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ON THE OSCILLATION THEORY 
OF ƒ " + A f = 0 WHERE A IS ENTIRE1 

BY STEVEN B. BANK AND ILPO LAINE 

This paper is concerned with the distribution of zeros of solutions of dif­
ferential equations of the form, 

(1) / " + i 4 ( z ) / = 0 , 

where A(z) is an entire function. More specifically, we are concerned with deter­
mining the exponent of convergence (which we will denote by X(/)) of the zero-
sequence of a solution ƒ ^ 0 of (1). In this paper new techniques are developed 
which yield strong, new results concerning \(f). 

We first consider the case where A(z) is a nonconstant polynomial. 

THEOREM 1. Let A(z) be a nonconstant polynomial of degree n, and let 
ft and f2 be two linearly independent solutions of (I). Then, at least one offv 

ƒ2 has the property that the exponent of convergence of its zero-sequence is 
(n + 2)/2. 

REMARK 1. If « is odd, all solutions/^ 0 of (1) have the property that 
A(0 - (n + 2)/2 because the Wiman-Valiron theory (see [5, Chapter 4] or [6, 
Chapter 1] or [7, p. 281]) shows that the order of growth of ƒ is (n + 2)/2 
which is not a positive integer if n is odd. 

REMARK 2. In the case when n is even, there may exist solutions of (1) 
having no zeros. (E.g., if k = (n + 2)/2, then fx(z) = exp(zk/k) satisfies ƒ " -
(zn + (« /2 )z ( w - 2 ) / 2 ) /= 0.) On the other hand, there are examples where all 
solutions/^ 0 satisfy X(/) = (n + 2)/2. For example, the equation/" - z n f 
= 0 can be shown to have this property using the Wiman-Valiron theory. 

REMARK 3. In the case when n is even, and ƒ is a solution of (1) satisfy­
ing X(/) < (n 4- 2)/2, it can be shown using a theorem of Pöschl (see [6, p. 70]) 
that ƒ can have only finitely many zeros. 
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PROOF OF THEOREM 1. If we set E = fxf2, then a straightforward calcu­
lation shows that E satisfies the relation, 
(2) E? = c2/((Z?y/D2 - 2(En/E) - 4A), 

where the nonzero constant c is the Wronskian offx and/2 . The relation (2) 
shows that E cannot be a polynomial since A(z) —> °° as z —> °°. From the 
Nevanlinna theory (see [3] ) it now follows from (2) that the Nevanlinna charac­
teristic T(r, E) of E satisfies an estimate of the form, 

(3) T(r, E) = 0(N(r, l/E) + T(r, A) + log r), 

as r •—> °o outside a set of finite measure, where N(r> 1/^) denotes the counting 
function for the distinct zeros of E. However, relation (2) can be rewritten, 

(4) c2 - (Eff + 2EE" + AAE2 = 0, 

and when the Wiman-Valiron theory is applied to (4), we see that the order of 
growth of E is (n + 2)/2. From (3), it now follows that X(E) = (n + 2)/2 which 
proves Theorem 1 since E - fj2. 

In the case when A(z) is transcendental, the situation concerning the zeros 
of solutions of (1) can be far different than in the polynomial case. It is possible 
for (1) to possess two linearly independent solutions each having no zeros. To 
prove this, let <p(z) be any nonconstant entire function, and let h denote a primi­
tive of e*. Set g = -(# + h)/2. Then f1=eg and f2 == eg+h are linearly inde­
pendent solutions of (1) where A = - (Qif + (<//)2 - 2<p")/4. 

However, a result in the positive direction is the following: 

THEOREM 2. Let A(z) be an entire transcendental function of finite order 
a, where a is not a positive integer. Let ft and f2 be two linearly independent 
solutions of (1). Then, if o> Vi, at least one of fv f2 has the property that the 
exponent of convergence of its zero-sequence is at least o. If a < Vi, at least one 
of fv f2 has the property that the exponent of convergence of its zero-sequence 
is °°. 

PROOF OF THEOREM 2. We again set E = fj2 so (2)-(4) hold. We 
consider first the case o>Vi. If we assume \{E) < a, then from (3) we see that 
the order of E is at most a. However, solving (4) for A, it follows that the order 
of E is also at least a, and so E is of order a. Since o is not a positive integer, 
we have \(E) = a contradicting our assumption. Thus \(E) > a, and the first 
part is proved. For the case a < Vi, we apply the Wiman-Valiron theory to (4). 
Hence there is a set D in [1, °°) of finite logarithmic measure such that ifr^D 
and z is a point on \z\ = r at which \E(z)\ = M(r, E) (where M(r, E) is the maxi­
mum modulus of E)9 then 

(5) 2\A(z)\<(v(r)lrf, 
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where v(r) denotes the central index of E (i.e., if E(z) = 2)~=0 anz
n
9 and m(r) = 

max{]fln \rn : n = 0 , 1 , . . . }, then v(r) is the largest index n for which |aw|r" = m(r)). 
However, since a < Vi, it follows from a theorem of P. Barry [2, p. 294] that there 
is a sequence {rn} —• °° such that rn $D and the minimum modulus of A(z) on 
\z\=rn is at least M(rn, A)e for some fixed e > 0. In view of (5), it follows that 
{u(rw)/r^} —• °° as n —• °° for every a > 0, and so E is of infinite order (see [5, 
p. 34] ). Hence from (3), we have X(ü) = °° and the theorem follows. 

In the case where the order a of A(z) is either a positive integer or °°, we 
obtain the following very strong result if \(A) < a. 

THEOREM 3. Let A(z) be an entire function of order a, where 0 < a < °°, 
and assume that \{A) < a. Then for any solution f^Oof (1), we have X(/) > a. 

The proof of Theorem 3 is lengthy, and hence we will give only a sketch 
of it. (However, complete details will appear elsewhere.) We denote the order of 
a meromorphic function F by o(F). We assume that the conclusion of Theorem 
3 fails to hold, so that X( ƒ) < a. We can write ƒ = Qeg

9 where g is entire, and 
Q is a canonical product for which o(Q) < a. From (1) we have 

(6) Ô" + 2QV + Q(g'? + Qg" = -AQ. 

This shows that a(g) > a. Solving (6) for (g)2, and applying a variant of a lemma 
of Clunie [1, Lemma 1], we obtain o(g') < o so o(g) = a. We now set b = 
max{X(f), \(A)} so that b <a. We assume first that o < °°, and we solve (6) 
for A(z). Applying a simple modification of a result of Clunie [3, p. 69, Theorem 
3.9], it follows that -A = (g + a)2 where a is an entire function of order at 
most b. Setting H - \\(g + a), we obtain an equation, 

(7) FH2 =ti- 2((ö7ö) " a)ft 

where F is a meromorphic function of order at most b, which is not identically 
zero. Again applying a variant of a result of Clunie [3, p. 68, Lemma 3.3], it 
follows that for any e > 0, we have as r —• °°, m(r, H) = 0(rb*e), and thus 
m(r, 1/4) = 0(rb*e). Since \(A) < by we obtain o(A) < b which contradicts the 
fact that b <a = o(A). In the case o = °°, we obtain a similar contradiction. 

The result of Theorem 3 allows us to obtain the following quantitative 
improvement of a result of W. Hayman [4, Theorem 8]. 

THEOREM 4. Let f be an entire transcendental function of order a, where 
0 < a < °°, and let y = f' - cf2 where c is a nonzero constant Then \(y) = a. 
(Hayman showed that y has infinitely many zeros,) 

The proof of Theorem 4 proceeds as follows. We first show that o(y) = o 
by using variants of the Tumura-Clunie theory. We then set y = e~~cg, where g 
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is a primitive of ƒ Then y solves equation (1), where A = c$. Since y has no 
zeros, it follows from Theorem 3 that we must have \(A) = o(A), and so X(y?) 
= a. 

We briefly mention two related results in the case when A(z) is transcenden­
tal. First, examples can be constructed to show that the case where (1) has a 
solution having no zeros can occur for any order of A(z). Secondly, the con­
clusion of the first part of Theorem 2 holds even for a being a positive integer 
or °° provided that the exponent of convergence of the sequence of distinct zeros 
of A(z) is less than o. 
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