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BOOK REVIEWS 
Operator methods in quantum mechanics, by Martin Schechter, Elsevier 

North-Holland, New York, 1981, xx + 324 pp., $32.50. 

The quantum theory has dominated physics for over half a century, yet it 
retains some peculiar features. The basic concepts are observable and state. 
When a system is in a specified state, each observable is a well-defined 
random variable. However there is no sample space on which all of these 
random variables are simultaneously defined, and hence no notion of the 
outcome of the total experiment that underlies the observation one chooses to 
make. In short, there is no real world [2]. 

Nevertheless, there is a reasonably coherent mathematical formulation of 
quantum mechanics, based on the theory of operators in Hilbert space. Let % 
be a Hilbert space. The inner product of <J> and \p in % is denoted <<f>, i//>. An 
operator is a linear transformation A from a linear subspace tf){A) to %. If 
ty(A) is dense in %, then A has an adjoint operator A*. It is defined on the 
linear subspace tf)(A*) consisting of all <J> in % such that there exists a x in % 
(necessarily unique) with <<J>, Axpy = <x> ̂ ) f°r au* ^ *n tf)(A). The operator 
itself is defined by A*<j> = x- An operator A is selfadjoint if A = A*. 
Selfadjoint operators have a spectral theory, and one consequence of this is a 
functional calculus that gives a natural meaning to f {A) for every Borel 
measurable function ƒ and every selfadjoint operator A. Thus selfadjoint 
operators resemble random variables in that one can form functions of them. 

There is a conventional dictionary relating the physics to the mathematics. 
It goes like this: 

observable - selfadjoint operator A 
state - unit vector i// (defined up to scalar multiple) 
energy - distinguished selfadjoint operator H 
Schrödinger 
picture state - \p(t) = exp(-// H)\p 
Heisenberg 
picture observable - A(t) = exp(// H)A exp(-# H) 
expectation of 
observable at time t - (\p(t% A\p(t)} = <i//, A(t)\py. 

The choice between the Schrödinger picture and Heisenberg picture is arbi­
trary. In either case the problem is to compute the expectation at time /, and 
this reduces to the computation of the unitary time evolution operator 
exp(-/7 H). 

In the quantum mechanics of nonrelativistic particles, the energy operator 
may be written H = H0+ V, where H0 and V are the kinetic and potential 
energy operators. (There are various known conditions that ensure that the 
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sum H = Ho + V of selfadjoint operators is selfadjoint.) The idea is that it is 
easy to compute functions of H0 or of V. However H0 and V do not 
commute, so the problem of computing functions of H is far from trivial. In 
fact it encompasses much of physics. 

The problem divides naturally into two parts, corresponding to point 
spectrum and continuous spectrum. The point spectrum consists of the 
eigenvalues of H corresponding to eigenvectors in the Hubert space. The 
closed subspace spanned by these eigenvectors is called the point spectrum 
subspace. The theory of the point spectrum is relatively straightforward. The 
continuous spectrum subspace is the orthogonal complement of the point 
spectrum subspace. The corresponding continuous spectrum consists of eigen­
values of an extension of H to some (appropriately chosen) larger space. Thus 
the eigenvectors are not in the original Hubert space (where are they, then?) 
and the theory is rather subtle. It is understandable that quantum mechanics 
texts tend to be rather vague about the details. 

One needs a mathematics text that can be read in parallel with a conven­
tional physics text. It should sharpen the theory, but not be so heavy that one 
loses contact with the physics. There are already books by Amrein, Jauch, 
and Sinha [1] and Prugovecki [6], and Schechter's book is now another 
candidate. The multi-volume treatises by Reed and Simon [7] and by Thirring 
[8] are also relevant to such an enterprise. 

The basic material that should be covered is the motion of a single particle 
in a fixed field of potential energy. (This is actually the two-body problem 
since it is what remains when one removes the center of mass motion for a 
two-body interaction. The next step up, adding another particle, is always 
called the three-body problem, even after the center of mass motion has been 
removed.) In this elementary situation the Hubert space takes the concrete 
form % = £2(R"), where n is the dimension of space. In nature n = 3, but it 
is illuminating to keep it as a free parameter. The Laplace operator A is 
selfadjoint and H0 = -A is the kinetic energy. The interaction is given by a 
real measurable function v and the potential energy operator V is simply 
multiplication by v. The fundamental problem is the relation between v and 
the spectral properties of H = H0 + V. 

At the outset Schechter makes two fundamental choices. The first is not to 
try to develop all the complicated lore of physics, but to introduce quantum 
mechanics with a sparse set of postulates. This is a sensible choice, but it does 
leave open the question of how easy it will be to make connections with the 
physics literature. His second choice is to develop the general operator theory 
framework, but to illustrate it only with a detailed analysis of motion in one 
dimension, the case n = 1. More will be said about the consequences of this 
choice later. 

The book begins with an ingenious and attractive motivation of selfadjoint­
ness. A densely defined operator A is said to be Hermitian if {<j>9 Axp} = 
</!<£,;//> for all </> and \p in ty(A). This is a natural condition for quantum 
mechanics, since it implies that the expectation <i//, A\p} is real. However it is 
weaker than selfadjointness; it is still possible that A* is a proper extension of 
A. Postulate 3 is that an observable is represented by a maximal Hermitian 
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operator (one with no proper Hermitian extension). This still does not imply 
selfadjointness. However one also wants a functional calculus. A minimal 
condition is that the square of the observable is represented by A2, and this is 
Postulate 4. The relevant mathematical fact is now that if A and A2 are both 
maximal Hermitian, then A is selfadjoint. 

The selfadjoint operator of principal interest is the total energy H. The first 
major topic is the point spectrum. States in the point spectrum subspace are 
called bound states. If the potential v is not too singular and if it approaches 
zero at infinity in some appropriate sense, then the corresponding multipli­
cation operator V is relatively compact with respect to H0 = -A. In this case 
the operator H = H0+ V may have strictly negative spectrum, but it must 
consist of eigenvalues of H. Thus every state with strictly negative energy is a 
bound state. Furthermore, these eigenvalues are isolated and have finite 
multiplicity. (If there are infinitely many they accumulate at zero.) This 
discrete behavior of the energy is responsible for the word "quantum" in 
quantum mechanics. The book gives estimates on the location of the spec­
trum and on the multiplicity of the eigenvalues. The spirit is that of mathe­
matical analysis. There is no attempt to relate the estimates to the intuitive 
uncertainty principle of the physicists [4; 7, vol. 4]. There is a problem here 
with the choice n = 1, in that the facts are qualitatively different from those 
in the physical dimension n = 3. For instance, one nice one-dimensional 
result is that ƒ v(x) dx < 0 implies that H has a strictly negative eigenvalue. 
However the analog f or n > 3 is false; even if v is negative it need not create 
a bound state. 

The remainder of the book deals with the continuous spectrum. One of the 
charms of quantum mechanics is that mathematical objects acquire a second 
meaning. One thinks of spectral theory in terms of motion of particles and 
continuous spectrum suggests scattering. The kinetic energy operator H0 

generates free motion and provides a useful reference system for the actual 
motion governed by the total energy H. Since the spectral properties of H0 

are explicitly known, it is often not difficult to prove that for every <J> in DC, 
there exists W±<j> in % with 

(1) exp(-*Y H) W±<j> - exp(-/Y H0)<j> -> 0 as t -> ±oo. 

The wave operators W± are isometries with ranges that are closed subspaces 
of the continuous spectrum subspace for /ƒ. The hard part is to get some 
control on these ranges. A vector in the range of W_ is a state that came in 
with asymptotically free motion in the past, and a vector in the range of W+ 

is a state that will go out in the same way in the future. The wave operators 
are said to be weakly complete if their ranges are equal. Call this common 
range the scattering subspace. For every \p in the scattering subspace there are 
<t>± in % with \p = W±<j>±, so that 

(2) exp(-it H)\p - exp(-*Y H0)<f>± -* 0 as t -> ±oo. 

In this case the scattering operator defined by 

( 3 ) S<i>_= <t>+ 

is unitary. What goes in must come out (and vice versa). 
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The book also treats a stronger notion of completeness, in which the 
scattering subspace is required to be the entire continuous spectrum subspace. 
This says that everything that is not bound is scattered, and this is certainly 
what one would hope for in a normal two-body problem. The problem is to 
find out for which interactions v it is actually true. One would also like to 
know how to compute the scattering operator S, since it is the object of 
experimental interest. Throw something in; at what angle will it come out 
(that is, with what probabilities)? 

The book develops the relevant scattering theory in a functional analysis 
setting. It actually presents two treatments of the problem. The first is to 
Fourier transform from the time variable / to the energy variable X. The 
physically relevant real values of X are regarded as limiting values of X from 
the upper or lower complex half-plane. The technique is to use theorems 
about the boundary values of analytic families of compact operators. The 
second treatment is based on a theory of perturbations by trace class 
operators. In both treatments the apparatus is applied to one-dimensional 
motion, and it is shown, for example, that if | |Ü(X) | dx < oo, then the wave 
operators are weakly complete. (There are also results on the stronger form of 
completeness.) Here the choice to work with one-dimensional motion is 
particularly curious. The operator techniques are natural to quantum mecha­
nics, and they give more or less the same results in any number n of 
dimensions. On the other hand, when n = 1 the problem reduces to integrat­
ing an ordinary differential equation, and this fact may be used to give a 
more elementary approach. Ordinary differential equation techniques may be 
artificial in this context, but they will not just go away. They also work on 
rotationally symmetric problems in n dimensions, and they are essential to 
the solution of the inverse scattering problem in this case. The reader of this 
book may need to be reassured that the operator theory has a wider range of 
application than indicated by the example of one-dimensional motion. 

Another point to note is the use of the energy variable. Recent approaches 
to the completeness problem, due to Lavine, Enss, and others [7] emphasize 
the time variable. There is a paradox here. The time variable is the most 
natural from a geometrical point of view, and the formulas are simpler to 
interpret. On the other hand, physicists always use the energy variable for 
computations. It is the natural variable for spectral analysis, and it permits 
localization in energy. For instance, the computational formula for the S 
operator (not present in the book) is 

(4) S = 1 - lm ƒ Ô(H0 - X)[ V - V(H -X- iQ)'1 V]ô(H0 - X) dX. 

If </> is a state with kinetic energy in a Borel set A (that is, an eigenvector of 
the spectral projection lA(i/0) = ƒ A ^ ( ^ O ~~ ^) d\), then the only contribution 
to S<j> comes from the integral over A. Experiments are performed in a fixed 
energy range, so it is nice to be able to compute (H — X — IO)"1 only over the 
desired range of X. 

A persistently vexing question is how to treat the eigenvectors correspond­
ing to the continuous spectrum. (Recall that they do not sit in the Hilbert 
space.) Schechter's solution is to obtain them as a corollary of scattering 
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theory. He finds them in £°°, which confirms the physicists's prejudices about 
the appropriate boundary condition, but doesn't seem to fit very nicely into 
the Hubert space framework. In physics texts these non-normalizable eigen­
vectors occur right at the beginning and play a fundamental role throughout. 
A few of their properties may be derived from a simple theory based on 
Hilbert-Schmidt operators [3], but a detailed study seems to need scattering 
theory. 

Schechter's book also contains a treatment of certain severe local singulari­
ties of v. It is proved that even in this situation the wave operators are weakly 
complete. This is reasonable, since the main factor affecting scattering should 
be the behavior of the potential near infinity. However there is an example 
due to Pearson [5; 1, p. 167] that shows that it is possible for a wild enough 
local singularity to trap an incoming particle. Completeness of the wave 
operators is not a matter of mere formal manipulation; it requires serious 
analysis. One version of this analysis is provided in Schechter's book. In 
quantum physics the real world may be elusive, but some of the mathematics 
is now under control. 
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Formal groups and applications, by Michiel Hazewinkel, Pure and Applied 
Mathematics Series, Academic Press, New York, 1978, xxiv + 574 pp., 
$52.50. 

Formal groups are Lie groups treated in the style of the eighteenth century. 
This means, first of all, that there is no fuss about degrees of differentiability 
or global topology. We simply have a neighborhood of the origin in n-space 
with a "group law" composition z = f{x, y) where the coordinates zt = 
f;(x,y) are power series in the coordinates of x and y. The composition 


