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The mathematical theory of compressible media includes systems of con­
servation laws, 

m 

00 9tu + £ 9 fJ(x9 u u) - 0, 
7 - 1 

of hyperbolic type in which the state of the medium at position x and time t is 
characterized by a dependent variable u = W(JC, /) in Rn. Field equations of the 
form (1) express the basic laws of physics associated with the conservation of 
mass, momentum and energy and provide mathematical models for a variety of 
nonlinear wave motion. The special systems arising in fluid dynamics, elastic­
ity, combustion theory, shallow water theory, petroleum reservoir engineering, 
etc. serve as the prototypes for the general development of the subject. 

The analytical theory of conservation laws was initiated nearly a century ago 
during a period beginning with the work of Hugoniot, Rankine, and Riemann 
and has progressed since then through many important contributions to both 
the formal and rigorous sides of the subject. We shall restrict our attention 
here mainly to some work from the last decade dealing with the rigorous 
theory for systems of equations, as they relate to the sections of the book under 
review dealing with shock waves. 

Much of the recent progress on conservation laws has involved systems in 
one space dimension, 

(2) dtu + dxf(u) = 0, -oo < x < oo, 

and has developed in two directions connected with the geometric and func­
tional analytic branches of the subject. The geometric theory has been con­
cerned primarily with the action of the solution operator in the strong topology 
and has treated various problems dealing with existence and qualitative 
behavior of solutions, in particular, the development and propagation of 
singularities. The associated analysis employs observations of the solution 
structure using various singular measures in the x-t plane, for the purpose of 
resolving and organizing the fine scale features in terms of elementary waves 
and their interactions. In contrast, the functional analytic theory has involved a 
study of the solution operator in the weak topology and has dealt mainly with 
the development and propagation of oscillations. The related analysis appeals 
to observations of the solution structure using nonsingular measures in an 
effort to analyze the basic fluctuations in terms of averaged quantities and 
their correlations. 
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The geometric theory for systems (2) stems from three seminal articles in the 
period 1950-1970: the article by Lax [26] containing the construction of the 
fundamental solution with small data via elementary waves, the article by 
Ghmm [17] on global existence of solutions with small data and the mono­
graph of Glimm and Lax [18] on generalized characteristic curves and large 
time decay of solutions with small data. It has developed in several stages since 
the beginnings in the early fifties. The book under review is divided into four 
sections, the third of which is concerned with the subject of conservation laws 
and deals primarily with the geometric theory in one space dimension as it 
stood prior to the fundamental monograph of Glimm and Lax [18] in the late 
sixties. In the paragraphs below, several references are provided to survey 
articles and lecture notes that discuss some of the developments that have 
taken place since 1970 and topics of current research interest. 

The functional analytic theory for systems (2) arises from basic work in the 
middle and late seventies by Tartar and Murat on nonlinear functional 
analysis [36,41,42], specifically on the theory of compensated compactness. 
We shall comment on just a few aspects of each branch, beginning with the 
geometric theory. 

1. Geometric theory. The geometry theory for systems of conservation laws 
(2) addresses itself to the general problem of determining how local laws for 
wave interaction influence global qualitative behavior, specifically the forma­
tion and propagation of coherent waves and the large time decay to equi­
librium. The laws for weak wave interactions were derived in the form of an 
asymptotic expansion in the fundamental paper of Glimm [17] which initiated 
the geometric theory for systems in one space dimension. These laws of 
interaction asymptotically characterize conservative motion at the local level in 
one space dimension: in each channel, the magnitudes of elementary waves are 
conserved up to linear terms; the deviation from linearity is measured (modulo 
cubic terms) by a reduced section of the general quadratic form associated with 
the Taylor expansion that corresponds to the physically approaching waves. 

The structure of the linear and quadratic terms of the expansion expresses 
several of the basic physical stabilizing mechanisms for the wave interaction 
process, for example, the cancellation of elementary waves of different signa­
ture in the same channel during interaction and the recession of waves of 
arbitrary signature in different channels after interaction. Knowledge of the 
expansion up to cubic terms and of the elementary group structure expressed 
by translation and dilation invariance serves as the starting point for the study 
of regularity and asymptotic behavior. 

2. Existence. Many of the developments in the geometric theory for systems 
(2) have involved the random choice method introduced by Ghmm [17] in 
1965. The random choice method has provided the main tool for the construc­
tion and analysis of solutions: it generates solutions of the Cauchy problem as 
limits of finite difference approximations and presents a detailed picture of 
wave interactions which is instrumental in the study of singularities and 
asymptotic behavior. The local component of this semianalytical method 
consists of the Lax solution of the Riemann problem [26] and is employed in a 
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time-marching fashion to generate an approximate solution from piecewise 
constant initial data. 

In [17] Glimm established global existence of solutions to the Cauchy 
problem with small data by deriving uniform bounds on the amplitude and 
distributional derivatives of the random choice approximations w(x, t\ Ax) 
measured in the spatial L00 norm and total variation norm respectively: 

(3) |ii(.,/;Ax)|00<ccmst|ii0|00, 

(4) TVw(-,f; Ax) < const TV w0, 

where the constants are independent of the data u0 and the mesh length Ax. A 
classical compactness argument yields a subsequence that converges to a 
globally defined distributional solution u = w(x, t) whose spatial L°° and TV 
norms are bounded uniformly in time: 

(5) l"(->0loo <eanst|iio|00, 

(6) T V M ( - , 0 < const TV u0. 

The central chapter in the third section of the book under review discusses 
the proof of the stability bounds (3)-(4) for the random choice approxima­
tions, a basic topic in the geometric theory for systems of equations. In 
connection with the exposition, it appears to be appropriate to comment at 
some length on the technical analysis and underlying physics. 

From the physical point of view, the spatial total variation norm of the 
solution u at time t measures the sum of magnitudes of all elementary waves in 
u at time t: all shock waves, rarefaction waves and compression waves. The 
basic difficulty in proving uniform stability bounds of the type (5)-(6) arises 
from the fact that many processes of local wave interaction increase individual 
wave magnitudes and thus eliminate the possibility of simple maximum 
principles and Gronwall inequalities for the solution operator in the standard 
metrics defining the strong topology. In [17] Glimm identified two primary 
mechanisms that compensate for local wave amplification and induce tem­
porary uniform bounds of the form (5)-(6), namely, wave cancellation during 
interaction and wave recession after interaction. The cancellation process for 
waves in the same channel leads to the absorption of small waves by large 
waves and a corresponding reduction in the contribution to the total variation 
norm. This process is reflected in the structure of the linear terms of the laws 
for wave interaction. The recession process for waves in different channels 
guarantees that the cumulative effect of local amplification is finite: primary 
weak waves radiate quadratically small secondary waves, which in turn gener­
ate cubically small third generation waves, etc. This process is reflected in the 
structure of the quadratic terms of the laws for wave interaction. 

The stabilizing effects of both compensating mechanisms are captured 
analytically by a nonlocal quadratic functional Q introduced by Glimm [17]. 
The functional Q is defined on random choice approximations and measures 
the potential that a global wave configuration in w(-, t; Ax) has, at time t, for 
interactions in the future. The functional Qu is decreasing with time and 
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compensates for the growth in TV M (during the initial and intermediate stages 
of the evolution) to the extent that the sum 

F(t) = TVw(-,f, Ax) + Qu(-,t, ax) 

is decreasing with time, if the total variation of the initial data is sufficiently 
small. Local weak wave interactions produce two simultaneous effects: one is 
to alter individual wave magnitudes, the other is to reduce the potential for 
future interaction by an amount that exceeds the local amplification. The form 
and analysis of the Glimm functional F are motivated by the derivation and 
structure of the laws for weak wave interactions. 

Unfortunately, most of the intuition behind the stability mechanisms associ­
ated with the functionate F and Q is dispersed throughout the research 
literature of the last eighteen years. A thorough discussion, accessible to a 
general audience, remains to be organized in a fashion that coordinates the 
technical proofs with the underlying physics and includes both a derivation of 
the weak local laws and an overview of their impact for the global behavior of 
the solution. 

The potential Q plays a central role in analyzing the qualitative behavior of 
the solution. The ultimate source for the large time decay and asymptotic 
shape of the solution, as well as the local structure and propagation of 
singularities, stems from the fact that the total amount of wave interaction in 
the x-t plane is finite. At the technical level, this fact is expressed by a finite 
measure Q* on the x-t plane which is associated with the potential Q and 
which assigns to each subset the amount of wave interaction occurring therein. 
The measure Q* is one of a Hst of several singular measures introduced by 
Glimm and Lax [18] for the purpose of organizing the special features of the 
global solution structure relevant to the large time decay to equilibrium. 
Extensions and refinements of the techniques associated with these measures 
serve as the starting point for the work in the seventies on singularities and 
large time asymptotic behavior. 

3, Qualitative behavior. Among the various avenues of introduction to the 
subject of conservation laws in one space dimension, one may reasonably focus 
attention on one of the three main temporal stages in the evolution of the 
solution from smooth data: The initial stage of wave formation and interac­
tion, the second stage of developed wave propagation and interaction, and the 
final stage of asymptotic wave decay. As one representative, we shall briefly 
discuss the intermediate stage in terms of the geometric structure of the 
solution, remark on a few results, and reference several articles that may serve 
as an introduction to the general subject. 

In the absence of forcing terms, it is observed under general circumstances 
that shock waves arise spontaneously out of an initially smooth state, increase 
and decrease in magnitude in the presence of various interactions, and finally 
decay at a slow algebraic rate as an equilibrium state is approached at large 
times. On one hand, compressive discontinuities (shock waves) develop from 
an initially smooth state. On the other hand, expansive discontinuities are 
instantly resolved as continuous fronts advancing at sonic speed (rarefaction 
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waves). Both the deregularizing and regularizing phenomena stem from the 
nonlinear dependence of the wave speeds on the amplitude of medium. 

The associated geometric structure of the motion in one space dimension is 
captured by the random choice method in the following way. The random 
choice method generates solutions w(x, t) in the space BV of functions with 
bounded variation in the sense of Tonelli-Cesari: each of the first order 
distributional derivatives ux and ut forms a Borel measure with locally finite 
total mass. The theory of BV functions [10,16,45] provides preliminary 
information on the geometric structure of the solution. The domain of defini­
tion of an arbitrary BV function on Rn decomposes into the union of three 
disjoint sets: (1) a set A of points of approximate continuity in the Lebesgue 
sense, (2) a rectifiable set J of points of approximate jump discontinuity, and 
(3) a sparse set / of irregular points having zero (m - l)-dimensional Haus-
dorff measure. The set A is reminiscent of the "continuous" regions of flow 
representing the rarefaction waves and compression waves. The set J recalls the 
family of shock fronts. The lower-dimensional set / is reminiscent of the set of 
points of wave interaction: shock collisions, points of shock formation, centers 
of rarefaction waves, etc. 

A basic problem for conservation laws in one space dimension concerns the 
regularity of weak solutions in BV. Can all of the singularities of the BV 
category be realized in a BV solution? Does the special conservation structure 
convert Lebesgue averaged limits to classical pointwise limits? How large is the 
residual set II A complete regularity theory for conservation laws in one space 
dimension has been developed which answers these and related questions for 
the solutions u(x91) generated by the random choice method. It turns out that 
the solution u is substantially more regular than an arbitrary BV function and 
presents a picture of interacting waves which is not so very far from the 
classical engineering conception of a piecewise smooth flow consisting of a 
finite number of shocks moving through a smooth background of rarefaction 
and compression waves. We refer the reader to [12] for a treatment of systems 
with nondegenerate wave speeds such as isentropic gas dynamics and to T.-P. 
Liu [32] for a treatment of systems with linearly degenerate wave speed such as 
nonisentropic gas dynamics. Both analyses employ techniques from the mono­
graph of Glimm and Lax [18] which develops a theory of generalized character­
istics for solutions constructed by the random choice method. 

Several remarks are in order regarding historical background. The space BV 
of functions of bounded variation of several variables first appeared in the 
theory of conservation laws in an article by E. Conway and J. Smoller [3] 
which estabhshed existence of solutions to scalar equations in several space 
dimensions using the Lax-Friedrichs finite difference scheme and a BV com­
pactness argument. The earliest variational estimates were derived by Oleinik 
in the form of bounds on the spatial total variation for solutions to scalar 
conservation laws in one space dimension; see [31] for example. The geometric 
structure of BV functions was introduced into the theory by Vol'pert [45]. 
Overall, the technical tools provided by the BV theory have played an 
important role in studying uniqueness, stability and asymptotic behavior 
[11,14,45]. 
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We remark that it remains an open problem to develop an a priori theory of 
regularity for systems of equations. It is only in the setting of a scalar equation 
with a convex flux, 
(7) ut +ƒ (« ) , = 0, ƒ">() , 
that an a priori analysis of the solution has been carried out. A definitive 
treatment of regularity and decay for (7) is contained in the work of Dafermos 
[6,9] on generalized characteristics. As an introduction to the geometrical side 
of the subject with appropriate reference to the basic physics, we would like to 
recommend the article by Lax [28] on the formation and decay of shock waves 
in solutions to scalar equations, the article by Dafermos on generalized 
characteristics and the C.I.M.E. lecture notes by Majda [35] on systems in 
several space dimensions. 

The lecture notes of Majda provide a stimulating introduction to the theory 
of conservation laws in one and in several space dimensions, with special 
attention to the underlying mechanics. Chapter I discusses the basic structural 
hypothesis for systems of equations and the role which primitive scalar laws, 
such as Burger's equation [22], 

Ul+{u2/2)x = 0, 
play as quantitative models for special solutions to systems of equations. 
Chapter II discusses local existence and continuation of smooth solutions. 
Chapter III discusses shock wave formation. Chapter IV presents the first 
rigorous results on existence of solutions to systems in several space dimen­
sions in the form of the small-time construction of stable multidimensional 
shock fronts. Each of the chapters includes comments on interesting and 
tractable open problems for future work. A version of the notes will appear in 
Springer-Verlag's Applied Mathematics Series. 

At the present time no comprehensive treatment of the rigorous analytical 
theory of conservation laws is available even for systems in one space dimen­
sion. Certain aspects of the subject are contained in the books by Courant and 
Friedrichs [4], Rozhdestvensky and Yanenko [40], A. Jeffrey [23] and the book 
under review by Smoller. The survey articles by Lax [27] and Dafermos [7,8] 
provide an excellent introduction to the subject. The earlier articles by Dafer­
mos [8] and Lax [27] deal mainly with developments between 1950 and 1970. 
The article by Dafermos [7] contains a discussion of several developments 
which have occurred since 1970 concerning the entropy condition, uniqueness, 
regularity and large time behavior [11,12,32,47]. A forthcoming monograph of 
T.-P. Liu will contain a discussion of regularity and asymptotic behavior that 
uses, among other things, the important wave-partitioning technique which he 
introduced in [32]. The Hst of references below presents only a small selection 
of articles connected with the geometric side of the theory of systems in one 
space dimension. As a small sample from the numerical side dealing with the 
analysis of high resolution finite difference schemes, we refer the reader to the 
work of Engquist, Harten, Hyman, Lax, van Leer, Majda, Osher, and Ralston 
[15,21,33,34,44] and to the references cited therein. Regarding the important 
developments stemming from the Chinese and Russian schools, we refer to the 
aforementioned survey articles. 
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4. Some open problems in the geometric theory. A general problem remains 
to derive local interaction laws for large amplitude waves in either approximate 
or exact form and deduce the global consequences. A specific goal is to 
establish uniform bounds on the L00 norm and TV norm of solutions with large 
data, either by deriving uniform bounds on the random choice approximations 
or by developing an a priori system of estimates. Is the solution operator 
bounded in the total variation norm for the systems of mechanics by virtue of 
their special symmetries in the physical domain and state space? Can a 
uniform L00 and TV estimate be established using just the primary mechanisms 
of wave cancellation, recession, and spreading? To what extent is it necessary 
to analyze the global structure of wave configurations in order to describe the 
qualitative behavior of solutions with large data? The long range goal is, of 
course, to understand the development, propagation, and interaction of coher­
ent waves in several space dimensions. One of the current goals is to establish 
global existence of solutions for general systems (2) of conservation laws with 
large data. 

A second general problem concerns the derivation of a priori estimates on 
the solution in the regimes of small and/or large data. Virtually all of the 
estimates presently available for solutions to systems (2) have been established 
from discrete versions on the corresponding random choice approximations 
and passage to the limit. One approach to the problem of a priori estimates is 
to introduce an appropriate analogue of the Glimm functional defined on 
solutions in space L°° n BV. The associated technical problems in this situa­
tion are concerned with the development of an efficient calculus. The hope is 
that an efficient operational method at the hyperbolic level in the BV category 
will provide the key to both the special problem of deriving uniform L00 and 
TV bounds for associated parabolic regularizations 

(8) 9,w + 9x/(w) = e9*w, u = u(x91, e), e -> 0, 

and conservative finite difference schemes, 

(9) Dtu + Dxf{u) = 0, w = w(x, / ;Ax) , Ax -> 0, 

and the general problem of treating the fine scale features at alternative levels 
of description. A basic problem remains to establish convergence of the 
viscosity method (8) as the diffusion parameter e vanishes and of classical 
finite difference schemes as the mesh length ax vanishes, in the setting of 
general systems of n equations. We shall remark on some progress in direction 
below. 

Because of the lack of a priori estimates the theory for systems of conserva­
tion laws has not yet yielded to treatment using the standard tools of 
functional analysis, which require some form of a priori control on both the 
amplitude and derivatives of the solution. In contrast, the theory for scalar 
equations enjoys a nearly complete set of estimates, based on maximum 
principles in Lp, and contains on the function analytic side an elegant 
treatment of existence with nonlinear semigroup theory by M. Crandall [5], A 
new functional analytic approach to several problems in conservation laws has 
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recently been developed with the aid of the theory of compensated compact­
ness. The approach requires a priori control only on the amplitude of the 
solution and involves a study of averaged quantities and the weak topology 
rather than wave interactions and the strong topology. The theory of com­
pensated compactness originates in the work of L. Tartar and F. Murat 
[36,41,42]. With the aid of compensated compactness, the first convergence 
results for the viscosity method (8) and for classical finite difference schemes 
(9) have been established in the setting of systems of two equations [13,46]. As 
a corollary one obtains the first large data existence results for isentropic gas 
dynamics and elasticity. 

5. Functional analytic theory. In the general setting of nonlinear equations, a 
basic difficulty arises from the fact that nonlinear maps are not continuous in 
the weak topology, and expresses itself in a variety of ways. With regard to 
existence problems, for example, one of the classical strategies is to introduce a 
sequence of approximate solutions and attempt to extract a subsequence that 
converges in the strong topology. The approximating sequence may be gener­
ated in a multitude of ways corresponding to régularisations, discretization, 
extremization, penalization, etc., but in all cases the classical compactness 
arguments require some type of uniform control, in pointwise or average form, 
on both the amplitude and derivatives of the sequence in question, in order to 
select a subsequence that converges in the strong topology, i.e. in the topology 
Lx

loc or one of its variants. 
In many cases, linear and nonlinear, uniform a priori bounds on the 

amplitude of exact and approxiamte solutions are available through maximum 
principles and energy estimates. Thus one may usually generate a sequence of 
approximations and extract a subsequence that converges in the weak topol­
ogy, i.e. in the sense of distributions. In the nonlinear setting, classical 
functional analysis requires uniform bounds on all partial derivatives in order 
to convert weak convergence to strong convergence and pass to the limit in a 
general nonlinear map. For this reason, the use of the weak topology has been 
restricted for a long time either to linear problems or to mildly nonlinear 
problems with monotonie structure. In contrast the theory of compensated 
compactness developed by Tartar and Murat provides an opportunity to pass 
to the limit in highly nonlinear problems using only the derivative control 
presented by the special linear combinations (of nonlinear functions) that 
define the equations themselves. 

It is not our purpose in this brief book review to provide an overview of 
recent developments in nonlinear p.d.e. stemming from compensated compact­
ness or even to provide an overview of recent results in the theory of 
conservation laws using compensated compactness. The techniques associated 
with compensated compactness are relevant to a broad range of problems 
including hyperbolic conservation laws. The subject was in fact stimulated by 
problems in homogenization and by work in nonlinear elasticity by J. Ball. 
With regard to a discussion of the physical motivation, theory and application 
we refer the reader to [13,36,41,42,46]. 

The book under review is divided into four parts entitled linear theory, 
reaction-diffusion equations, the theory of shock waves and the Conley index. 
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The author suggests in the introduction that the material of each section is 
suitable for presentation in a one-semester graduate course on partial differen­
tial equations. Section three concerns the theory of conservation laws and 
contains an exposition of selected results in the geometric theory of conserva­
tion laws in one space dimension. The author presents the early treatments of 
uniqueness and asymptotic behavior of solutions to a scalar conservation law 
in one space dimension that were available prior to the definitive work of 
Vol'pert [45] and Kruzkov [25] on uniqueness of a scalar equation in the early 
seventies, and the definitive work of Dafermos [7] on regularity and decay for a 
scalar equation in the late seventies. In the setting of systems of equations in 
one space dimension, the author presents the constructive argument of Lax [26] 
on the fundamental solution via elementary waves and discusses weak wave 
interactions for general systems of n equations and strong wave interactions for 
special systems of two equations. These topics provide background for the 
author's discussions of the random choice method and for some of the work 
carried out since 1968 on large data existence for special systems of two 
conservation laws by H. Bakhrarov, J. Greenberg, T.-P. Liu, T. Nishida, 
J. Smoller, B. Temple and others [1,19,20,29,31,37,38,43]. This line of 
research stems from the stimulating paper by Nishida [37] on large data 
existence for the equations of isothermal gas dynamics using the random 
choice method. 

6. Reaction-diffusion equations. The mathematical theory of reaction-diffu­
sion processes, as represented by semilinear parabolic systems 

dtu = DAu + / ( w ) , 

has recently received a great deal of attention stimulated by both formal and 
rigorous work on a variety of biological, chemical and ecological models. 
Perhaps the deepest scientific problems in this setting concern the accuracy of 
the models, in various regimes, as a mathematical description of natural 
phenomena and require tools in formal perturbation theory and numerical 
analysis for their solution. Part II of the book under review provides a lucid 
description of several rigorous results in the analytical theory which deal with 
existence and solution-set-structure and which follow from the o.d.e. viewpoint 
using maximum principles comparison arguments and bifurcation theory. Part 
II also contains a discussion of relevant background material on linearization, 
topological methods, and bifurcation theory. Part IV provides an introduction 
to the Conley index, a new topological tool. As just one representative 
achievement of the Conley index we mention the proof of existence of 
structure for magnetohydrodynamic shock waves [2], which is presented in the 
last chapter of Part IV dealing with existence of traveling waves. 

As a whole, the book contains a wide variety of material, and a rather 
extended report would be required to provide the appropriate historical 
remarks for all of the special topics which are discussed together with the 
references to alternative presentations and points of view, recent work, etc. In 
summary, the book by J. Smoller contains a clear and well-written account of 
several fundamental topics and is a very valuable contribution to the exposi­
tory literature on shock waves and reaction-diffusion equations. 
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