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The logic of quantum mechanics, by Enrico G. Beltrametti and Gianni Cas-
sinelli, Encyclopedia of Mathematics and its Applications, vol. 15, Addison-
Wesley, Reading, Mass., 1981, xxvi + 305 pp., $31.50. 

By their very nature, scientific theories cannot be proved. No matter how 
successful a theory has been in explaining the Universe, there always exists the 
possibility, however remote, that this particular theory is not the only one that 
can explain the given phenomena. There conceivably could exist another 
theory that could do just as well—if not better. This possibility is not as 
remote as it may seem. In the past, very few physical theories have lasted more 
than a century without being discarded or substantially modified. 

Quantum theory was brought about at the turn of the century by the failure 
of classical physics to explain the results of more accurate experiments which 
could measure atomic phenomena. The success of the theory was overwhelm­
ing, and currently its acceptance among scientists is unquestioned. In the 
beginning the theory consisted of statements concerning physical quantities, 
but later writers attempted to axiomatize it and divorce it from concepts of 
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classical mechanics. The final result was a Hubert space formalism which can 
be described briefly as follows. To each physical system there is assigned a 
separable Hubert space % over the complex field, and to each physical 
quantity there is associated a linear, self adjoint operator on %. Contributions 
to this process were made by Bohr, Born, Dirac, Heisenberg, Schrödinger and 
von Neumann. 

In [1] Mackey presents eight axioms from which he deduces the theory. His 
starting point is a collection S of "states" and a collection 0 of "observables" 
(physical quantities). To each A in 0, each a in S and each Borel set E there is 
a real number p(A, a, E) representing the probability that a measurement of A 
in the state a, will give a value in E. Observables that have only two possible 
outcomes are called questions (propositions). One of Mackey's axioms is 

AXIOM VII. The partially ordered set of all questions in quantum mechanics 
is isomorphic to the partially ordered set of all closed subspaces of a separable 
infinite-dimensional Hubert space. 

He then says "This axiom has rather a different character from Axioms I 
through VI. These all had some degree of physical naturalness and plausibility. 
Axiom VII seems entirely ad hoc. Why do we make it?. . . We make it because 
it "works", that is, it leads to a theory which explains physical phenomena and 
successfully predicts the results of experiments. It is conceivable that a quite 
different assumption would do likewise but this is a possibility that no one 
seems to have explored." 

It is to this question that many writers have directed their energies. Is the 
Hubert space structure necessary, or can it be replaced by another system. The 
present book describes the progress to date of the attempt to replace Mackey's 
Axiom VII with others that are more "physically plausible" and then show 
that they lead to the Hubert space structure. Previous books addressing this 
problem include Jauch [2] and Varadarajan [3]. 

Beltrametti and Cassinelli divide their book into three parts. The first part 
describes the Hubert space formalism. The second describes some of the basic 
structures found in the formalism and the fundamental concepts of quantum 
theory. The third part shows how much of the Hilbert space structure can be 
recovered if one begins by assuming only those principles described in the 
second part that have physical foundations. In particular, they assume that the 
propositions of a quantum system form a complete, orthomodular, atomic, 
irreducible lattice having the covering property. It is shown that this lattice £ 
admits a vector space coordinatization, i.e., it is isomorphic to some lattice of 
subspaces of a vector space. The rub is that the field K over which the vector 
space is defined is unknown. It certainly can be the complex, real or quartern-
ion fields since Hilbert spaces over these fields produce lattices having all of 
the properties of £. It is unknown if other fields are possible. However, it is 
shown that in the case of these fields continuity of an involution produces the 
usual Hilbert space quantum mechanics. 

The book is well written in that it expains the physical and mathematical 
concepts clearly. However, little is actually proved in the text. Most results are 
quoted from other sources. Moreover, most of the material contained in the 
text can be found in other books. But it certainly does well as a readable 
survey. 
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The title of the book is taken from the 1936 paper [4] by Birkhoff and von 
Neumann, which gave the impetus for much of the research in quantum 
mechanics. The word "logic" in the title refers to the mathematical founda­
tions of quantum mechanics and not to quantum logic which is mentioned only 
briefly in the book. 

A person unfamiliar with quantum theory will have difficulty reading the 
book. The authors might have pleased more readers by restructuring the book 
and including more background material. But the majority of readers will 
consider it a worthwhile addition to the literature. 
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Representations of real reductive Lie groups, by David A. Vogan, Jr., Progress in 
Mathematics, vol. 15, Birkhâuser, Boston, Basel, Stuttgart, 1981, xvii + 754 
pp., $35.00. 

1. Introductory. The representation theory of Lie groups is a vast and 
imposing edifice. Its foundations were laid by E. Cartan in 1913. He gave a 
classification of the finite-dimensional irreducible representations of a complex 
semisimple Lie algebra g [2]. This is the "infinitesimal" version of the classifi­
cation of finite-dimensional irreducible representations of a semisimple Lie 
group G. It was realized by H. Weyl in the twenties [9] that if G is compact 
(and connected and simply connected in the topological sense) any continuous 
irreducible finite-dimensional complex representation of G can be obtained by 
" integration" from a similar representation of the complexification g of the Lie 
algebra of G. He also showed that any representation of G is equivalent to a 
unitary one. 

Around the same time Peter and Weyl [6] showed that these irreducible 
unitary representations are fundamental objects for noncommutative Fourier 
analysis on the compact Lie group G. The representation theory of Lie groups 
is thus tied up with Fourier analysis. 

Any attempt at a straightforward generalization of these elegant results to 
the case of noncompact Lie groups breaks down. To develop Fourier analysis 
on noncompact Lie groups one needs infinite-dimensional representations of a 
Lie group G, more precisely continuous representations n of G by bounded 
operators in a Hubert space H. Such a representation IT is irreducible if no 
closed non tri vial subspace of H is invariant under all ir(x) (x G G). 


