NOWHERE SOLVABLE HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS¹

BY HOWARD JACOBOWITZ AND FRANÇOIS TREVES

Nirenberg showed in [4] that the Lewy operator $L_0 = \partial/\partial x + i\partial/\partial y - 2i(x+iy)\partial/\partial u$ may be perturbed to obtain an operator L_1 such that if $L_1h=0$ in a connected neighborhood of the origin then h is a constant in the neighborhood. In this note we eliminate the restriction to neighborhoods of a distinguished point and show that such operators are dense in the natural topology. We then announce a similar result for certain systems.

We consider operators defined on some open set $\Omega \subset \mathbf{R}^3$ where perhaps Ω is all of \mathbf{R}^3 . Let $S = \{L = \sum_{j=1}^3 \alpha_j(x) \partial/\partial x_j; \ \alpha_j \in \mathbf{C}^{\infty}(\Omega, \mathbf{C})\}$. As the topology on S we take the one induced by the usual topology on $\mathbf{C}^{\infty}(\Omega, \mathbf{C})$, namely uniform convergence of all derivatives on compact subsets. Note that this topology is metrizable and thus any countable intersection of open dense sets is dense

DEFINITION. An operator $L \in \mathcal{S}$ is aberrant if every C^{λ} function h, with $\lambda > 1$, satisfying Lh = 0 on some open connected subset of Ω is constant on that subset.

THEOREM. The aberrant operators are dense in S.

REMARKS. 1. The proof which follows is surprisingly simple and avoids the complicated construction in [4]. However Nirenberg's result only required that $h \in C^1$.

- 2. In our previous paper [1] we showed that any operator in S with L, \bar{L} , and $[L,\bar{L}]$ linearly independent may be perturbed to an operator L_1 such that if $L_1h=0$ near the origin then dh=0 at the origin. As we shall see, a simple Baire category argument allows us both to conclude that h is a constant and to eliminate the distinguished point.
- 3. The denseness holds in a finer topology since we work with only compactly supported perturbations. In particular we may find an aberrant operator L for which L, \bar{L} , and $[L,\bar{L}]$ are linearly independent at each point of \mathbf{R}^3 . Thus there exists a strictly pseudo-convex CR structure on \mathbf{R}^3 with only the constants as local CR functions.

We start the proof by defining a subspace of S. For each $P \in \Omega$ let $S_P = \{L \in S; \text{ if } v \in C^1(\Omega) \text{ and } Lv = 0 \text{ in a neighborhood of } P, \text{ then } dv(P) = 0\}.$ Here dv(P) represents the differential of v acting on $T_P \mathbb{R}^3$.

LEMMA. For each $P \in \Omega$, S_P is dense in S.

Received by the editors September 29, 1982 and, in revised form, January 18, 1983. 1980 Mathematics Subject Classification. Primary 35F05.

¹This work partially supported by NSF Grants MCS-8003048 and MCS-8102435.

PROOF. Since this is an approximation result we may assume that L is real analytic in some neighborhood of P and that L, \bar{L} and $[L, \bar{L}]$ are linearly independent there. We now follow the procedure used in [1]. Since L is real analytic there exist solutions $Lh_1=0$ and $Lh_2=0$ with $dh_1 \wedge dh_2 \neq 0$ near P. If F(z,w) is a holomorphic function then $h(x)=F(h_1(x),h_2(x))$ also satisfies Lh=0. Using this observation plus the fact that L, \bar{L} and $[L,\bar{L}]$ are linearly independent we may introduce coordinates (x,y,u) on Ω near P such that z=x+iy and w=u+iG(x,y,u) are solutions of Lh=0 and G has the form $G=|z|^2+\alpha zu+\bar{\alpha}\bar{z}u+bu^2+\mathcal{O}((|z|+|u|)^3)$. In these coordinates $L=\phi(x)((1+iG_u)\partial/\partial\bar{z}-iG_{\bar{z}}\partial/\partial u)$ where $\phi(P)\neq 0$.

We consider the operator R defined by $L = \phi R$. It suffices to find some R_1 , defined in a neighborhood of the origin and uniformly close, along with its derivatives up to some large order, to R in that neighborhood, with the property that if v is C^1 and $R_1v = 0$ near the origin, then dv(0) = 0. For then we transform back to the original coordinates and extend R_1 appropriately to obtain our operator L_1 .

Let $\Gamma(\lambda)=\{(z,u);w(z,\bar{z},u)=\lambda\}$. Since w=u+iG(x,y,u), with G having the form given above, one can find some curve $\mathrm{Im}\,\lambda=\nu(\mathrm{Re}\,\lambda)$ passing through the origin in the λ -plane such that $\Gamma(\lambda)$ is a simple closed curve for $\mathrm{Im}\,\lambda>\nu(\mathrm{Re}\,\lambda)$, a point for $\mathrm{Im}\,\lambda=\nu(\mathrm{Re}\,\lambda)$, and empty for $\mathrm{Im}\,\lambda<\nu(\mathrm{Re}\,\lambda)$. Let $\bar{\Omega}$ be a neighborhood of the origin symmetric with respect to the curves $\Gamma(\lambda)$ in the sense that whenever $\Gamma(\lambda)\cap\bar{\Omega}$ is nonempty, then $\Gamma(\lambda)\subset\bar{\Omega}$. Next let $\{C_i\}$ be a sequence of pairwise disjoint closed discs in the λ -plane, lying above the curve $\mathrm{Im}\,\lambda=\nu(\mathrm{Re}\,\lambda)$ and collapsing down to the origin. Let $T_i=\{(z,u);w(z,\bar{z},u)\in C_i\}$ be the corresponding closed topological solid torus. Now consider a function h with Rh=0 in $\bar{\Omega}-\bigcup T_i$. One may show that $\int_{\Gamma(\lambda)}h\,dz$ is a holomorphic function of λ as long as $\Gamma(\lambda)\subset\bar{\Omega}-\bigcup T_i$. This holomorphic function becomes zero on the curve $\mathrm{Im}\,\lambda=\nu(\mathrm{Re}\,\lambda)$ and so is identically zero. It follows that $\int_{\partial T_i}h\,dz\wedge dw=0$. But for any set with a smooth boundary

$$\iint_{\partial T} h \, dz \wedge dw = \iiint_{T} dh \wedge dz \wedge dw = 2i \iiint_{T} Rh \, dx \, dy \, du.$$

Now let $f_1(z, \bar{z}, u)$ be a C^{∞} function which is positive in each T_{2i+1} and zero everywhere else; similarly for f_2 and T_{2i} . If $Rh = f_1h_u + f_2h_z$ then

$$\iiint_{T_{2i+1}} f_1 h_u \, dx \, dy \, du = 0 \quad \text{and} \quad \iiint_{T_{2i}} f_2 h_z \, dx \, dy \, du = 0.$$

It follows that $h_u(0) = h_z(0) = 0$. Since Rh = 0 at the origin, one also has that $h_{\bar{z}}(0) = 0$. Thus we take $R_1 = R - f_1 \partial/\partial u - f_2 \partial/\partial z$ and use it, in the manner given above, to establish the lemma.

Our Baire category argument is a modification of that of Lewy [3]. Let $\{P_j\}$ be a countable dense set of points in Ω , N_j the open ball of radius j^{-1} centered at P_j , $||h||_{\lambda,j}$ the Hölder norm for $C^{\lambda}(N_j)$ and $|\omega(P_j)|$ any norm on the three dimensional vector space of co-vectors at P_j .

We let $E_{j,m,n}$ be the set of all those vector fields $L \in \mathcal{S}$ for which there exists a function $h \in C^{1+1/n}(N_j)$ such that

- 1. Lh = 0 in N_i ,
- 2. $||h||_{1+1/n,j} \le m$,
- 3. $|dh(P_i)| \ge 1/m$.

If $L \in \text{closure }(E_{j,m,n})$ then there exists some $h \in C^1(N_j)$ such that Lh = 0 in N_j and $|dh(P_j)| \ge 1/m$. (In fact more is true: $h \in C^{1+1/n}$ and so $E_{j,m,n}$ is closed.) Thus $L \notin S_{P_j}$. Now the fact that S_{P_j} is dense implies that $E_{j,m,n}$ is nowhere dense. By the Baire theorem there exists a dense set of vector fields none of which belongs to any $E_{j,m,n}$. Any one of these vector fields has the property asserted in the theorem.

To present a result for higher dimensions we consider complex vector fields L_1, \ldots, L_n on $\Omega \subset \mathbb{R}^{2n+1}$ with the following properties:

- 1. $L_1, \ldots, L_n, \bar{L}_1, \ldots, \bar{L}_n$ are linearly independent.
- 2. $[L_i, L_k] = 0 \mod\{L_1, \ldots, L_n\}.$
- 3. The Levi form has n-1 eigenvalues of one sign and one of the opposite sign.

Such vector fields form a space τ which we topologize using $C^{\infty}(\Omega, C)$. (It is of no concern that τ is not a linear space.)

It is a well-known result of Hörmander that under condition 3 (for n > 1) any distribution which satisfies the system $L_j h = 0$ is necessarily C^{∞} . So we now say that the system of operators L_1, \ldots, L_n is aberrant if every distribution solution to $L_j h = 0$ for $j = 1, \ldots, n$ on an open, connected subset of Ω is a constant function on that subset.

THEOREM. The aberrant operators are dense in τ .

See [2] for the proof. Here we only note that the perturbation process in [1] for n > 1 did not yield dh = 0 and so a slightly more complicated procedure must be used. The difficulty, of course, is that one must only work with perturbations which preserve condition 2 (formal integrability).

REFERENCES

- H. Jacobowitz and F. Treves, Non-realizable CR structures, Invent. Math. 66 (1982), 231-249.
- Aberrant CR structures (volume in honor of T. Shirota, 1983), Hokkaido J. Math. (to appear).
- 3. H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155–158.
- 4. L. Nirenberg, On a question of Hans Lewy, Russian Math. Surveys 29 (1974), 251-262.

DEPARTMENT OF PURE AND APPLIED MATHEMATICS, RUTGERS UNIVERSITY, CAMDEN, NEW JERSEY 08102

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903