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NOWHERE SOLVABLE HOMOGENEOUS
PARTIAL DIFFERENTIAL EQUATIONS!

BY HOWARD JACOBOWITZ AND FRANCOIS TREVES

Nirenberg showed in [4] that the Lewy operator Ly = 9/dz + ¢9/dy —
2i(z +y)d/du may be perturbed to obtain an operator Ly such that if L1h =
0 in a connected neighborhood of the origin then A is a constant in the
neighborhood. In this note we eliminate the restriction to neighborhoods of
a distinguished point and show that such operators are dense in the natural
topology. We then announce a similar result for certain systems.

We consider operators defined on some open set {} C R® where perhaps 1 is
all of R3. Let S ={L= E?=1 a;(z)d/dz;; aj € C°(,C)}. As the topology
on S we take the one induced by the usual topology on C®({2,C), namely
uniform convergence of all derivatives on compact subsets. Note that this
topology is metrizable and thus any countable intersection of open dense sets
is dense.

DEFINITION. An operator L € S is aberrant if every C* function h, with
X > 1, satisfying Lh = 0 on some open connected subset of {2 is constant on
that subset.

THEOREM. The aberrant operators are dense in S.

REMARKS. 1. The proof which follows is surprisingly simple and avoids
the complicated construction in [4]. However Nirenberg’s result only required
that h € C1.

2. In our previous paper [1] we showed that any operator in § with L, L,
and [L, L] linearly independent may be perturbed to an operator L; such that
if Lyh = 0 near the origin then dh = 0 at the origin. As we shall see, a simple
Baire category argument allows us both to conclude that A is a constant and
to eliminate the distinguished point.

3. The denseness holds in a finer topology since we work with only com-
pactly supported perturbations. In particular we may find an aberrant operator
L for which L, L, and [L,L] are linearly independent at each point of R3.
Thus there exists a strictly pseudo-convex CR structure on R® with only the
constants as local CR functions.

We start the proof by defining a subspace of S. For each P € ) let Sp =
{L € §S;if ve C(Q) and Lv = 0 in a neighborhood of P, then dv(P) = 0}.

Here dv(P) represents the differential of v acting on TpR3.

LEMMA. For each P €, Sp is dense in §.
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PROOF. Since this is an approximation result we may assume that L is
real analytic in some neighborhood of P and that L, L and [L, L] are linearly
independent there. We now follow the procedure used in [1]. Since L is real
analytic there exist solutions Lh; = 0 and Lhy = 0 with dhy Adhy # 0 near P.
If F(2,w) is a holomorphic function then h(z) = F(hi(z), h2(z)) also satisfies
Lh =0. Using this observation plus the fact that L, L and [L,L)] are linearly
independent we may introduce coordinates (z,y,u) on €} near P such that
z =z +1y and w = u + 1G(z,y,u) are solutions of Lh = 0 and G has the
form G = |z|? + azu + azu + bu? + O((|z| + |u|)®). In these coordinates L =
&(x)((1+14G,)0/9Z — G309/ du) where ¢(P) # 0.

We consider the operator R defined by L = ¢R. It suffices to find some
R;, defined in a neighborhood of the origin and uniformly close, along with
its derivatives up to some large order, to R in that neighborhood, with the
property that if v is C! and R;v = 0 near the origin, then dv(0) = 0. For then
we transform back to the original coordinates and extend R; appropriately
to obtain our operator L;.

Let T(\) = {(2,u); w(z, Z,u) = \}. Since w = u +1G(z,y,u), with G having
the form given above, one can find some curve Im X = v(Re\) passing through
the origin in the A-plane such that I'(\) is a simple closed curve for ImX\ >
v(Re)\), a point for In\ = v(Re)\), and empty for ImX < v(Re)). Let {1
be a neighborhood of the origin symmetric with respect to the curves I'(\)
in the sense that whenever I(A\) N ) is nonempty, then T(\) C (). Next
let {C;} be a sequence of pairwise disjoint closed discs in the A-plane, lying
above the curve ImX\ = v(Re)\) and collapsing down to the origin. Let T; =
{(z,u);w(z,2,u) € C;} be the corresponding closed topological solid torus.
Now consider a function h with Rh = 0 in 0 —(J7;. One may show that
fp(x)hdz is a holomorphic function of \ as long as T(\) ¢ & —J7;. This
holomorphic function becomes zero on the curve Im\ = v(Re)\) and so is
identically zero. It follows that [ J, a1, hdz Adw = 0. But for any set with a
smooth boundary

// hdz/\dw=f// dh/\dz/\dw=2i[] Rhdzdydu.
aT T T

Now let f1(2,%,u) be a C™ function which is positive in each T5;1 and zero
everywhere else; similarly for fo and Ty;. If Rh = fih, + foh, then

[/] fihydzdydu=0 and [// fohydzdydu=0.
T2i41 T2

It follows that h,(0) = h,(0) = 0. Since Rh = 0 at the origin, one also has
that hz(0) = 0. Thus we take Ry = R — f13/du — f29/9z and use it, in the
manner given above, to establish the lemma.

Our Baire category argument is a modification of that of Lewy [3]. Let
{P;} be a countable dense set of points in 2, N; the open ball of radius j~*
centered at Pj, ||h||x,; the Holder norm for C*(N;) and |w(P;)| any norm on
the three dimensional vector space of co-vectors at P;.

We let E; n » be the set of all those vector fields L € S for which there
exists a function h € C'*1/"(Nj) such that
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1. Lh=0in Ny,

2. ||hll1+1/n,5 ™M,y

3. |dh(P;)| = 1/m.

If L € closure (Ej m, ) then there exists some h € C1(IN;) such that Lh =0
in N; and |dh(P;)| > 1/m. (In fact more is true: h € C1*1/™ and 50 E; m n is
closed.) Thus L ¢ Sp,. Now the fact that Sp, is dense implies that Ej , » is
nowhere dense. By the Baire theorem there exists a dense set of vector fields
none of which belongs to any E; ,, ». Any one of these vector fields has the
property asserted in the theorem.

To present a result, for higher dimensions we consider complex vector fields
Ly,...,L, on 2 C R?**! with the following properties:

1. Ly,...,Ly, Ly,...,L, are linearly independent.

2. [Lj,Lg) =0mod{L4,...,L,}.

3. The Levi form has n—1 eigenvalues of one sign and one of the opposite
sign.

Such vector fields form a space 7 which we topologize using C*(Q1,C). (It
is of no concern that 7 is not a linear space.)

It is a well-known result of Hérmander that under condition 3 (for n > 1)
any distribution which satisfies the system Ljh = 0 is necessarily C*. So we
now say that the system of operators L, ..., Ly is aberrant if every distribution
solution to L;h =0 for j =1,...,n on an open, connected subset of () is a
constant function on that subset.

THEOREM. The aberrant operators are dense in 7.

See [2] for the proof. Here we only note that the perturbation process in [1]
for n > 1 did not yield dh = 0 and so a slightly more complicated procedure
must be used. The difficulty, of course, is that one must only work with
perturbations which preserve condition 2 (formal integrability).
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