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ISOSPECTRAL RIEMANNIAN METRICS 
AND POTENTIALS 

DENNIS M. DETURCK AND CAROLYN S. GORDON 

For (M, g) a compact Riemannian manifold, we consider the spectra of 
the Laplace-Beltrami operator and of the Schrödinger operator "Laplacian 
plus potential" acting on L2 (M, g). Two Riemannian manifolds are said to 
be isospectral if their associated Laplacians have the same spectra, and two 
potentials on the same Riemannian manifold are said to be isospectral if 
the associated Schrödinger operators have the same spectra. Generalizing 
methods of Sunada [S] and Brooks [B], we give a fairly general technique for 
constructing isospectral metrics and potentials. In the case of metrics, our 
method unifies the various methods used previously by numerous authors to 
construct isospectral metrics and allows us to construct many new examples; 
in the case of potentials, we obtain many new examples of continuous families 
of isospectral, noncongruent potentials. 

In all the examples known of isospectral closed manifolds, the manifolds 
have a common Riemannian cover. Thus, they are of the form (I \ \M, #), 
i = 1,2, where (M, g) is a Riemannian manifold and each I \ is a discrete group 
acting freely and properly discontinuously by isometries on (M, g). Moreover, 
with one exception (noted below), there exists a bijection between Ti and 
1̂2 such that corresponding elements are conjugate in the full isometry group 
I(M). It is not known whether these conditions are sufficient for the quotient 
manifolds to be isospectral. Sunada [S] proved under these conditions that 
if Ti and T2 are both contained in a finite subgroup G of I{M) which acts 
freely on M and if corresponding elements of Ti and Y 2 are conjugate within 
G, then the manifolds are isospectral. (Of course, if the groups Ti and 1^ are 
conjugate, then the manifolds are isometric.) 

Before stating our first theorem, we recall that any Lie group G which 
admits a uniform discrete subgroup is unimodular. For 7 G T, the centralizer 
C(7, T) is a uniform discrete subgroup of the centralizer C(7, G), so C(7, G) is 
also unimodular. Given any conjugacy class of unimodular subgroups of G, we 
can define a Haar measure on each subgroup in such a way that if K = aHa"1, 
then the conjugation by a is a measure-preserving transformation from H to 
K. In the following theorem, we assume Haar measures have been so chosen 
on C(7i, G). For any group H and any element h G i7, we denote by [h]n 
the conjugacy class of h in i7, and we denote by [H] the set of all conjugacy 
classes of elements of H, so [H\H G [H]. 
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THEOREM 1. Suppose that a Lie group G acts freely by isometries on a 
connected Riemannian manifold (M,g), that the discrete subgroups T± andTï 
of G act properly dis continuously and that Ti\M is compact for i = 1,2. If 
for all [h]o G [G] we have 
(*) 

J2 vol(C(7i,ri)\C(7i,G)) = Yl vol(C(7 2 , r2) \C(7 2 ,G)), 
hilr^Wo [l2)r2C[h)G 

then ( r i \M, g) is isospectral to ( r 2 \M,g) . 

The condition (*) reduces to Sunada's condition when G is finite. The con­
clusion of the theorem can be strengthened in the sense that the manifolds are 
isospectral in a stronger sense than that defined above: the associated Lapla-
cians acting on p-forms are also isospectral for every p = 0 , 1 , . . . , dim M. The 
hypotheses of Theorem 1 can also be weakened slightly (details will be given 
in [DG2]). With the exception of certain Heisenberg manifolds for which 
the associated Laplacians are isospectral on functions but not on 1-forms, all 
known examples of closed isospectral manifolds satisfy at least the weakened 
hypotheses. 

EXAMPLE. In [GW and DG1], continuous families of isospectral man­
ifolds (Tt\M,g) for t G R are constructed. In such a family, each pair of 
manifolds satisfies the hypotheses of Theorem 1. The group G is assumed 
to be a nilpotent Lie group for which there exists a one-parameter group of 
automorphisms $t (which are noninner except for perhaps a discrete subset 
of i's) such that Tt = ®t(To) and $t{l) is conjugate in G to 7 for all 7 G IV 
The verification of condition (*) reduces to the observation that the ^ts are 
necessarily volume-preserving. Specific examples are given in the papers cited 
above. Theorem 1 actually allows us to remove the hypothesis in [DG1] that 
G be two-step nilpotent. 

We next turn to the problem of constructing isospectral, noncongruent 
potentials. Until recently, the only examples known were continuous families 
constructed by means of the Korteweg-de Vries equation or its higher-order 
analogues. Then Brooks [B] showed how to modify Sunada's technique to 
produce pairs of isospectral potentials. If r G /(M), a potential function u 
is said to be r-invariant if T*U = u. In particular, if u is r-invariant, then u 
defines a potential, again denoted u on T\M. Brooks observed that, under 
Sunada's hypotheses, if u is a (7-invariant potential, then the operators Ai +u 
on L 2 ( r i \M) and A2 + u on L 2 ( r 2 \M) have the same spectra (where A^ is 
the Laplacian of I \ \ M ) . If coincidentally there exists r G I(M)\G such that 
T2 = 7 T I T _ 1 (and hence ( r i \M, g) is isometric to ( r 2 \M, g)) but r*u ^ u, 
then r*(A2 + u) = Ai +T*U has the same spectrum as Ai + u; i.e., u and 
T*U are isospectral potentials on (Ti\M, g). By choosing u carefully, one can 
arrange that u and r*u are not congruent. A similar argument yields 

THEOREM 2. Assume the hypotheses of Theorem 1 and assume moreover 
that there exists r G I(M)\G such that T2 = TTIT"1 . Let u be a G-invariant 
potential function on M which is not r-invariant. Then u and r*u are isospec-
tral potentials on {Ti\M,g). 
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To obtain continuous families of isospectral potentials, we begin with a 
nilpotent Lie group G, uniform discrete subgroups Tt and automorphisms $t 
as in the example above. Let H = R • G be the semidirect product, where 
t € R acts on G as the automorphism $t. We will denote elements of H as 
ordered pairs (t, x) with t G R and x G G. We require that for some a > 0, 
^a(fo) = To (i.e., Ta = To), and we let ao be the minimum such number. We 
then have that $nao(rt) = Tt for alH G R, n G Z and hence Tt = aoZ • Tt 

is a uniform discrete subgroup of H. Let M = H with a left-invariant metric 
<7, and let G = T0G (= I^G). Then one can check for each t £ a§L that 
M, G, To and I \ satisfy the hypotheses of Theorem 2 with r = rt given by 
left multiplication by (£, 1). Let v be any smooth periodic function on R of 
period ao and define u(s, x) = v(s). Then r£u(s, x) = u(s + t, x). This defines 
a family of isospectral potentials on (To\H)g). By choosing u carefully, one 
can arrange that the deformation is nontrivial. 

Details and examples of all the results above and generalizations to mani­
folds with boundary will be given in [DG2]. 
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