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INTEGRAL REPRESENTAIONS ON HERMITIAN MANIFOLDS:
THE 5-NEUMANN SOLUTION OF THE
CAUCHY-RIEMANN EQUATIONS!

BY INGO LIEB? AND R. MICHAEL RANGE

1. Introduction. Let D be a relatively compact domain in a Hermitian
manifold X of complex dimension n. The Cauchy-Riemann operator 9 extends
to a densely defined operator

a: Lg,q(D) - L(2),q+1(D)7 0<g<mn.
The inner product in L3 ,(D) is given by

(f;g)Dzﬂ)fA*gv

where * is the Hodge operator defined by the Hermitian structure. If 8~ is
the Hilbert space adjoint of 8, one defines the complex Laplacian by
0=9039 +9 0.

Its significance for complex analysis lies in the fact that if N f € dom O solves
O(Nf) = f and f = 0, then u = @ N is the unique solution of du =
f which is orthogonal to kerd. J. J. Kohn has established existence and
regularity properties of the solution operator N, giving the solution of minimal
norm—the so called 3-Neumann operator—in case D is strictly pseudoconvex
[5], and in more general cases as well [6]. The proofs are based on a priori
estimates in L2-Sobolev spaces, and therefore they do not give any explicit
information about the kernels of N or 8 'N.

In recent years there has been much interest in finding more explicit and
concrete representations of the abstractly defined operators N and N (see
(2, 3, 9, 10, 12]). In [7] we began to study & N by using the calculus of
Cauchy-Fantappié kernels in C", in analogy to the work of Kerzman and Stein
[4] and Ligocka [8] for the Szegd, respectively, Bergman kernel; in contrast to
the scalar case, the incompatibility of the Euclidean metric with the complex
geometry of the boundary of D turned out to be a major obstruction in the
general case.

In the present paper we overcome this obstruction by generalizing the re-
sults in (7] to arbitrary Hermitian manifolds; this enables us to then intro-
duce a special Levi metric—similar to the one in [2]—and to establish the
required symmetry properties of the kernels. Qur main result gives a new and
completely explicit integral representation of the principal part of 3'N on
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range 0. It is likely that these methods will lead to a corresponding represen-
tation of N itself (see [11] for the case of the unit ball in C™).

2. Kernels on Hermitian manifolds. Given a Hermitian manifold
(X,ds?) of dimension n > 1, we fix a function p on X x X which agrees
with the geodesic distance function in a neighborhood U of the diagonal A,
and which is positive and C*® on X x X — A. Generic error terms will be
denoted by &;, j € Z, meaning that &; is a double form which is smooth off
the diagonal on a region in X x X, and which satisfies |;| < p’ locally near
the diagonal; integral operators with kernels &; will also be denoted by ¢;.

Define the double form I'; on X x X — A by

_ (=211 @.dy)

Ty gi2Fagn  pan—2

0<g<n

Since O = %A+terms of order < 1, standard results in Riemannian geometry
(see de Rham [1]) and integration by parts imply the following representation
formula (see [7] for the case X = C").

LEMMA 1. If D € X has C* boundary and f € C} ,(D) satisfies the first
9-Neumann boundary condition, then

f(y) = - /bD f A *a::rq + (Ef, 5:z:I‘q)D + (E*f, 19:::Fq)D + (f, 51—2n)D

forye D.

For a double form W on a subset of X x X, of type (1,0) in = and type
(0,0) in y, one defines the generalized Cauchy-Fantappié kernels Q4(W) by

(—1)9la-1)/2

0(W) = —gmm

(" ; l)w A (@, W)" 11 A (B,W)2.

It follows that

— %0, ¢ = Qq(azl’z//’z) + E2-2n.

Now suppose that D € X is strictly pseudoconvex with C'° boundary.
Fix a defining function r € C°°(X) for D which is strictly plurisubharmonic
in a neighborhood of bD. By suitably patching functions defined in local
coordinates as in the case D C C™ (see [4 or 7]), one constructs a smooth
function ¢ on D x D with ¢(z,z) = 0 for z € bD, ¢(zx,y) # 0if z ¢ bD
or y # z, ¢(z,y) holomorphic in y for =z near bD and p(z,y) < €, and
¢(1}, y) = —¢(y) $) = 53' fw = az¢/¢ and B = 3zp2[p2 + 2"'(12)1'(3/)]_1, let

Aq = Ay(W, B)
1 n—q—2

= G 2 W ABAGW) A @B A6, B)’

u=0
for 0 < ¢ < n — 2, and 0 otherwise, with suitably chosen rational constants
Qpq- Set Ly = (—1)7t! x A and define T,: L} ., (D) — L ,(D),0 < ¢ < n,
by

Tog = (9,9 Lo — *Q(W) + 3.T'0) D,

Tyg = (9,9zLg — OyLq-1 + B_qu)D for ¢ > 1.
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An analysis of the kernels as in the case X = C™ shows that T is “smooth-
ing of order 1/2”, that is, T, is bounded from L™ into Ay/,.

3. Main results. The Hermitian metric ds? on X is said to be a Levs
metric for D (or rather ) if ds? is conformally equivalent to

&*r
> (——8;:]- azk) dz; ® dz
in a neighborhood of bD.

THEOREM 1. Letds? be a Levi metric for D, normalized so that ||0r||gs2 =
1 near bD. Then Ty is the principal part of @ N on the range of 9: L3 ,(D) —
L(2),q+1 (D) .

REMARK. If D is the unit ball in C™ with the Euclidean metric, v2r =
1—|z|?, and ¢ = 1 — (y,z), then T, = 3 N on the whole space L3,
(see [11]). It appears likely that the restriction to range 8 in Theorem 1 is
unnecessary.

Theorem 1 is a consequence of the following fundamental integral represen-
tation formula on strictly pseudoconvex domains, valid for arbitrary metrics,
and Theorem 3. We denote by 2; a generic integral operator whose kernel is
admissible of weighted order > j (as defined in [7]).

THEOREM 2. A form f € C} (D) Ndom 3" has the representation
f=TDBf+Ty 18 f+E,f
+ 51—2nf + 52—211.(5.’.) 5mf) + m1f + ﬁ2(5]‘" 5mf)a

where

Eof = (f,%0:00(W))D
and
Eqof =(f, V20yLg—1 — (0zaqu—l)*)D forg>1

THEOREM 3. If ds? is a Levi metric, normalized as in Theorem 1, then
Eq, is admissible of weighted order > 1 for all ¢ > 1.

The proof of Theorem 2 involves Lemma 1 and a generalization of the
calculus of Cauchy-Fantappié forms in C™ to Hermitian manifolds. Theorem
3 is based on a delicate analysis of the leading terms of ¥,0yLq_1; since
these are of weighted order > 0, but not > 1 in general, the main point is
a cancellation of singularities due to certain symmetries of the kernels. The
result holds for arbitrary metrics in case g =n—1, but if 1 < g < n — 1, the
Levi metric condition is essential.

We conclude by stating one of the many applications of these results.

THEOREM 4. Let ds? be a Levi metric for D. Forq> 1 and f € Lg,q n
dom 0 N dom 6‘, one has
@) B .
(1fllas/z S 1 llz2 + 19F (Lo + 110" fllze;
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and
(i) 3
10 Nfllay, < fllee, o fis O-ezact.

Theorem 4(i) is the analogue in Holder norms of Kohn’s basic estimate.
The corresponding version for ¢ = 0 is
(io) _
”f - POf”Ax/z = “af”L“’v

where Py: L g — L§ o N O is the orthogonal projection. Estimate (ig) holds
for arbitrary metrics; it follows from Theorem 2 and symmetry properties of
Ey (cf. [7]); it was first proved in [2] by different methods for Levi metrics,
and in (8] by the above methods for X = C™ with the Euclidean metric.
Different proofs of Theorem 4 have been announced in [9 and 10], but, to our
knowledge, detailed proofs have not been published.

REFERENCES

1. G. de Rham, Varwétés différentiables, Hermann, Paris, 1960.

2. P. Greiner and E. M. Stein, Estimates for the 3-Neumann problem, Princeton Univ. Press,
Princeton, N.J., 1977.

3. R. Harvey and J. Polking, The 8-Neumann solution to the inhomogeneous Cauchy- Riemann
equation in the ball in C™, Trans. Amer. Math. Soc. 281 (1984), 587-613.

4. N. Kerzman and E. M. Stein, The Szegé kernel tn terms of Cauchy-Fantappié kernels, Duke
Math. J. 45 (1978), 197-224.

5. J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds. I, 11, Ann. of Math. (2)
78 (1963), 112-148; ibid. 79 (1964), 450-472.

6. ____, Subellipticity of the 3-Neumann problem on pseudoconwex domains: sufficient conditions,
Acta Math. 142 (1979), 79-122.

7. 1. Lieb and R. M. Range, On integral representations and a priort Lipschitz estimates for the
canonical solution of 3, Math. Ann. 265 (1983), 221-251.

8. E. Ligocka, The Holder continuity of the Bergman projection and proper holomorphic mappings,
1983 (preprint).

9. N. Qvrelid, Pseudodifferential operators and the 9-equation, Lecture Notes in Math., vol.
512, Springer-Verlag, 1976, pp. 185-192.

10. D. H. Phong, On integral representations for the Neumann operator, Proc. Nat. Acad. Sci.
U.S.A. 76 (1979), 1554-1558.

11. R. M. Range, The 3-Neumann operator on the unit ball in C™, Math. Ann. 266 (1984),
449-456.

12. N. K. Stanton, The solution of the 8-Neumann problem in a strictly pseudoconvex Siegel
domain, Invent. Math. 65 (1981), 137-174.

MATHEMATISCHES INSTITUT, UNIVERSITAT BONN, 5300 BONN 1, WEST GER-
MANY

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT AL-
BANY, ALBANY, NEW YORK 12222



