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Introduction. We introduce higher analogues of analytic torsion, which 
are form valued. Using this construction we obtain, in the case of the projec­
tion map for a product, a Grothendieck-Riemann-Roch theorem for hermitian 
holomorphic vector bundles which is an equality between differential forms. 
This is related to work of Quillen [6] and of Bismut and Freed [1]. 

I. A Grothendieck group. 
LI. Let X be a complex manifold. For any p e N let AP'P(X) be the 

space of real (p,p) forms over X. Let A(X) = © p > 0 AP'P(X), and A(X) = 
A(X)/(lm(d) +Im(<9)), where d = d + d is the standard decomposition of the 
exterior derivative on X. 

1.2. An hermitian holomorphic bundle (or h.h. bundle) on X is a pair 
E = (E, h), consisting of a finite-dimensional complex holomorphic vector 
bundle E over X and a smooth hermitian scalar product h on E. Given 
E, let V be the unique connection on E which is both compatible with its 
complex structure and unitary for /i, as in [2]. The closed form ch(E) = 
Tr(exp((i/27r)V2) in A(X) represents the Chern character of E. 

1.3. Let KQ(X) be the abelian group generated by pairs {E,n) where E is 
an h.h. bundle over X and rj G A(X), with the following relations. Let 

7:0-• S-> E->$->( ) 
be any exact sequence of holomorphic bundles over X, endowed with arbitrary 
metrics, and r/,/;" G A(X). We impose the relation {S;rj') + (Q\n") = 
(E; rj' 4- rj" — ch(7)), where ch(7) G A(X) is the solution to the equation 

{l/7ri)dddi{7) = ch(5) + ch(Q) - ch(E) 

introduced by Bott and Chern in [2]. 
1.4. The following construction of ch is used in the proofs of the results 

below. Let 0(1) be the tautological line bundle on the complex projective line 
P 1 , and let z be the parameter on the affine line A 1 C P 1 . If a: 0 —• 0(1) is 
the section vanishing at infinity, let s = Id ®cr be the induced map S —• 5(1) 
o n l x P 1 . If i: S -> E is the inclusion in 7 above, let F = (5(1) 0 E)/S be 
the vector bundle which is the cokernel of s © i. If ip: X x {p} —• X x P 1 for 
p — 0, oo are the natural inclusions, then i^F ~ E while i^F ~ S Ç&Q. We 
may choose a metric on F so that these maps are isometries. Then, in A(X): 

ch(T)= f ch(F)\og\z\. 
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1.5. Define a homomorphisrn ch:Ko(X) —> A(X) by setting 

ch(£;r/) = ch(2?) - (l/m)ddrj. 

1.6. When X is algebraic over a ring R contained in C one can require, 
when defining ÜTo(X), that the bundles be algebraic over R (cf. [3]). The 
results below remain true in that case. 

II. Higher analytic torsion. 
II. 1. Let X be a complex manifold, Y a compact Kâhler manifold and 

f:X xY -+ X the projection onto the first factor. 
Let E be an h.h. bundle over XxY. For any point x in X, we get an h.h. 

bundle Ex on Y by restricting E to the fibre f~1(x) ~ Y. In this section we 
assume that 

(A) For all x in X and all k > 0, the cohomology group Hk(Y, Ex) vanishes. 
Under this assumption, we shall define a form T(f,E) in A(X), called the 

higher analytic torsion of E (relative to ƒ). 
11.2. From (A) we know that there is a vector bundle f*(E) on X the fibre 

of which at any x G X is equal to H°(Y, Ex). For any q G N let T*(F)0 '9 be 
(0, q) part of the qth. exterior power of the complexified cotangent bundle to Y. 
Let Dq be the smooth infinite-dimensional bundle over X, with fiber at x G X 
equal to the space of smooth sections over Y of the bundle Ex (g)T* (Y)°*q. The 
Dolbeault resolution of Ex over Y, as x G X varies, gives rise to an acyclic 
complex of bundles on X: 

0 -> fm(E) -> D° -+ D1 -> D2 -+ • • •. 

11.3. The choice of metrics on Y and E determines a metric on Ex ® 
T*(Y)°>q and an L2 scalar product on Dq, q>0. Let f*(h) be the hermitian 
metric on ƒ*(£?) induced from D°, and V the associated connection (1.2). We 
also define a connection V on Dq, q > 0, as follows. Giving a section s of Dq 

over X is equivalent to giving a section of the bundle E ® T r " ^ ^ ) 0 ' 9 ) over 
XxY, where 7r: X x Y —• Y is the second projection. The latter bundle has 
a metric and therefore a connection V. If v is a tangent vector to X at the 
point x = /(x,2/), let v be the horizontal tangent vector to X x Y at (x,y) 
such that f(v) = v. We define Vv(s)(x,y) to be Vy(s)(x,y). 

11.4. We write H+ for the pull-back from X to X x C* of 0 - > o D 2 i , 
and H~ for the pull back of 0 2 > o D2i+1 0 ƒ*(£). These bundles admit the 
connection 

Vz = V + — dz+—dz, 
oz oz 

where z is the coordinate in C*. Let dY (resp. j*) be the adjoint of dy (resp. 
j ) , and Lz: H+ © JJ~ —• H+ 0 iJ~ be the odd endomorphism i[zdy (&zdY 0 
zj 0 27*). Following Quillen [5], we give the super vector bundle H+ 0 H" 
the superconnection Vz + Lz. The operator exp(V2 -f Lz)

2 is trace class on 
H + 0 i f - and its supertrace 

(j(^) = tr5 exp(Va: + Lz)
2 
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is a form on X x C* (compare [5 and 1]). For any real number r > 0 one can 
show that the integral 

I(r) = f u(z)\og\z\ 
J\z\2>r 

converges, belongs to A(X), and admits an asymptotic development (as r goes 
to zero) with finitely many divergences of type r~3~x and r~3log(r), j G N. 
Let 1(0) G A(X) be the finite part of I(r) as r goes to zero. By definition, 
T( ƒ, E) G A(X) is the class of the form obtained from 1(0) by multiplying its 
(p,p) component by (i/2n)p+1, for all p > 0. 

III. A Riemann-Roch Theorem. 
111.1. Assume X, Y and i£ are as in §11, and also that Y is projective. Let 

fi(E) G K0(X) be the class of (ƒ*(£), /*(/i);T( ƒ,£)) . Let Td(F) G A(Y) 
denote the closed form, representing the Todd class of Y, determined by 
the choice of metric on Y, as in 1.2. For any rj G A(X x Y) let f\(0;rj) = 
(0; f*(rjTd(Y)) in Ko(X), where ƒ* denotes integration along Y. 

111.2. THEOREM 1. (i) The map f\ extends uniquely to a group homo-
morphism 

fr.Ko(XxY)^Ko(X). 

(ii) For any a in KQ(X XY), we have an equality in A(X): 

ch(/,(a)) = /.(ch(a)rd(F)). 

IV. The metric on the determinant bundle. 
IV. 1. Let Pic(X) be the group of hermitian holomorphic line bundles over 

X, modulo biholomorphic isometries. There is a morphism 

fet:Ko(X)->£ic(X) 

sending (E, h : rj) to the maximal exterior power L = /\max(l£), given the 
metric Amax(h)exp(-2r?°), where rj° G C°°(X,R) is the component of rj of 
degree zero. 

IV.2. Let X and Y be as in II. 1 and let ~E be an h.h. bundle over X x Y. 
On the line bundle X(E) = det Rf*(E) over X (cf. [4]) we define a metric h as 
follows. For any point x G X, let Aq be the Laplace operator dydY + dYdy 
on Dg, q > 0, if£ its kernel, and K% the orthogonal complement to H.% 
in DJ. When s G C has large enough real part, consider the zet a function 
çq(s) = Trace((A9)~a on Kq). Now çq(s) admits a meromorphic continuation 
to the whole complex plane, which is regular at the origin. Let 

r(x) = o " 1 ) W W ) - Qltq(0) + (1 - <7bdimc Hq] 
q>0 

where 7 is the Euler constant. The I? metric on H% and the canonical 
isomorphism between X(E)X and <S>q>o(AmaX(^))^~1^» M> define a metric 
^ L 2 on A(J£)z. Let /IQ = /i£2 exp(—r(x)). One can show that the scalar 
product HQ on \(E)X varies smoothly with x; see [6 and 1]. 
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I V . 3 . THEOREM 2. If E satisfies 11.1(A), the class of (\{E),hQ) in 
Pic(X) is equal to det(f\(E)). 

IV.4. Theorems 1 and 2 imply that the first Chern form of (\(E),1IQ) is 
the component of degree two in f*(ch(E)Td(Y)). The proof of Theorem 1 
uses the constructions of I and II, and the local index theorem of Bismut [7]. 
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