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Introduction. Let us recall that a mapping F: X -* Y is proper if ƒ ~1(A') is a 
compact subset of X whenever K c Y is compact. If X and Y are complex 
spaces, and if F: X -> Y is a proper holomorphic mapping, then F~(y0) is a 
compact analytic subvariety of X for all points y0 e Y. Proper mappings 
between complex spaces were studied from the general point of view of 
complex spaces in the 1950s and early 60s (see Remmert-Stein [78]). Two 
results from this era are a factorization theorem of Stein [88] and the Remmert 
Proper Mapping theorem: Iff: X -> Y is a proper mapping, and if S c X is a 
subvariety ofX9 then f (S) is a subvariety of Y. 

Here we consider a special case: proper mappings F: Q -> D where Î2 c c X 
= Cn and D c c Y = CN are smoothly bounded domains.2 The letters Q and 
D will always denote domains of Cw, and a "proper mapping" will always be 
assumed to be holomorphic. (In many cases the same results are valid in the 
case where X and Y are Stein manifolds, although we will not emphasize this 
point.) 

It is evident that a mapping F: Ö -» D is proper if and only if ƒ maps 3S2 to 
dD in the following sense: 

if (zy) c £2 is a sequence with limdist(z , 90) = 0, then 
y'-»oo 

limdist(/(z),3Z>) = 0. 
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Thus proper mappings ƒ : Ö -* D lead naturally to the geometric function 
theory of mappings taking 90 to dD. 

The case where proper mappings are best understood is when the domains 
are strongly pseudoconvex. Pinfcuk [73] has shown that a proper mapping 
ƒ : fl -> D between strongly pseudoconvex domains is locally biholomorphic. In 
fact, this result remains true if D is only assumed to be (weakly) pseudoconvex 
(see [20, 38]). It has been shown, too, that if 9ÏÏ and dD are strongly 
pseudoconvex and real analytic then a germ of a holomorphic mapping ƒ with 
f(U n 90) c dD for some open U containing z0 e 9S2 may be analytically 
continued along 92 (see [71,72,27]). 

In this article we will survey some recent results on proper mappings 
between smoothly bounded domains. Biholomorphic mappings, of course, are 
a special case of proper ones. But here we want to study the features of proper 
maps that do not arise already in the locally biholomorphic case. Thus we 
focus our attention on the behavior of singular, i.e. branched, mappings, with 
emphasis on the smoothness and branching behavior at the boundary. 

For boundary smoothness of proper mappings, we will present one of the 
proofs of S. Bell. We will not attempt to discuss or even mention the numerous 
other methods that have been developed; the reader may consult the references 
given in [26,37,43]. The literature on biholomorphic maps and automorphisms 
is so extensive that we cannot adequately present it here and, therefore, have 
omitted it almost entirely. 

A related topic, not discussed here, is the proper mapping of polyhedra (see 
[57, 78, 79, 80, 50, 85]). Another topic which we have omitted is the holomor­
phic correspondence, i.e. multiple-valued analytic mapping. This arises natu­
rally in problems where it is desirable to study/"1, for example, in factoriza­
tion. The reader is referred to [89,86,80,13,14,97]. 

Finally we note that, except in §6, we assume ƒ is equidimensional, i.e. 
dim B = dim D. 

1. Structure and examples. First we give some examples of proper mappings, 
then we describe the basic structure of a proper map in terms of a branched 
cover, and we conclude this section with some more examples. 

EXAMPLE (UNIT DISK). The proper mappings ƒ : A -> A are finite Blaschke 
products, i.e. 

k z — a-

j - 1 l ajz 

where al9..., ak e A, and <j> e R. 
Proper mappings of the polydisk Aw = A X • • • X A to itself are thus de­

termined by the following theorem (see [78, 69, 80]). 

THEOREM. If Ql9...9Qn9 Dv...9 Dn c C are bounded domains, and if f: 
Qx X • • • X Qn -* Dx X • • • X Dn is a proper mapping, then there are a permu­
tation a of{l9 . . . ,«} and proper mapsff. S2a(y) -> Dj such that 

ƒ ( * ! > • • • > Zn) = ( A ( * a ( l ) ) > ' • . » fn(Zo(n)))' 
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EXAMPLE (THE BALL). The proper self-maps of the unit ball B" = ( z e C": 
\zi\2 + ' ' " + \zn\2 < 1)» w ^ 2, were shown to be automorphisms by Alexander 
[3] (see also [71,82]). 

The existence of many proper mappings is given by a result of Grunsky [55] 
and Ahlfors [1]. 

THEOREM. If M is a finite Riemann surface with nondegenerate boundary 
components, then there exists a proper mapping f : M -> A. 

In general, however, given two Riemann surfaces M and N, it does not seem 
easy to say whether there exists a proper mapping/: M -* N. 

Now we turn to the general structure of a proper mapping/: £2 -> D, where 
dim Ü = dim D = n. Two objects of interest are the Jacobian determinant 

Jf(z) « det(a/(z)/3zy) 

and the branch locus 

Vf={z<EQ:Jf(z) = 0}. 

Evidently, if z0 e Ö \ Vf, then ƒ is a local diffeomorphism in a neighborhood 
ofz0. 

Some basic properties of a proper mapping/: Q -> D are: 
(A) f~l(w0) is a compact subuariety of Q and is thus finite. 
(B) ƒ 15 an open mapping. 
(C)fis not locally one-to-one in any neighborhood of any z0 e Vf. 
(D)fhas rank non a dense open subset ofQ, 
(E) the set of critical values f\Vf) is a complex subvariety of D. 
For simple proofs of these facts, see Chapter 15.1 of Rudin [81]. 
It follows that/: fl \f~lf(Vf) -> D \f(Vf) is a proper, unbranched cover. If 

D is connected, then there is an integer m such that ƒ ~\w) contains exactly m 
points for each w e D \ / ( ^ ) . I n fact, more is true: 

(F)/_ 1(w) contains m points if w & f(Vf% and f~l(w) contains less than m 
points if w ^f(Vf). 

Branching. We note two cases in which the branching behavior determines 
whether or not a mapping is biholomorphic. It is not hard to see that // 
ƒ : Q -» D is an unbranched proper map, and if D is simply connected, then f is a 
biholomorphism. 

Less obvious is a result of Pinöuk [70]: /ƒƒ: fl -> Q is an unbranched proper 
self-map, and ifü has reasonable boundary, then f is a biholomorphism. 

Fornaess [48] has shown that there cannot be branching even at the 
boundary in the smooth, biholomorphic case: if f:Q -> D is a biholomorphic 
mapping between pseudoconuex domains with C2 boundaries and if f'e. C2(Q), 
then Jf¥^0onU and f-1- G C2(D). 

EXAMPLE (REINHARDT DOMAINS). Let Q, D be Reinhardt domains, i.e. 
invariant under (zx,...,zn)^> (ei0lzx,..., ei0»zn) for all Bx,..., 0n e R. If Ql9 

S 2 2 c c C " are Reinhardt domains satisfying 
(a)zx ••• z„#0/ör(z 1 , . . . , z n )GÖ / . , 
(b)(z 1 - 1 , . . . , z n - 1 )eÖ 7 . i / (z 1 , . . . , z n )ef i / 
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for j = 1,2, then every proper, unbranched cover ƒ: Qx -> Q2 *s ö / ^ /orm 

(*) fj = cjz$---z$ and M * e Z . 

This is Theorem 1 of [9]. 
Further, /ƒ Ö c c Cn satisfies (a), and iff: Q -+ ti is a proper self-map, then 

ƒ e Aut(S), and, in particular, ƒ has the form (*). This is seen because ƒ: 
ü\f~lf(Vf)-+Q\f(Vf) is an unbranched, proper cover. Thus for every 
a e Tr̂ fl \ /(J/)), there exists y e ^ ( 0 \f~lf(Vfy) such that ƒ „ey is an integer 
multiple of a. Let r be the n X AT matrix with integer coefficients which 
represents/*: 7^(0,Z) -> /^(QjZ) with respect to some basis. By the behav­
ior of ƒ * on the fundamental group, it follows that det(r) ^ 0. Our conclusion 
now follows from Theorem 2 of [9]. 

For a rather general class of bounded Reinhardt domains Q, D, Barrett [7] 
has shown that a proper map/: fl -» D extends holomorphically to a neighbor­
hood of Û. (See also [64,65].) 

EXAMPLE (COMPLETE, CIRCLED DOMAINS). If Q, D are circled and complete 
(i.e. invariant under (zv..., zn) -> (\zl9..., Xzn), X e C, | \ | < 1), then every 
proper map ƒ : Ü -> D with ƒ _1(0) = {0} is polynomial (Bell [21]). 

2. The analytic projection operator. The Bergman metric and kernel, while 
useful tools for biholomorphic mappings, are not invariant under proper 
mappings. The analytic (Bergman) projection operator, however, is invariant. 
This will be used in §3, where we describe the proof that proper mappings 
extend smoothly to the boundary. 

If co = h(z) dzx A • • • A dzn and TJ = k(z) dzx A • • • A dzn are («,0)-forms 
on £2, then we may consider the inner product 

(w,Tj)0 = in2fœ A ij, 

which is well defined (as integration of a 2 «-form over a 2 «-manifold) 
independently of any metric on Î2. It is easily seen that 

INlS-(«.«)o-2-/|*|2rfK, 

where dV denotes the Euclidean volume. Let L2(S2)w0 = {( «,0)-forms w with 
||co||2 < oo}, and let L2(S)„0 denote the holomorphic «-forms in L2(ti)n0. 
Thus L2(B)w0 is a closed subspace of L2(£2)n0, and we may define the 
orthogonal projection 

PQ:L2(Q)Hfi-+L2
a(Q)Hfi. 

We recall that if ƒ : fl -» D is a holomorphic mapping, then the pull-back 
operator/* is defined by 

f*{h(w) dwx A • • • A dwn) = h(f(z))Jf(z) dzx A • • • A <fen. 

Thus, if ƒ : Q -* Z> is a /?-to-l proper mapping, then by the usual "change of 
variables" formula, we have 

f\h( f(z))\2\Jf (z)\2 DVZ = pfjh(w)\2 DVW, 
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since |J |̂2 is the same as the real Jacobian of ƒ. It follows, then, that for 
1 e L2(Î2), 

(2.1) \\f*l\\l=P\\ri\\2
D9 

and thus/*: L2(D)nfi-* L2(Q)nfi. 
The relation between the holomorphic projection P and proper mappings 

was given by Bell [19]. 

LEMMA. Iff: Ö -> D is proper, then Püf* = f*PD. 

PROOF. There are two cases to consider. 
Case (i). If TJ e L2

a(D\ then Ppij = rj. On the other hand, by (2.1), f*r] e 
L2(0),so/>0 /*i ï- /*i | . 

Case (ii). If 17 JL L2
a(D)nfi9 we must show /*TJ _L L2(B)„ 0. Let us first 

assume that TJ = (3/3wy.)*(w) dWx A • • • A dwn9 where <£ e Cf(D\f(Vf)). If 
g G L2(Q)w0 then, setting V = f~lf(Yf\ and denoting the local inverses of ƒ 
by f i , . . . , i^ we have 

/" / * i | A « 
Ja\v 

= f âZ:1>(f(z))Jf(z) A ~$&)Dzi * • - * dzn A dzx A • - A dzn JQ\V°wj 

A dwx A • • • A dH>„ 

= È ƒ â^"*(w) g(FkW) JFk(
w) dwi A * ' * A *S 

k-l
JD\f(Vf) <3Wj 

We conclude that/*TJ ± L2
a(Q)nS). 

Finally, the (w, 0)-forms 

1 = E â^T^l A ••' AdWn> 
J=l j 

*j e q°(D\f(Vf))9 are dense in L2
a(D)^0. For if A e L2(Z>)£0 and (A, T,)^ 

= 0, integration by parts shows that h is holomorphic on D\V. By the 
Riemann Removable Singularity Theorem, h e L2

a(D)n 0, and thus /i = 0. 
REMARK. A similar argument was given by Pincuk [74] to show that the 

kernel functions themselves satisfy 

KQ(z) > {l/p)\Jf{z)\2KD{f{z)). 

Condition R. In the context of boundary regularity it is important to know 
whether the holomorphic projection preserves smooth functions, i.e. 

(2.2) *o(Q3>(B)) c Çft(O). 
Domains with regular projection, i.e. which satisfy (2.2), are said to satisfy 
Condition R. 
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One approach to Condition R is given through the 3-Neumann problem. 
The 3-solving operator S corresponding to the 3-Neumann problem is given by 
the map (if it exists) 

S: { 11 e L2(fi)oa: dfi = 0} -+ L2(fi) 

such that 5(jüt) satisfies 

(* ) 35( / i ) = /i 

and 5(/JI) minimizes /0 |S( /A) |2dV over all solutions of (*). If we identify 
(n, 0)-forms with functions in the obvious way, then it is evident that 

(**) f-pQf=s(df). 
Thus Ö will satisfy Condition R if 

(2.3) 5 :{f iG C°°(Q)0y. h = 0} - C°°(A). 

So far, the greatest source of domains known to satisfy Condition R is from 
condition (2.3), which is obtained from subelliptic estimates for the 3-Neu-
mann operator. The Neumann operator JV_is an operator which inverts the 
Laplacian D = E32/3zy3z/ subject to the "3-Neumann" boundary conditions. 
That is, for a (0, l)-form /* on Ö, Np is a (0, l)-form solving D JVju = jnonö and 
satisfying the 3-Neumann conditions 

Npjdr » 0, 3(iV»j3r = 0 

on 3ÏÏ. These boundary conditions are degenerate (noncoercive), but they serve 
as a substitute for the orthogonality condition corresponding to (* *). Finally, 
if the Neumann operator exists, there is a Hodge-type decomposition for N, 
from which we have Sfi = 3*JV)u. for /i satisfying 3jn = 0 (see the survey article 
ofKohn[60]). 

The work of Kohn [59] showed that (2.3) holds under certain geometric 
hypotheses on 3fl. Diederich and Fornaess [36] have proven, in particular, that 
these hypotheses are satisfied for pseudoconvex domains with real-analytic 
boundaries. D. Catlin [32] has shown, more generally, that (2.3) holds even for 
pseudoconvex domains which have finite type in the sense of D'Angelo [95]. 

Although pseudoconvexity (or at least 1-convexity) is a necessary condition 
for (2.3), it is not clear what role pseudoconvexity plays in Condition R. 
Bell-Boas [25], Bell [23] and Barrett [5] have shown that (2.2) holds jn cases 
where (2.3) does not hold, i.e. where Ö is not pseudoconvex and 3 is not 
solvable. On the other hand, Barrett [8] has recently found a smoothly 
bounded but not pseudoconvex domain for which Condition R fails. 

3. Boundary regularity. The following conjecture is well known but unre­
solved: If £2, D c c Cn are domains with smooth boundary, then every proper 
mapping/: Q -> D extends smoothly to ÏÏ. 

Before discussing some partial results in this direction, we give some 
examples of poorly behaved proper mappings. 

Let Ö = {( z, w) e C2: \z\ < 1), T = C/(Z + iZ), and A = {z e C: \z\ < 1). 
EXAMPLE. If f(z, w): £2 -> S2 is given by f(z9 w) = (z, w + g(z)\ where g(z) 

is any analytic function on A, then f is proper. 
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EXAMPLE. The function / : A x T - > A x T given by f(z, w) = (z, w + g(z)) 
(as above) is proper. 

EXAMPLE. The function G(z, w) = (z,(w — g(z))2) yields a proper mapping 
G: Ö -> Q and a proper mapping G: A X T -> A X T. 

In the first two examples, ƒ does not extend smoothly to the boundary if g 
does not extend smoothly to A. In the third example, g may be chosen so that 
yG = ( w = # ( z ) : z G A > i s d e n s e i*19S (°r 9 A x T>-

EXAMPLE (PIECEWISE - SMOOTH BOUNDARY). Fridman [52] has shown that 
there is a domain 8 c c C 2 with piecewise-smooth boundary, and there is a 
biholomorphism ƒ: Ö -> A2 which does not extend continuously to Ö. 

The first step to establishing boundary regularity is to show that boundary 
distances are preserved. For this we use a result of Diederich and Fornaess 
[35]: if D c c Cn is a pseudoconvex domain with C2 boundary, there exists 
r e C2(D) with { T < 0} = A { r = 0} = 3D, Vr * 0 on 3D, and - ( -r) e is 
plurisubharmonic on D for some e > 0. The following argument is due to 
Henkin and Pinöuk [57, 70, 76]. 

LEMMA 1. 7 / 0 , D e c Cn are pseudoconvex with C2 boundary, and if 
ƒ : S2 -* D is a proper mapping, then there exists e > 0 such that 

e(dist(/(z),3D))1 A < dist(z,3fi) < e-l(dist(f(z)9 3D))e. 

PROOF. Let r be the smooth defining function above. Then \r(w)\ is esti­
mated above and below by Cdist(n>, 3D). Since ƒ is proper, -(-r(f(z)))e is a 
psh. exhaustion function for Q. By the Hopf Lemma, there is a constant C > 0 
such that 

- ( - r ( / ( z ) ) ) £ < - C d i s t ( z , 3 Ö ) . 

It follows, then, that 

dist(/(z), 3D)e > Cdist(z, 3fi). 

The other inequality is obtained in the same manner because if p is a psh. 
exhaustion for S2, then 

\p(w) = max p(z) 
Z<Ef-\w) 

is a psh. exhaustion for D. 
Now since/(z) = ( fx(z\..., fn(z)) is bounded, the Cauchy estimates give 

|D7;(z)|<Mdist(z,3fi)" | a | . 

Thus from Lemma 1 and the Cauchy estimates, we obtain 

LEMMA 2./*(C0°°(D)n)0) c C0°°(Â)n>0. 

We will also need the following. 

LEMMA 3. P(C?(D)n0) = />(C°°(D)W)0). 

PROOF. For <f> e C°°(D), we want to find $ e C?(D) such that P<j> = P^. 
We let r e C°°(D) be a defining function for D. By a partition of unity, we 
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may assume that the support of <j> is small enough that dr/dzx ^ 0 on 
9fl n supp <j>. 

We construct yp of the form 

*-*-±[iy). 
We may arrange to have \p e C ^ ^ ) since we may solve successively for xy-
This starts as 

Xig]T = </> (modO(r)) 

and proceeds inductively as 

t-^fàxA-kr^Xk (modO(r*)). 

This determines the value of Xylaz> i*1 terms of Xi>- • •, Xy-i a n d their deriva­
tives on dD. Clearly Xj G C°°(Z>) may be chosen so that the summation 
converges in C°°(Z>). 

Finally, it is evident that PD<j> = PD\p since 9/i/9*i -L Lj(Z>)forallA e C^-D) 
with A = 0 on dD. 

THEOREM. Let Ö, D c c C" ôe smoothly bounded and pseudoconvex, and let Q 
satisfy Condition R. Then iff: fl -> D is proper, Jffp • • • ƒ„"» G C°°(2) for all 
integers al9..., an > 0. 

PROOF. We set TJ = wf1 • • • w"n dwx A • • • A dw,,. By the preceding lemma, 
there is a smooth form £ e C™(D)n 0 with P^l = TJ. Further, 

/ * n - / f •••f„a"Jfdz1A---Adz„. 

But 

since ƒ *£ is a smooth form on S2, and Î2 satisfies Condition R. This completes 
the proof. 

This theorem shows that ƒ(z) is smooth on a dense subset of the boundary, 
i.e. on { z e 9S: Jf(z) # 0}. This is already a useful result: for instance, it 
follows from Webster [91] that if 9S2 and dD are, in addition, defined by 
polynomial equations, then ƒ is algebraic. 

By the theorem above, the problem of showing that ƒ e C°°(S2) is thus 
reduced to a problem of division, which was solved by Bell and Catlin [26] and 
Diederich and Fornaess [39]. They prove the finite vanishing of Jf at 9S2 and 
then a Division Theorem, both of which are of independent interest and are 
stated here. 

LEMMA (FINITE VANISHING OF THE JACOBIAN). Iff: Q -> D is proper, and if 
Q, D c c Cn are smoothly bounded and pseudoconvex, then Jf vanishes to only 
finite order at 90, i.e. there is no z0 e 9S2 such that \Jf(z)\ = OQz - z0\

m) for 
m = 1,2,3,.... 
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DIVISION THEOREM. Let S2 c c C" be a domain with smooth boundary. If 
u(z) andf(z) are holomorphic on £2, if u e C°°(fl) vanishes to finite order at dû, 
and if ufj e C°°(â) forj = 1,2,3,..., then ƒ e C°°(â). 

From these results it follows that the conjecture stated at the beginning of 
this section is valid for pseudoconvex Q satisfying Condition R. In a subse­
quent note [16], it was shown that these arguments apply also to domains ti, D 
inside a Stein manifold. It has also been shown that the pseudoconvexity 
hypothesis may be dropped if both fl and D satisfy Condition R (see Bell [18]). 

These methods also yield extensions to a neighborhood of S in some cases 
(see [20, 6]). 

4. Generic branching. If ƒ: S -* D is proper, then so is 

(4.1) fo=f\v'.V->W9 

where V = Vf and W = f(Vf). Certain kinds of local singular behavior are not 
possible for proper mappings. For instance, a proper mapping cannot look like 
h(z, w) = (z, zw) near the origin, since A_1(0,0) = {0} X C has positive di­
mension. It does not seem to be known, however, just what varieties V, W and 
proper mappings f0: V -» W can arise as in (4.1) (cf. also the conjecture in 
[87]). 

Although the exact branching behavior is not known (except in the case 
Ü = B", in §5), the generic branching behavior is easy to describe, and there is 
a relation between the generic branching order of a mapping at the boundary 
and the order of vanishing of the Levi form. The following is an elementary 
illustration of this. 

EXAMPLE. If / (z , w) = (z, w2), then/: ^ -> S22 and/ : S22 -> S23 are proper, 
where 

fii = {|*l2 + M 4 < i } , 

fi2 = {|z|2 + M 2 < i } , 

S23 = {|z|2 + M < l } . 

The branch locus in both cases is Vf= à X (0). Note that Qx is Levi flat at 
dQx n Vfi fi2 is strongly pseudoconvex at 3S22 n Vf, and fl3 is not smooth at 
8ö3 n vf. 

The point is that the branching order decreases the degree of Levi flatness. If 
the boundary is nowhere Levi flat (i.e. strongly pseudoconvex), then a branched 
mapping has a nonsmooth image. 

We note that the nature of the nonsmooth image can never be as "nice" as 
piecewise-smooth according to the following result of Pincuk [74]. 

THEOREM. Let Z>, G c C " (n > 1) be bounded, pseudoconvex domains, G 
having boundary of class C2, and D havingpiecewise C2-smooth, but not smooth, 
boundary. Then there does not exist a proper mapping g: G -> Z>. 

Generic branch points. Given a point z0 e Vf, we may move it slightly so that 
z0 is a regular point of Vf, the rank of /0 is n - 1 at z0, and f(Vf ) is regular at 
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/ (z 0 ) . Thus we may make holomorphic changes of coordinates in neighbor­
hoods of zQ and f(z0) so that z0 = / (z 0 ) = 0, Vf = {zn = 0} near z0 = 0, 
f (Vf) = {z„ = 0) near / (z 0 ) = 0, and f0(zl9..., zn^) = (z^. . . , zn_x) holds 
for z e J^near z0 = 0. 

Since { /„(z) = 0} = { zn = 0} holds in a neighborhood of z0, we have 

ƒ,(*) - £ «/*')*£ 

where ^ is analytic in z' = (z^. . . , zn_1). Moving z0 shghtly within Vf9 we 
may assume 

ƒ.(*) = £ «y(«0^. 

and 0^(0) # 0. Thus 

fm(z)-z»U(z) 

where £7(0) # 0. By a change of coordinates in D, z'n = zn(U(z))1/M
9 we may 

assume/„(z) = z% in a neighborhood of z0. 
We conclude this discussion with the observation that for a generic point 

ZQ e Vf, holomorphic changes of coordinates may be made at z0 andf(z0) so that 

(4.2) f(z) = (zx + z n g l ( z ) , . . . , z ^ ! + zngn_1(z),z^f). 

The branching order of ƒ at z0 is Ord(/, z0) = M - 1, and is constant on the 
irreducible component of Vf containing z0. 

REMARK 1. By a change of coordinates of the form 

dg. 
z) = z, - gj(0)zn - ^ ( 0 ) z n

2 , 1 <y < « - 1, z'n = zn, 

we may assume (4.2) satisfies gy(0) = 9gy (0)/9z„ = 0. 
REMARK 2. If 9S2 is strongly pseudoconvex and ƒ: Ö -» D9 f e C°°(Ö), is 

proper, then we can choose a generic z0 e Ĵ  n 9S2 such that (4.2) holds to 
arbitrarily high order. _ 

Next we give a measure of flatness of the boundary. If r e C°°(D% D = 
{r < 0) and w # 0 on 3D, then the determinant of the Levi form is given by 

^D(w) = -det 
u i ör/öWi i 

A I - 1 
0 | dr/dwj 

dr/dw; d2r/dwfiwj i 
|Vr|-

A point H>0 e 9Z) is strongly pseudoconvex if the Levi form is positive definite 
and thus \D(w0) > 0. If f\Ü -+ D is proper, then p = r ° ƒ is a defining 
function for Ö, and by the chain rule we may compute 

(4-3) XB(z) = \D{f{z))\Jf{zW 

for z e 9Ü. [The fact that p is a defining function, i.e. Vp ^ 0 on 3S2, is seen, 
since by [35] we may take r to be a smooth defining function such that 
- ( - r ) 2 / 3 is psh. on D near/(z) and then apply the Hopf Lemma to ~(-p)2/3.] 
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To illustrate the utility of (4.3) we give a result which was proved in various 
forms in [29, 73, 20, 38] for conclusion (i) and [74, 18] for conclusion (ii). 

THEOREM. If 8, D c c Cn are smoothly boundedpseudoconuex domains and £2 
is strongly pseudoconuex, then for any proper mapping f : S -> D it follows that 

(i)fis a local biholomorphism; 
(ii) D is strongly pseudoconvex. 

PROOF. By §1, if ƒ is not a local biholomorphism at some point of Q, then 
Vf # 0 , and thus Vf n 90 * 0 . By §3, / , e C°°(Ö) and thus JJr(z0) = 0 for 
Z Q E ^ H 98. By (4.3) it follows that Aö(z0) = 0 and thus 8 is Levi flat at z0, 
which is a contradiction. 

It also follows from (4.3) that XD * 0 at / (z0) , and_thus D is strongly 
pseudoconvex at all points / (98) c 92). Since ƒ e C(8) and ƒ is proper, 
/ (98) = 9Z>, which proves (ii). 

From (4.3) it is evident that X is not a biholomorphic invariant of the 
boundary, although the condition X = 0 is invariant. If z0 e 98, then we may 
define 

T(Z0) = order of vanishing of X(z) at z = z0 

= min{ m: for every tangential differential operator 

P on 98 of order m, P(X(z0)) = 0} , 

and T is a biholomorphic invariant. A more thorough discussion of the 
invariants of the Levi form is given in [95]. From (4.2) and (4.3) we obtain a 
relation between the generic branching order and T. 

PROPOSITION. Iff: 8 -> D is a proper mapping, ƒ e C°°(S), and z0 G 9Î2 w a 
generic branch point, then T(Z0) + 2 = (Ord( ƒ, z0) + 1)(T(/(z 0 ) ) + 2). 

If 9fl is real-analytic, we may make a semianalytic stratification of the set 
{ z e 9J2: X(z) = 0} into sets where T is constant. From this we may extract a 
finite number of connected, real-analytic manifolds T1 , . . . , Tk with the proper­
ties: 

(1) T = Tjis constant on TJ, 1 ^ j < k; 
(2) there is a connected complex (« - l)-manifold P c C " with TJ c P, 

1 < j ^ k. 
The details of this construction are given in [11]. The theorem below shows 

that if fl has real-analytic, pseudoconvex boundary, then there are only finitely 
many possibilities for Vf, which are determined by 9Î2. Further, for a proper 
mapping f:Q -+ D between two domains with real-analytic boundaries, the 
special manifolds in 90 are taken onto the special manifolds of 9Z>. 

THEOREM. Let ficcC" be a pseudoconvex domain with smooth, real-analytic 
boundary. Let D c c Cn be a domain with smooth boundary, and let f.Q -+ D 
be a proper mapping. Then for each irreducible component V of Vf there exists a 
point z0 G TJ and an open set U containing z0 such that V n U = F' n U. 
Further, if dD is real analytic, and T' is an element of the stratification of dD, 
then there exist T\..., V' c 9fl such that T'"1 U • • • U Tir is dense in f~\T'). 



168 ERIC BEDFORD 

Two applications of this theorem are given below. Since the corresponding 
values of T must be related as in the above proposition, we have the following 
application to a specific case, which was also treated by Landucci [61]. 

THEOREM. If fl = {| z\2 + \w\2*> < 1} and D = {\ z\2 + |w|2« < 1}, then there 
exists a proper mapping ƒ : Ö -> D if and only if q divides p. 

If the theorem is applied to the iteration of a self-mapping, we obtain the 
following, which was proved in [11, 12, 24]. 

THEOREM. IfQci(zCnisa pseudoconvex domain with smooth, real-analytic 
boundary, then every proper self-mapping f : Q -> Q is an automorphism. 

5. Factorization. Let ƒ : S -* D be a proper mapping. We will discuss the 
existence of a subgroup Tf c Aut(ö) of the group of automorphisms with the 
properties: 

( i ) / gOO=/ (z ) fo ra l l ze f l , 
(n)f-lf(z) = U g e I > g(z ) for all z e 0. 

The existence of the group Tf gives a canonical factorization f = fq, where TJ: 
B -> 0/1}is the quotient mapping, and/: S/ I} -> D is a biholomorphism. 

A factorization does not always exist. For example, let Q = D = A be the 
unit disk in C, and let/: A -> A be given by 

where a, fi e A, a # )3. Note that ƒ _1(0) = { «, 0}, but that ƒ has different 
branching orders at a and /}. Thus there cannot exist g e Aut(A) satisfying (i) 
above and g(a) = /?. 

The existence of a factorization of a proper map ƒ : 2 -» Z> is easily seen to 
be equivalent to the unbranched covering/: Q\f~1f(Vf) -* D\f(Vf) being 
normal. The reason for this is that 1} are covering transformations by (i), and 
by (ii) the covering transformations are transitive. 

If ƒ: Î2 -* D is generically/?-to-l, and if ƒ can be factored, then it is evident 
that the order of the group Tf is p. From §1, 

Vf = { z e Q: the number of elements of ƒ _ 1 / (z) w < p). 

It follows that if ƒ can be factored, then 

Vf= U Fix(«f), 
f e l ) 
g#id 

where Fix(g) = { z e S2: ̂ r(z) = z} is the set of fixed points of g. 
It is useful to know that in certain cases factorizations do exist. 

THEOREM (FACTORIZATION). Let Q c c Cw, n ^ 2, be a simply connected, 
strongly pseudoconvex domain with C°° smooth boundary. Iff: Q -> D is proper, 
then f can be factored, i.e. there exists a subgroup Tf c Aut(Ö) satisfying (i) and 
(ii). 
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Proofs of this are given in [13, 15]. Since those proofs use holomorphic 
correspondences, which we have not discussed here, let us give a sketch of the 
proof in [10], which assumes ƒ e C°°(S). We take z0 e Ö \ / - y ( ^ ) and 
zx e ƒ _1/(z0) and consider the germ of a covering transformation taking z0 to 
zv It must be shown that this transformation, which is a branch of f~lf9 may 
be analytically continued over ƒ ~lf(Vf). The problem reduces itself to showing 
that if pl9 p2 e f~lf(Vf) are generic branch points, then Ord(/, px) = 
Ord( ƒ, p2). To show this we let 3fly and fj denote the germs of 90 and ƒ at pj. 
We may assume /?y G 3J2 and fJ has the form (4.2), Remark 1. By a direct 
calculation, then, we see that if ( ƒ 2)~Y * maps 3Î21 and 3Ö2 then Mx = M2, i.e. 
the orders are the same. 

This theorem has some implications for the construction of proper map­
pings. Let us recall one of the standard methods of constructing proper maps 
(see Rudin [81, p. 301]). Let ƒ: Ü -> D be a holomorphic mapping such that 
f~l(w) is compact for w e D. Then for any p e Ü there is an arbitrarily small 
connected neighborhood R ofp such that f \ Q -> /(fl) is proper. The domain £2 is 
obtained by taking a connected component of ƒ _1(Z>) where D is a neighbor­
hood of ƒ(/?), which may be chosen with great freedom. In contrast, there is 
not much freedom in choosing S2 if ƒ is not locally biholomorphic at p. If we 
wish to choose S to be strongly pseudoconvex, then (if p e Vf) Î2 must have a 
nontrivial automorphism group. On the other hand (see [30, 53]), a generic £2 
has no automorphisms. 

It is evident that the Factorization Theorem above may be used to reduce 
the study of the branch locus to the study of Tf. Thus far Tf has been identified 
only in the case B = Bn. 

A finite subgroup G c U(n) of the unitary group is called a reflection group 
if it is generated by its reflections, i.e. transformations which are conjugate to a 
diagonal matrix of the form 

Iel7Ti/k o 1 
1 

1 0 ij 
It is a classical theorem of Chevalley that the invariant polynomials of a 

reflection group are generated by n homogeneous polynomials ƒ*!,...,/*„, 
which we denote by PT = (pv..., pn). Examples of PT are given in Rudin [83], 
where the following is proved. 

THEOREM. Let f: Bn -* Z>, n > 2, be a proper mapping. Then Tf has the 
following properties: 

(i) there exists T G Aut(B") such that O G B " is a fixed point of T~lTfT. 
(ii) T~lTfT c U(n) is a finite reflection group. 
(iii) the mapping ƒ may be factored as ƒ = fPTT, where f: PT(Bn) -> D is a 

biholomorphism. 
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Since the fixed point set of a reflection is a complex linear hyperplane, it 
follows that JF = THX U • • • U THk, where Hj is a complex hyperplane passing 
through the origin, and Tis from the theorem above. 

Let us remark that in Rudin's Theorem, the hypothesis that D is a nonsingu-
lar complex manifold is crucial. For if G c Aut(B") is any finite subgroup, 
then Bn/G has the structure of a complex space (possibly with singularities), 
see [31]. Thus for the quotient ƒ: Bn -> Bn/G we have 1} = G, if the image 
D = B y G is allowed to be singular. 

6. Mappings into higher-dimensional spaces. Here we present some results 
concerning proper maps ƒ : Ö -> D with dim Ö < dim Z), but so little is known 
that we also mention some open problems. Although most of these problems 
have been known for some time, it seems worthwhile to state them all in the 
same place. 

A. Convex imbedding theorem. The following result of J. E. Fornaess [47] and 
Henkin [96] is useful, e.g. in approximation results. 

THEOREM. If Q c c Cn is strongly pseudoconvex, then there exists a proper 
imbedding f : Q -> D c c Cw, where D is a strongly convex domain, and f{ü) 
intersects dD transversely. 

A natural question that arises is: Can D be replaced by the ball B*? A result 
of J. Faran [46] indicates that this is unlikely. Faran's result is: there is a 
real-analytic strongly pseudoconvex hyper surf ace T c Qn and a point p e T such 
that there is no holomorphic imbedding of a neighborhood of p in T into dBN for 
any N < oo. 

On the other hand, L. Lempert [63] has shown that B may be properly 
imbedded in the unit ball in Hilbert space. 

B. Imbedding in CN. It is a basic result of Bishop, Narasimhan, and 
Remmert [28, 68, 77] that every n-dimensional Stein manifold M can be 
properly imbedded in CN for N = 2n + I. The problem is to make N as small 
as possible. By Bishop [28] there is a holomorphic mapping/: M -» Cn which 
is "almost proper" (i.e. all connected components of ƒ _1(A') are compact if K 
is compact). Also by [28] there is a proper mapping/: M -> Cn+l. 

Forster [49] has shown that M may be properly imbedded in C^ with 
N = [5n/3] + 2. It was announced in [54] that M may be immersed in C*, 
properly immersed in C^+1 , and properly imbedded in CN+2, with N = [3n/2\; 
but the details of the proofs have not yet appeared. For topological reasons, M 
cannot be imbedded in C^, N = [3n/2], It is an open question whether an 
imbedding is possible with N = [3w/2] + 1. 

A specific case of this question is whether it is possible to imbed an open 
Riemann surface properly in C2. This imbedding is possible in the cases of the 
disk, punctured disk, and annulus (see [4,62]). 

C. Boundary regularity of imbeddings. There are proper imbeddings ƒ: 
A -» B2 with ƒ £ C(S). To give an example, we choose <j>l9 <j>2 e C(3A) such 
that e2*1 + e2*2 = 1. We may choose $l9 <j>2 such that the harmonic conjugates 
<>£, fâ are not continuous, but in any case ƒ = (exp(</>1 + />*), exp(<f>2 + /<J>*)) 
is proper. 
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The problem remains, however, as to whether a proper imbedding (or merely 
proper mapping)/: Ü -> D extends smoothly to Ö if Â, D are both smooth and 
strongly pseudoconvex, and dim Ü > 2. 

Results in this direction, involving generalizations of the Reflection Princi­
ple, have been obtained by Webster [93] and Cima, Krantz and Suffridge [33]. 

D. Mapping balls to balls. The following was obtained by S. Webster [92]. 

THEOREM. If f: Bn -> Bn+1, n > 3, is proper, ƒ e C3(B"), and ƒ gives an 
immersion of 3BW into 3BW+1, then there exists \p e Aut(Bn+1) such that 
i///(z1,...,zj = (z1,...,z/1,0). 

Since the case B1 -> B2 is impossible, it is perhaps not surprising that 
B2 -> B3, the "borderline" case, is more complicated. 

THEOREM (FARAN [44]). Let ƒ: B2 -* B3 be a proper map with ƒ e C3(B2). 
Then there are \f/2

 e Aut(B2) and \p3 e Aut(B3) such that \p3f\p2 « one of the 
following: 

(l)(z,w)^(z3,w3,y/3zw), 
(2) (z, H>)-• (z, zw,w2); 
(3)(z,>v)^(z2,v^z>v,>v2); 
(4)(z,w)^(z,w,0). 

The regularity hypothesis ƒ e C3(Bn) of Webster's Theorem has been 
weakened in [34, 33], but it is not known whether any regularity hypothesis is 
necessary. 

Iff: IT -* B* is proper, k < In - 2, and if ƒ is holomorphic in a neighbor­
hood of Bw, then Faran has shown that ƒ is linear fractional (see [34,45]). 

E. Mapping the ball to the polydisk. It is known that there is no proper 
mapping between polydisk àn and ball B", e.g., [80]. There are generalizations 
of this showing that a polyhedron cannot be properly mapped to a domain 
with strongly pseudoconvex points [57, 58, 51]. Although it is easily seen that 
Aw cannot be mapped properly to BN

9 for any JV > 0, it is unknown whether it 
is possible to map B" properly to A* (of course N > n). 

F. Mappings which are nearly proper. It is of interest to consider mappings 
ƒ : Ö -* D which are close to being proper. For instance, the mapping of the 
disk ƒ : A -» Z>, which realizes the Kobyashi metric, is such a map (see 
E.Poleckii[75]). 

Given a mapping/: S2 -* Z), we may consider the exceptional set 

£ = { Z 0 E 8 Ö : limsupdist(/(z),9Z>) > o\ . 

If E is small, is ƒ necessarily proper? This seems not to be known even in the 
simplest cases, e.g., when E is a point and dim Q = dim D ^ 2. (The case 
dim 0 = 1 is, in general, false.) It is also possible to formulate the same 
question in terms of the radial exceptional set 

r̂ad - { *o e 80: limsupdist(f(z0 - BN(Z0))9 dD) > o) , 
V £ - 0 ^ 
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where N(z0) denotes the outward normal to 3Î2 at z0. A Baire category 
argument (cf. Sadullaev [84]) may be given to show that if ETad = 0 , then 
E c 9Î2 is a nowhere dense Fa-set. 

To illustrate this question we consider mappings ƒ : £2 -> A with dim Î2 ^ 2, 
which can in no sense be close to proper. The condition that Er3Ld has zero 
measure in 3S2 is equivalent to ƒ being an "inner" function. Since inner 
functions have been shown to exist [2, 56, 67], the condition that |£rad| = 0 is 
too weak. The other extreme is the case ETad = 0, in which case Sadullaev [84] 
has shown that such ƒ do not exist. 
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