In the compact case, 
however, the cohomology groups Hq(X,F) are always finite dimensional 
C-vector spaces (F being a coherent 0^-module sheaf). Under the heading 
" vanishing theorems" we understand general statements when such groups do 
vanish, however. Here F mostly is a holomorphic Une bundle or, more 
generally, a vector bundle of higher rank. 

The most famous vamshing theorem is the one of Kodaira proved in 1953: 
Let L be a positive holomorphic line bundle on the compact complex manifold X. 
Then 

Hq(X,L® KX) = Q îorq>\. 

Here Kx denotes the canonical line bundle (i.e. Kx is the line bundle of 
holomorphic «-forms, n = dimc X). The positivity of a Une bundle can be 
defined in several ways: 

(i) differential-geometric: L admits a hermitian metric h such that the 
curvature form 0h = *381og/* is a positive (1, l)-form. 

(ii) function-theoretic: the zero-section of the dual bundle L~l admits a 
strongly pseudoconvex neighborhood. 

(iii) algebraic-geometric: the sections of a high-power Lm embed X into a 
projective space. 

(iv) numerical: cx(L\Y)s > 0 for all irreducible reduced analytic subspaces 
7 c I o f dimension s (here cx denotes the first Chern class). 

The equivalence of these conditions is by no means obvious. For instance 
the equivalence of (i) and (iii) is the celebrated Kodaira embedding theorem 
and (iv) is the Nakai-Moishezon criterion. 


