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For well over a hundred years, scattering theory has played a central role in 
mathematical physics. From Rayleigh's explanation of why the sky is blue, to 
Rutherford's discovery of the atomic nucleus, through the modern medical 
applications of computerized tomography, scattering phenomena have at­
tracted, perplexed and challenged some of the outstanding scientists and 
mathematicians of the twentieth century. Broadly speaking, scattering theory is 
concerned with the effect an inhomogeneous medium has on an incident 
particle or wave. In particular, if the total field is viewed as the sum of an 
incident field w' and a scattered field us then the direct scattering problem is 
to determine us from a knowledge of w1 and the differential equation govern­
ing the wave motion. Of equal (or even more) interest is the inverse scattering 
problem of determining the nature of the inhomogeneity from a knowledge of 
the asymptotic behavior of u\ i.e., to reconstruct the differential equation 
and/or its domain of definition from the behavior of (many) of its solutions. 
The above oversimplified description obviously covers a huge range of physical 
concepts and mathematical ideas, and for a sample of the many different 
approaches that have been taken in this area the reader can consult the 
monographs of Bleistein [1]> Colton and Kress [3], Jones [5], Lax and Phillips 
[8], Newton [9], Reed and Simon [10], and Wilcox [12]. 

The simplest problems in scattering theory to treat mathematically are those 
of time harmonic acoustic waves which are scattered by either a penetrable 
inhomogeneous medium of compact support or by a bounded impenetrable 
obstacle. In addition to their appearance in realistic physical situations (e.g., 
acoustic tomography and nondestructive testing) such problems also serve as 
models for more complicated wave propagation problems involving electro­
magnetic waves, elastic waves, or particle scattering. To mathematically model 
these two problems, assume the incident field is given by the time harmonic 
plane wave 

w'(x, /) = exp[/A:x • a - iwt] 
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where k = co/c is the wave number, co the frequency, c the speed of sound and 
a the direction of propagation. Then the direct scattering problem for the case 
of an inhomogeneous medium is to find the total field u = ul + us such that 

(la) A3w + k2n(x)u = 0 in R3 

(lb) u(x) = exp[/A:x • a] + us(x) 

(lc) Hmr(£-*»')-<> 

where n(x) is the (known) ratio of the square of the sound speeds in the 
homogeneous and inhomogeneous medium and (lc) is the Sommerfeld radia­
tion condition which guarantees that the scattered wave is "outgoing". On the 
other hand, if it is assumed that the scattering is due to a given impenetrable 
"sound-soft" obstacle D then the task is to find the total field u = ul + us 

such that 

(2a) A3w + A:2w = 0 in R3\D 

(2b) u(x) = exp[/fcx • a] + us(x) 

(2c) u = 0 on 3D 

We note that boundary conditions other than (2c) are possible (and indeed 
often more physically realistic) and in the following when we refer to problem 
(2), we shall always include the possibility of boundary conditions different 
from (2c). Although problems (1) and (2) are perhaps the simplest examples of 
physically realistic problems in scattering theory, they still cannot be consid­
ered completely solved, particularly from a numerical point of view, and 
remain the subject matter of much ongoing research. 

The above two problems are both direct scattering problems. As already 
mentioned, the inverse scattering problem is of at least equal interest and is 
often far more challenging mathematically. In order to formulate the inverse 
scattering problems associated with problems (1) and (2), note that if w5 is the 
scattered field then us has the asymptotic behavior 

(3) «'W-Çft*;i.«) + o ( ^ 

where r = |x|, x = x/|x| and F(x; k,a) is known as the far field pattern or 
scattering amplitude. Then the inverse scattering problem is to determine either 
n(x) or D from a knowledge of F(x; k, a) for x and a on some subset of the 
unit sphere and (possibly) different values of k. The area of inverse scattering 
theory is presently experiencing a rapid period of growth and, together with 
the corresponding direct scattering problems, is the subject matter of the book 
under review. 

The mathematical methods used to investigate the direct and inverse scatter­
ing problems depend heavily on the frequency of the wave motion. In 
particular, if the wavelength X = 2m/k is very small compared with the 
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smallest distance which can be observed with the available apparatus, the 
scattering obstacle produces a shadow with an apparently sharp edge. Closer 
examination reveals that the edge of a shadow is not sharply defined but 
breaks up into fringes. This phenomenon is known as diffraction. At the other 
end of the scale, obstacles which are small compared with the wavelength 
disrupt the incident wave without producing an identifiable shadow. Hence, we 
can distinguish three different frequency regimes corresponding to the magni­
tude of ka where a is a typical dimension of the scattering object. More 
specifically, the set of values of k such that ka <z 1 is called the Rayleigh 
region, k such that ka ^> 1 is called the high-frequency regime, and the set of 
intermediate values of k is called the resonance region. As suggested by the 
observed physical differences, the mathematical methods used to study scatter­
ing phenomena in the Rayleigh or resonance region differ sharply from those 
used in the high-frequency regime. 

The first question to ask about the direct scattering problem is that of 
uniqueness. The basic tools used to establish uniqueness are Green's formula 
and the unique continuation property of solutions to elliptic equations. Since 
equation (2a) has constant coefficients, the uniqueness question for problem 
(2) is the easiest to handle and was first treated by Sommerfeld in 1912. 
Subsequent generalizations were then given by Rellich, Vekua and Wilcox, all 
under the assumption that lm k > 0. Analogous results for the case of problem 
(1) came later when Muller established the unique continuation property for 
solutions to (la). When Im k < 0, there can exist values of k for which 
uniqueness no longer holds. Such values of k are called resonance states and 
have fascinated researchers in scattering theory for over a hundred years. In 
particular, the resonance states are intimately involved with the asymptotic 
behavior of the time dependent wave equation and in addition provide a 
characteristic "signature" of the scattering object which could hopefully be 
used to solve the inverse scattering problem. For excellent, but somewhat 
dated, surveys of the role played by resonance states in scattering theory, the 
reader is referred to Dolph [4] and Lax and Phillips [8]. Finally, we note that 
special problems occur when D is unbounded or 1 - n(x) no longer has 
compact support, and for a discussion of some aspects of this situation, we 
refer the reader to Reed and Simon [10] and Chapter VII of the book under 
review. 

Having established uniqueness, the next question to turn to is existence and 
the numerical approximation of the solution. The most popular approach to 
existence has been through the method of integral equations. In particular, for 
problem (1), it is easily verified that for all positive values of k9 u is the unique 
solution of the Fredholm integral equation 

(4) w(x) = exp[ikx • a] - k2 If $(x,y)m(y)w(y) dy 
B 

where m(x) = 1 — n(x), B is the support of m(x) and $(x,y) is the (normal­
ized) fundamental solution to the Helmholtz equation (2a) satisfying the 
Sommerfeld radiation condition. However, the application of integral equation 
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methods to problem (2) is more subtle. To see why this is so, suppose we look 
for a solution of problem (2) in the form of a double-layer potential 

(5) * ' « - ƒ ^(y)_L-$(x,y)^(y); x e # 3 \ D 
JdD ov(y) 

where v is the unit outward normal to 3D and \p is a continuous density to be 
determined. Then, letting x tend to 3D, it can be shown that \p is a solution of 
a Fredholm integral equation of the second kind. Unfortunately, this integral 
equation is not uniquely solvable if A:2 is a Neumann eigenvalue of the 
Laplacian in D. This difficulty was first observed and resolved by Kupradze, 
Vekua, Weyl and Millier. A more direct approach to the problem was initiated 
by Werner in 1962 who suggested modifying the kernel in the representation 
(5) to include further source terms. This idea was further developed by Leis, 
Panich, Brakhage and Werner, Ursell and Jones and at present there are a 
variety of integral equation formulations of problem (2) that are uniquely 
solvable for all (positive) values of the wave number. For a survey of these 
methods, the reader is referred to the article of Kleinman and Roach [7], the 
monograph of Colton and Kress [3] and the present book by Ramm. 

The method of integral equations, as applied to problem (2), is particularly 
attractive from a numerical point of view since it not only reduces the 
dimensionality of the problem but also allows one to replace a problem over an 
unbounded domain by one over a bounded domain. Having done this, it is 
now possible to use a variety of numerical methods for solving Fredholm 
integral equations of the second kind. However, if ka is too large, the 
integrands become highly oscillatory and the method is not practical for 
numerical computation. On the other hand, if ka is small, the integral equation 
can be solved by iterative methods and this approach has been extensively 
developed by Kleinman and his co-workers. Indeed, as first observed by 
Rayleigh in 1897, for small values of ka a first approximation to the solution 
can be obtained without solving any integral equation at all. 

Another popular method for solving problem (2) is through the use of the 
separation-of-variables solution to (2a), (2d) given by 

(6) ^ m (x ) = A?>(fc|x|)y*(*); « = 0 ,1 ,2 , . . . , -n < m < n, 

where h^ denotes a spherical Hankel function and Y™ a spherical harmonic. 
Since the set {vnm} is complete in L2(3D), a simple approach to constructing 
an approximate solution to problem (2) is to use (6) to perform a least squares 
fit to the boundary data of us on 3D. A more sophisticated approach is the 
null-field or T-matrix method proposed by Waterman in 1965. In this ap­
proach, one uses Green's formula and the addition formula for Bessel func­
tions to arrive at a generalized moment problem for the determination of the 
unknown function dus/dv. Having solved this problem for djus/dv, an applica­
tion of Green's formula then gives us(x) for x & R3\D. Note that the 
problem of interior eigenvalues that appears in the method of integral equa­
tions is not a problem for methods based on the complete set (6). However, 
from a numerical point of view, these methods are again restricted to values of 
ka in the Rayleigh or resonance region. 
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If ka is in the high-frequency region, the classical approach for solving 
problems (1) and (2) is geometrical optics. However, this method fails to 
account adequately for the behavior of the field in shadow regions and near 
edges. To cope with these problems, an extended version of geometrical optics 
known as the geometrical theory of diffraction was introduced by Keller in 
1953. This approach is based on solving a set of ray equations and transport 
equations supplemented by certain canonical problems near edges and curved 
boundaries and yields a formal asymptotic expansion of the desired solution. 
The geometrical theory of diffraction has become the standard method for 
solving high-frequency scattering problems, and for a lucid description of this 
theory, we refer the reader to Keller's survey article [6]. A rigorous asymptotic 
analysis of the solution to problems (1) and (2) remains a formidable task, 
although significant progress has been made by Ursell, Morawetz, Ludwig, 
Bloom, Kazarinoff, Taylor, Majda, and Alber. 

As indicated by the above discussion, the direct scattering problem has been 
thoroughly investigated and various efficient methods are available for its 
solution. In contrast, the inverse scattering problem of determining n(x) or D 
from a knowledge of the far field pattern is still poorly understood and until 
recently has consisted mainly of a collection of ad hoc techniques with little 
rigorous mathematical basis. The reason for this is that the inverse scattering 
problem is inherently nonlinear and improperly posed. In particular, small 
perturbations of the far field pattern in any reasonable norm lead to a function 
which Hes outside the class of far field patterns. Nevertheless, due to the 
demands of scientists in areas such as radar, sonar, geophysical exploration, 
medical imaging and nondestructive testing, various methods for solving the 
inverse scattering problem have been mathematically investigated and are 
beginning to be numerically implemented. As with the direct scattering prob­
lem, the methods vary according to which frequency regime is used to probe 
the unknown medium. However, due to the problem of poor resolution in the 
Rayleigh region, the only frequency regimes of practical interest are the 
resonance and high-frequency regions. Surveys of the inverse scattering prob­
lem have recently been given by Sleeman [11] and Colton [2]. 

In the case of high frequencies, the main methods used to investigate the 
inverse scattering problem for (1) are based on the Born and Rytov approxima­
tions where it is assumed that m(\) = 1 - n(x) is small. In particular, the 
Born approximation is just the first term in the Neumann series solution of (4) 
and hence is a vaHd approximation for k2m(x) small. These approaches have 
been used by Bleistein and Cohen to investigate the seismic inverse problem 
and by Devaney to develop his theory of acoustic tomography. On the other 
hand, for problem (2) the main methods used to solve the high-frequency 
inverse scattering problem are based on the Kirchhoff, or physical optics, 
approximation 

(7) F(-a; k,a) = 2ik f e2ikxav - ads 
JdD+ 

where F(-a; k, a) is the "backscattered" far field date and dD+ is the part of 
dD illuminated by the incident field eikx'", i.e. 3D+= {x G 3D: a • v > 0}. 
Beginning with Bojarski in 1967, many mathematicians have used (7) to 
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propose various algorithms for solving the inverse scattering problem. A 
rigorous justification of (7), together with a deep theoretical discussion of the 
inverse scattering problem, was undertaken by Majda in 1976 with subsequent 
contributions being given by Lax, Phillips, Majda, and Taylor in 1977. 

In some situations (for example, when the above approximations are not 
applicable or in order to achieve higher penetrability of the probing field), it is 
desirable to study the inverse scattering problem for frequencies in the reso­
nance region. In this case, recourse is usually made to constrained nonlinear 
optimization techniques. In particular, for the case of problem (2), it was 
recently shown by Colton, Kirsch and Monk that for fixed k the far field 
patterns corresponding to different directions of the incident field are all 
clustered around a hyperplane in L2(9£2), where 9fi is the unit sphere. The 
normal to this hyperplane is, of course, a function of D. Hence, one has two 
distinct optimization schemes for finding D from the far field data: 

(1) Find D whose far field pattern best fits the measured data, and 
(2) Find D whose associated normal vector in L2(dQ) is orthogonal to the 

measured far field data. 
Both of these optimization methods are currently being investigated by 

many people in the scattering community, particularly from the viewpoint of 
numerical efficiency and flexibility. Similar projection methods have also 
recently been developed for the inverse scattering problem corresponding to 
problem (1). 

The monograph under review is basically a description, with full details, of 
the use of integral equation methods in time harmonic acoustic wave propaga­
tion. As explicitly stated in the preface, the author has placed particular 
emphasis on his own contributions to the area, to the extent that most of the 
chapters are mainly a description of the author's own work. This has the 
unfortunate consequence that closely related work by other mathematicians is 
often mentioned only in passing, thus giving a somewhat distorted view of 
current research in the area of scattering theory. This is reflected in the 
bibliography, where roughly a third of all the references are to the author. 
Hence, the statements in the series editor's preface that this book "has 
practically zero intersection with all books I know about direct and inverse 
scattering" and "most of what [the book] contains can only be found in the 
research journal literature and is exposed here for the first time within the 
larger framework of a coherent book" should be interpreted in the light of the 
above comments. On the other hand, the author is a leading authority in the 
area of scattering theory and much of what he has to say is important. In 
particular, there is a wealth of valuable information in Ramm's book that 
cannot be found elsewhere. In addition, the book is clearly written and 
attractively presented. The previously stated reservations aside, Ramm's book 
is a valuable contribution to the scattering theory literature and will serve as an 
important reference for many years to come. 
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The recent explosion of activity studying the relation between geometric and 
analytic properties of spaces has fused many areas of mathematics, such as the 
traditionally disparate fields differential geometry, partial differential equa­
tions, topology, mathematical physics, and number theory. One of the most 
popular topics in this study is the search for properties of the spectrum of the 
Laplace operator of a manifold in terms of its geometric invariants. Until 
recent decades there have been few significant developments, owing to the 
need for expertise in many fields. Eigenvalue problems are directly related to 
many geometric problems as well as to the disciplines mentioned above. 
Moreover, the techniques that have been developed in studying the Laplacian 
and its spectrum are equally important as the theorems about eigenvalues. This 
versatility factor coupled with the recent undeniable success of geometric 
analysis is responsible for the sudden blossoming of this classical area of 
mathematics. 

The most fundamental object of study is the Laplace-Beltrami operator. 
Being invariantly defined, it is the simplest geometric elliptic operator which 
appears everywhere in geometry. It is the principal part of the expression for 
scalar curvature of a conformai factor in a metric as well as the mean curvature 
and stability form of a hypersurface. More importantly it is the linearization of 
the many nonlinear operators in geometry such as the Gauss curvature 
operator, the mean curvature operator and the Monge-Ampère operator. It is 


