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HOOK YOUNG DIAGRAMS, COMBINATORICS 
AND REPRESENTATIONS OF LIE SUPERALGEBRAS 

A. BERELE1 AND A. REGEV2 

Let V be a finite-dimensional F-vector space, char(F) = 0. Schur intro­
duced the action of the symmetric group Sn on V®n and was then able to 
determine the representation theory of the general linear group GL{V) [9]. 
His work was later completed by H. Weyl [10]. This work connects that rep­
resentation theory with combinatorics via standard and semistandard Young 
tableaux and via the Schur functions (cf. [6]). Many of the objects in this 
theory are parametrized by the Young diagrams in a strip. 

In this work we introduce a slightly more general permutation action of Sn 

on V®n and then describe how most of the above theory generalizes. The 
main feature here is that most of the generalized objects are parametrized by 
the partitions inside a hook. 

The action. Let k,l > 0, k + l > 0, T and U disjoint vector spaces, dimT = 
/c, dim U = Z, and V = T © U. We define a new right action of Sn on V®n, 
i.e., a map \j)\ Sn —• Endj?0^®n), based on Schur's original action and on 
the functions ƒ/: Sn —• {±1} [5] as follows. Choose bases ti,...,tk G T, 
tii,...,t6j G U. These induce a basis of V®n. Let vx ® • • • <8> vn G V®n, 
vi,...,vn G {ti,...,Uf} be such a basis element, let ƒ = {i\vi G U} and let 
aeSn. Then 

(vi <8• • • <8> vn)#T) = / / ( ( T X V ^ I ) ® - - - ® ! ; ^ ) ) . 
DEr 

Extend \j)(a) to all of V®n by linearity: ^((r) G End(V<S)n). As usual, we now 
extend ip to F^n, then check that i\)\ FSn —• End(V®n) is an (associative) 
algebra homomorphism. 

T/ie question. It is well known that FSn = SxePar(n)®-^» where Par(n) 
denotes the set of partitions of n and where each I\ is a simple algebra. It 
follows that for some T = T(fc,/;n) Ç Par(n), ^ ( - F S n ^ S x e r ^ x » and the 
basic question here is to describe T. Letting B(k, l;ri) be the centralizer of 
ip(FSn) in EndF(V^n), the decomposition of V®n into irreducible ip(FSn) or 
S(fc, /; n) modules, will be given by the classical theory of Schur. 

The answer\ which extends a theorem of Weyl is 

T H E H O O K T H E O R E M . Let 

H(k,l;n) = {\ = (Xi,X2, • • •) €Par(n)|Xj <lifj>k + l} 
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(i.e., X is included in the hook 

ThenT = H(k,l;n). 

One proof of that theorem is by Young's (or the Littlewood-Richardson) 
rule. 

A second proof is a slight generalization of a proof, based on a dimension 
argument, of the corresponding theorem of H. Weyl. It requires the notion of 
(A;, /) semistandard tableaux: The tableau T\ (of shape X, X G Par(n)) is (fc, /) 
semistandard if there is a partition /x, ji < X, such that the /i subtableau of 
T\ is semistandard on t i , . . . , tk and the conjugate of the skew tableau (Tx/M) 
is semistandard on ui,...,ui. The number of such tableaux of shape X is 
denoted s/c,z(X). (We completely determine these numbers.) We now generalize 
the Robinson-Schensted correspondence [4] to two sets of variables (there are 
many such generalizations) and prove 

THEOREM. The generalized correspondence induces a bijection between the 
set of basis elements ofV®n and the set of all pairs of tableaux (P, Q) where P 
is (k,l) semistandard and Q is standard, both of the same shape X, X E Par(n). 

These are the main ingredients of that second proof. They are closely 
related to the representation theory of the General Linear Lie superalgebra 
pl(V), [8, 2, 3]. 

Representations of pl{V). Let V = T 0 U as before, call VQ = T, VT = U, 
and let pl{V) be the corresponding General Linear Lie superalgebra [8]. We 
define a Lie superhomomorphism g: pl(V) —• End(y®n) by sending a matrix 
to the corresponding superderivation and prove 

THEOREM. The associative algebra generated by g(pl(V)) equals B(k, /;n). 

In particular, we get a complete decomposition of V®n into pl{V) ir­
reducible modules (from the B(k,l;n) decomposition). Thus, for each n we 
obtain very explicit pl{V) irreducible representations parametrized by X G 
H(k,l;n) and of dimensions s/c,z(X). 

Note that a comprehensive (finite-dimensional) representation theory for 
the classical Lie superalgebras has been worked out, essentially via the highest 
weight approach [2, 3]. 
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Some applications. The explicitness of our representations allows us to 
prove branching rules for them, which generalize the branching rule for the 
representations of GL(fc). 

Many combinatorial objects that occur in the above theory are "hook 
analogues" of classical objects, like the Schur functions, Kostka numbers and 
others. 

These results also have many applications to the theory of P.I. algebras 
because of the "hook property" of the multilinear cocharacters of such algebras 
[1]. Because of this property the classical theory does not seem to suffice for 
these applications [7]. 

The details of all this will be published elsewhere. 
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