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NOWHERE SOLVABLE HOMOGENEOUS 
PARTIAL DIFFERENTIAL EQUATIONS1 

BY HOWARD JACOBOWITZ AND FRANÇOIS TREVES 

Nirenberg showed in [4] that the Lewy operator L0 = d/dx + id/dy — 
2i(x + iy)d/du may be perturbed to obtain an operator L\ such that if L\h — 
0 in a connected neighborhood of the origin then h is a constant in the 
neighborhood. In this note we eliminate the restriction to neighborhoods of 
a distinguished point and show that such operators are dense in the natural 
topology. We then announce a similar result for certain systems. 

We consider operators defined on some open set Q c R3 where perhaps Q is 
all of R3. Let S = {L = £ 3

= 1 aj(x)d/dxj-, ctj £ C°°(n,C)}. As the topology 
on S we take the one induced by the usual topology on C°°(n,C), namely 
uniform convergence of all derivatives on compact subsets. Note that this 
topology is metrizable and thus any countable intersection of open dense sets 
is dense. 

DEFINITION. An operator L G S is aberrant if every Cx function h, with 
X > 1, satisfying Lh — 0 on some open connected subset of Q is constant on 
that subset. 

THEOREM. The aberrant operators are dense in S. 

REMARKS. 1. The proof which follows is surprisingly simple and avoids 
the complicated construction in [4]. However Nirenberg's result only required 
that h E C1. 

2. In our previous paper [1] we showed that any operator in S with L, L, 
and [L, L] linearly independent may be perturbed to an operator Li such that 
if L\h = 0 near the origin then dh = 0 at the origin. As we shall see, a simple 
Baire category argument allows us both to conclude that h is a constant and 
to eliminate the distinguished point. 

3. The denseness holds in a finer topology since we work with only com­
pactly supported perturbations. In particular we may find an aberrant operator 
L for which L, L, and [L,L] are linearly independent at each point of R3. 
Thus there exists a strictly pseudo-convex CR structure on R3 with only the 
constants as local CR functions. 

We start the proof by defining a subspace of S. For each P E H let Sp = 
{L G S; if v e C^H) and Lv = 0 in a neighborhood of P, then dv(P) = 0}. 

Here dv(P) represents the differential of v acting on TpR3. 

L E M M A . For each P €Q, Sp is dense in S. 

Received by the editors September 29, 1982 and, in revised form, January 18, 1983. 
1980 Mathematics Subject Classification. Primary 35F05. 
l rrhis work partially supported by NSF Grants MCS-8003048 and MCS-8102435. 

© 1983 American Mathematical Society 
0273-0979/83/0000-1423/S02.25 

467 



468 HOWARD JACOBOWITZ AND FRANÇOIS TREVES 

PROOF. Since this is an approximation result we may assume that L is 
real analytic in some neighborhood of P and that L, L and [L, L] are linearly 
independent there. We now follow the procedure used in [1]. Since L is real 
analytic there exist solutions Lh\ = 0 and Lh^ — 0 with dh\ A dh^ ^ 0 near P. 
If F(z,w) is a holomorphic function then h{x) = F(hi(x),Ii2(x)) also satisfies 
Lh = 0. Using this observation plus the fact that L, L and [L,L] are linearly 
independent we may introduce coordinates (x,y,u) on Q near P such that 
z = x + iy and w = u + z'G(x, y, it) are solutions of L/i = 0 and G has the 
form G = |^|2 4- azu + â2tz + bu2 H- 0((|z| H-M)3). In these coordinates L = 
</>(x)((l + %Gu)d/dz - %Gzd/du) where 0(F) # 0. 

We consider the operator JR defined by L = <j)R. It suffices to find some 
R\, defined in a neighborhood of the origin and uniformly close, along with 
its derivatives up to some large order, to R in that neighborhood, with the 
property that if v is C1 and Riv — 0 near the origin, then dv(0) = 0. For then 
we transform back to the original coordinates and extend Ri appropriately 
to obtain our operator L\. 

Let r(X) = {(z, u); w(z, z, u) = X}. Since w = u + iG(x, y, u), with G having 
the form given above, one can find some curve Im X = ^(Re X) passing through 
the origin in the X-plane such that T(X) is a simple closed curve for ImX > 
z/(ReX), a point for ImX = i/(ReX), and empty for ImX < z/(ReX). Let Ü 
be a neighborhood of the origin symmetric with respect to the curves T(X) 
in the sense that whenever T(X) O H is nonempty, then T(X) C H. Next 
let {Ci} be a sequence of pairwise disjoint closed discs in the X-plane, lying 
above the curve ImX = i/(ReX) and collapsing down to the origin. Let Ti = 
{(z, u); w(z, z, u) G Ci} be the corresponding closed topological solid torus. 
Now consider a function h with Rh = 0 in Ü — [jTi. One may show that 
fr(\)hdz is a holomorphic function of X as long as T(X) C Ù — [jTi. This 
holomorphic function becomes zero on the curve ImX = z/(ReX) and so is 
identically zero. It follows that J fdT. hdz Adw = 0. But for any set with a 
smooth boundary 

I hdz Adw = I I dhAdz Adw = 2i I I I Rh dx dy du. 

Now let fi(z,z,u) be a C°° function which is positive in each T2i+\ and zero 
everywhere else; similarly for f2 and T2%> If Rh = f\hu + ƒ2hz then 

I I I fihudxdydu = 0 and ill J2hzdx dy du = 0. 

It follows that hu(ti) = hz(0) = 0. Since Rh = 0 at the origin, one also has 
that hz(0) = 0. Thus we take Ri — R — fid/du — f2d/dz and use it, in the 
manner given above, to establish the lemma. 

Our Baire category argument is a modification of that of Lewy [3]. Let 
{Pj} be a countable dense set of points in H, Nj the open ball of radius j ~ l 

centered at Pj, \\h\\\j the Holder norm for CX(N3) and ^(P/)! any norm on 
the three dimensional vector space of co-vectors at Pj. 

We let Ej)Tn)n be the set of all those vector fields L G S for which there 
exists a function h G C1+1/n(A/J) such that 
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1. Lh = 0in Afy, 
2. \\h\\1+1/ntj<mf 

3. \dh(Pj)\ > 1/m. 
If L G closure (^>m>n) then there exists some h G Cx(Nj) such that Lh = 0 

in JVj and |d/i(Pj)| > 1/m. (In fact more is true: h G C 1 + 1 / n and so Ej)m>n is 
closed.) Thus L É̂ Sp r Now the fact that Sp, is dense implies that Ej}m>n is 
nowhere dense. By the Baire theorem there exists a dense set of vector fields 
none of which belongs to any ^ , m , n - Any one of these vector fields has the 
property asserted in the theorem. 

To present a result for higher dimensions we consider complex vector fields 
L i , . . . ,L n on Q c R 2 n + 1 with the following properties: 

1. L i , . . . ,L n , L i , . . . , L n are linearly independent. 
2. [Lj, Lk] = 0 mod{Li,..., L n } . 
3. The Levi form has n — 1 eigenvalues of one sign and one of the opposite 

sign. 
Such vector fields form a space r which we topologize using C°°(f2,C). (It 

is of no concern that r is not a linear space.) 
It is a well-known result of Hörmander that under condition 3 (for n > 1) 

any distribution which satisfies the system Ljh = 0 is necessarily C°°. So we 
now say that the system of operators L\,..., Ln is aberrant if every distribution 
solution to Ljh = 0 for j = 1,. . . ,n on an open, connected subset of H is a 
constant function on that subset. 

T H E O R E M . The aberrant operators are dense in r. 

See [2] for the proof. Here we only note that the perturbation process in [1] 
for n > 1 did not yield dh = 0 and so a slightly more complicated procedure 
must be used. The difficulty, of course, is that one must only work with 
perturbations which preserve condition 2 (formal integrability). 
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