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HYPERBOLIC GEOMETRY: THE FIRST 150 YEARS 

BY JOHN MILNOR 

This will be a description of a few highlights in the early history of 
non-euclidean geometry, and a few miscellaneous recent developments. An 
Appendix describes some explicit formulas concerning volume in hyperbolic 
3-space. 

The mathematical literature on non-euclidean geometry begins in 1829 with 
publications by N. Lobachevsky in an obscure Russian journal. The infant 
subject grew very rapidly. Lobachevsky was a fanatically hard worker, who 
progressed quickly from student to professor to rector at his university of 
Kazan, on the Volga. 

Already in 1829, Lobachevsky showed that there is a natural unit of 
distance in non-euclidean geometry, which can be characterized as follows. In 
the right triangle of Figure 1 with fixed edge a, as the opposite vertex A 
moves infinitely far away, the angle 9 will increase to a limit 90 which is 
assumed to be strictly less than 7r/2. He showed that 

a = -log tan(0o/2) 

if the unit of distance is suitably chosen. In particular, 

a « (TT/2) - 0O 

if a is very small. (In the interpretation introduced by Beltrami forty years 
later, this unit of distance is chosen so that curvature = -1.) 

FIGURE 1. A right triangle in hyperbolic space 

By early 1830, Lobachevsky was testing his "imaginary geometry" as a 
possible model for the real world. If the universe is non-euclidean in 
Lobachevsky's sense, then he showed that our solar system must be extremely 
small, in terms of this natural unit of distance. More precisely, taking the 
vertex A in Figure 1 to be the star Sirius and taking the edge a to be a 
suitably chosen radius of the Earth's orbit, he used the (unfortunately 
incorrect) estimate 

7T — 20 ss 1.24 seconds of arc s 6 x 10~6 radians 
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10 JOHN MILNOR 

for the parallax of Sirius to conclude that the diameter 2a of Earth's orbit is 
less than 6 X 10~6. (The correct parallax of 0.37" for Sirius would have given 
a sharper estimate. In fact, the first reliable measurements of parallax were 
made by Bessel several years later, in 1838.) 

By late 1830, he was working out the volumes of pyramids, and other 
polyhedra in 3-dimensional non-euclidean space. Such computations are not 
easy, and can be quite interesting. (Compare the Appendix.) 

A few years later, in 1832, J. Bolyai, a flamboyant officer in the Austro-
Hungarian army, published an independent account of non-euclidean geome­
try. However, perhaps because he was discouraged by Gauss, he did not 
pursue the subject as far as Lobachevsky. 

Although Lobachevsky and Bolyai were the first with the courage to 
publish, it should be noted that Gauss himself had been privately working on 
similar ideas for many years. In a letter to Taurinus in 1824 he wrote (roughly 
translated):1 

"The assumption that the sum of the three angles [of a triangle] is smaller 
than 180° leads to a geometry which is quite different from our (euclidean) 
geometry, but which is in itself completely consistent. I have satisfactorily 
constructed this geometry for myself so that I can solve every problem, except 
for the determination of one constant, which cannot be ascertained a priori. 
The larger one chooses this constant, the closer one approximates euclidean 
geometry. . . . If non-euclidean geometry were the true geometry, and if this 
constant were comparable to distances which we can measure on earth or in 
the heavens, then it could be determined a posteriori. Hence I have some­
times in jest expressed the wish that euclidean geometry is not true. For then 
we would have an absolute a priori unit of measurement." 

His words to Bessel, in 1830, have an even more modern ring: 
" . . . we must admit with humility that, while number is purely a product 

of our mind, space has a reality outside of our mind, so that we cannot 
completely prescribe its laws a priori." 

For the first forty years or so of its history, the field of non-euclidean 
geometry existed in a kind of limbo, divorced from the rest of mathematics, 
and without any firm foundation. However, Gauss' theory of curved surfaces 
[1827], and Riemann's theory of higher dimensional curved manifolds [1868] 
provided a way of integrating non-euclidean geometry into more respectable 
branches of mathematics. In fact Riemann briefly described the theory of 
manifolds of constant curvature a, citing the metric 

ds =^dx] + • • • +dxl /(\ + - j ( * ? + • • • +x%)\ 

as an example. 
The turning point came in 1868, with the publication of two papers by E. 

Beltrami. In the first, Beltrami showed that two-dimensional non-euclidean 
geometry is nothing more nor less than the study of suitable surfaces of 

lGauss [1900, pp. 187, 201]. For other early workers in non-euclidean geometry, see for 
example Coxeter [1942]. 
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constant negative curvature. Vz introduced the term pseudosphere of radius R 
for a surface of curvature -i/R2. (In practice, he used the term "pseudo-
sphere" only for complete, simply connected surfaces.) In this first paper, he 
was baffled by the 3-dimensional case. However, after encountering Rie-
mann's inaugural address, which had been delivered in 1854 but published 
only after his death, in 1868, Beltrami published a second paper, on «-dimen­
sional pseudospherical geometry. He started with what I will call the hemi­
sphere model. Points of the «-dimensional non-euclidean geometry are identi­
fied with interior points of the hemisphere 

y =ytf2 - * ? - • • • ~x2, y > 0, 

in (n + l)-dimensional euclidean space, provided with the Riemannian metric 

ds = Ryjdx2 + • • • + dx2 + ay2 /y. 

He noted that this model is simply connected, and that the "limit space", 
consisting of boundary points with y = 0, is infinitely far from the interior in 
this metric. We will refer to such boundary points as points at infinity. 

Projecting orthogonally down to the disk 

x2 + • • • +xl < a2, 

he showed that each pseudospherical geodesic maps precisely to a euclidean 
straight line segment. Thus he obtained the projective disk model, later 
popularized by Klein. 

On the other hand, projecting the hemisphere stereographically onto a disk, 
he obtained the conformai disk model, with the metric 

ds - ^ , / t f + • • • + ^ „ 2 / ( l - (If + • • • + i 2 ) / 4 * 2 ) 

which had been noted already by Riemann. 
Finally, performing an inversion in a boundary point of this disk, he 

obtained the half-space model, with coordinates xx, . . ., xn_x axidy > 0, and 
with metric R(dx2 + • • • +dxl_x + <fy2)l/2/y. He pointed out that this 
half-space metric had been used already by Liouville in the 2-dimensional 
case. 

Klein [1871] reinterpreted Beltrami's projective disk model in terms of 
projective geometry. Following Cayley [1859], he took as his starting point the 
expression 

2l0g\p-a\\b-q\ 

for the non-euclidean distance between two points p, q, as illustrated in 
Figure 2. (The factor 1/2 is inserted so that curvature will be -1.) Here 
\q — a\ denotes the euclidean distance from a to q. In this paper he intro­
duced the term hyperbolic geometry for the non-euclidean geometry of 
Lobachevsky and Bolyai. 
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•e 
FIGURE 2. The Cayley formula for noneuclidean distance, 

in the projective disk model 
Poincaré [1882] re-introduced the Liouville-Beltrami upper half-plane 

model; and used it to identify the group of orientation preserving isometries 
of the hyperbolic plane with the group, now usually called PSL2R, consisting 
of all fractional linear transformations 

z i-> (az + b)/ (cz + d) 

with real coefficients and with determinant +1 . As a foundation for the study 
of automorphic functions, he emphasized the importance of finding discrete 
groups of hyperbolic isometries. He noted (§XIII) that examples of such 
discrete groups had been described already by Schwarz [1873], and others. 

In [1883], Poincaré showed that the analogous group of orientation preserv­
ing isometries of 3-dimensional hyperbolic space can be identified with the 
group PSL2C consisting of all fractional linear transformations of the plane 
of points at infinity, with complex coefficients. Again he studied the problem 
of finding discrete subgroups. 

Picard [1884] described one particularly interesting example. The ring 
Z[i] c C of Gaussian integers gives rise to a discrete group PSL2Z[i] c 
PSL2C, consisting of fractional linear transformations with Gaussian integer 
coefficients. A fundamental domain for this group, acting on hyperbolic 
3-space, is noncompact, but has finite volume. 

Bianchi [1891] described the analogous construction using the integers of 
an arbitrary imaginary quadratic number field. The precise volume of a 
corresponding fundamental domain was computed much later by Humbert 
[1919], in infinitely many cases. (See the Appendix.) 

Inspired by examples due to Clifford, Klein [1890] posed the following 
problem: 

" . . . to classify all connectivities which can possibly arise among closed 
manifolds of constant curvature." 

It must be noted in this context that the concept of a (global) manifold was 
never defined in any satisfactory way during the nineteenth century. For 
smooth manifolds in euclidean space, the definition given by Betti [1871] 
works only if the normal bundle is trivial. Poincaré [1895] used a similar 
definition and also suggested extending a coordinate patch by analytic 
continuation. Hadamard [1898] clarified the subject by giving a lucid descrip­
tion of surfaces in 3-space in terms of overlapping coordinate patches. Weyl 
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[1913] paved the way for our modern concept of smooth manifold by defining 
an abstract surface in terms of overlapping coordinate patches. In particular, 
he gave a clear discussion of the universal covering surface. The generaliza­
tion to n dimensions was now straightforward. (For a particularly nice 
presentation, see Cartan [1928].) During the same span of time, the study of 
combinatorial manifolds progressed from the rather vague definitions of 
Dyck [1890] and Poincaré to the precise definition of Brouwer [1912]. (See 
also Tietze [1908], Veblen and Alexander [1913].) The related concept of 
topological space is due particularly to Hausdorff [1914]. 

Let us return to the study of manifolds of constant curvature. Killing [1891] 
related Klein's classification problem to the study of discrete groups of 
isometries, as follows. If E is either «-dimensional hyperbolic space, «-dimen­
sional euclidean space, or the «-dimensional sphere, and if T is a discrete 
group of isometries which acts freely on E, then he showed that the quotient 
E/T is a manifold of constant curvature. He called such a quotient a 
Clifford-Klein space form. 

Much later, Hopf [1925] clarified this work by introducing a definition of 
completeness, showing that Killing's Clifford-Klein space forms are precisely 
the complete Riemannian manifolds of constant curvature. The concept of 
completeness was further developed by Cartan [1928] and Hopf-Rinow 
[1931]. 

By definition, a hyperbolic manifold is a Clifford-Klein manifold with 
curvature equal to - 1 . In the years following Killing's paper, a number of 
examples of hyperbolic manifolds were described. Compare Borel [1963]. The 
study of such manifolds is currently an extremely active area of research, 
particularly due to the work of Thurston [1978,1981]. 

Here let me describe two particularly simple examples. The first is due to 
Gieseking [1912]. Start with a regular hyperbolic 3-simplex A having all four 
vertices on the sphere of points at infinity. Each of the six dihedral angles of 
A is then equal to 7r/3. (Compare the Appendix.) Now identify two faces of A 
by means of a rotation of 27r/3 about a common vertex. Similarly, identify 
the opposite two faces by rotating about a common vertex. Then all six edges 
will be identified. Since the six dihedral angles add up to 2TT, they fit smoothly 
together so that we obtain a non-singular hyperbolic manifold, even in a 
neighborhood of the common edge. This Gieseking manifold is nonorient-
able. It is noncompact, but is complete with finite volume. 

The second example is due to Riley [1975]. Consider the figure eight knot 
K, as shown in Figure 3. The fundamental group II of the complement 
S3 — K is generated by two loops a, 13, as illustrated, which are subject to a 
single defining relation (afi~la~lfi)a = fi(ap~xa~xfi). Suppose that we look 
for a faithful representation 

n -» PSL2Q 

and require that the image must be a discrete subgroup. The generators a, 
ft e II will correspond to unknown matrices A, B, which must satisfy a single 
matrix equation. 
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FIGURE 3. The figure eight knot 

The possible choices for A and B can be drastically narrowed as follows. 
Note that every nontrivial element of PSL2C is contained in a unique 
maximal abelian subgroup which is conjugate either to the group consisting 
of all diagonal matrices [£ x-i] o r t o t n e group of all unipotent matrices of the 
form [o *], according as the given element does or does not have two linearly 
independent eigenvectors. Now the generator a of II is contained in a free 
abelian group Z © Z c II, corresponding to the fundamental group of the 
boundary of a tubular neighborhood of K. It is easy to check that Z © Z 
cannot be embedded as a discrete subgroup of the group of diagonal 
matrices, which is isomorphic to the multiplicative group C\ Hence a, and 
similarly /?, must map to unipotent elements of PSL2C, with eigenvalue 1. 
Using a basis for C2 consisting of an eigenvector for a and an eigenvector for 
/?, we may assume that 

a H> v4 = fih+B = 1 0 
-co 1 

where <o is some unknown complex constant. Now computation shows that 
these two matrices satisfy the required relation if and only if 1 + co + to2 = 0, 
so that co = (-1 ± V^3 )/2. Thus the requirement that the "peripheral sub­
group" Z © Z c II maps isomorphically to a discrete subgroup of PSL2C leads 
to a homomorphism 

h:U~>PSL2C 

which is uniquely determined, up to inner automorphism and complex conjuga­
tion. 

Since the image h(U) is contained in the Bianchi group PSL2Z[œ], it is 
certainly discrete in PSL2C. In fact Riley proves that h maps II isomorphi­
cally onto a subgroup h(U) c PSL2Z[oi] of index twelve. Using the Haken-
Waldhausen theory of 3-manifolds, he then proves that the complement 
S3 — K is actually homeomorphic to the hyperbolic manifold H3/'h(Tï). 

In an interesting complement to these two examples, Thurston [1978] shows 
by direct geometric construction that S3 — K is homeomorphic to the 2-fold 
orientable covering of the Gieseking manifold. In particular, the hyperbolic 



HYPERBOLIC GEOMETRY 15 

manifold S3 — K has a kind of triangulation into two regular ideal hyperbolic 
3-simplexes, with their boundaries pasted together by suitable isometries. 

The uniqueness of this Riley representation II -» PSL2C illustrates the 
following fundamental result. 

RIGIDITY THEOREM. If two hyperbolic manifolds of finite volume, with dimen­
sion n > 3, have isomorphic fundamental groups, then they must necessarily be 
isometric to each other. 

In the compact case, this was proved by Mostow [1971, 1973]. (See also 
Margulis [1970].) For the noncompact case, it was proved by Prasad [1973], 
making essential use of Mostow's work. 

It follows that geometric invariants such as volume, the lengths of closed 
geodesies, and the eigenvalues of the Laplacian operator, are also topological 
invariants. For an example to show that these particular geometric invariants 
are not sufficient to determine the topology of a hyperbolic 3-manifold, see 
Vignéras [1980]. 

In contrast to this Mostow-Prasad rigidity theorem, Thurston has proved a 
fundamental result which can be stated in a preliminary form as follows. 

NONRIGIDITY THEOREM. Suppose that M = H3/T is an orientable hyperbolic 
3-manifold which is noncompact, but has finite volume. Then there exists an 
infinite sequence of hyperbolic manifolds 

Mj = H3/hj(T) 

which have strictly smaller volume, and which approximate the original manifold 
Masj-^oo in the sense that the homomorphisms 

hj\T-^PSL2C 

tend to the inclusion T c PSL2C in the topology of pointwise convergence. 
Furthermore, the volumes of the Mj tend to the volume of M. 

Of course, according to the Rigidity Theorem, these approximating mani­
folds Mj cannot be homeomorphic to M, or to each other. In particular, the 
representations hj cannot be faithful. Their behavior can be described more 
precisely as follows. 

To fix our ideas, suppose that the noncompact manifold M has just one 
end. Then a neighborhood of infinity in M is smoothly covered by a unique 
field of half-infinite geodesies, which converge exponentially towards each 
other as we go out to infinity. Any orthogonal trajectory to this field of 
geodesies is a flat torus. The fundamental group of such a torus-near-infinity 
is called a peripheral subgroup Z © Z, embedded in the fundamental group T 
of M. 

As in the discussion of Riley's example, the original representation T c 
PSL2C must map this peripheral subgroup Z 0 Z to a unipotent subgroup, 
having just one eigenvector with a double eigenvalue of 1. If we perturb this 
representation slightly within the space of all homomorphisms T —» PSL2C, 
then the single eigenvector will split into two nearby but linearly independent 
eigenvectors. Hence the subgroup Z © Z will map into some subgroup of 
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PSL2C which is isomorphic to the multiplicative group C'. Such a representa­
tion of Z © Z cannot be faithful, with discretely embedded image. For most 
choices of perturbation, the image of Z ® Z will simply be a nondiscrete 
subgroup of C'. But for certain carefully chosen perturbations h = hpq9 the 
images of the two generators x, y of Z © Z will be subject to a new relation of 
the form h(xpyq) = / ; and these images will generate a discretely embedded 
free cyclic subgroup of C\ In fact Thurston shows that such a perturbation 
exists whenever/?, q are relatively prime integers with \p\ + \q\ sufficiently 
large. Furthermore, the image hpq(T) is always a discrete subgroup of PSL2C; 
and hpq tends to the inclusion homomorphism as \p\ + |̂ r| —̂  oo. 

Topologically, the resulting quotient manifold Mpq = H3/hpq(T) can be 
obtained from M by cutting off a neighborhood of infinity bounded by a flat 
torus Sl X Sl and pasting in its place a solid torus Sl X D2 which is 
attached in such a way as to introduce the required relation xpyq = 1 into the 
fundamental group. Thurston calls this operation a Dehn surgery. 

Thus, if M has only one end, the approximating manifolds Mpq will always 
be compact. If M has several ends, then one or more of them can be capped 
off by analogous Dehn surgeries. In particular, M can always be approxi­
mated arbitrarily closely (in a suitable sense) by compact hyperbolic mani­
folds. 

Here is a concluding example to test the reader's powers of visualization. 
Wielenberg [1978] has shown that the complement of the Whitehead link W of 
Figure 4 can be given the structure of a hyperbolic manifold H3/T. In fact T 
can be taken as a subgroup of index twelve in the Picard group PSL2Z[i]. As 
noted by Whitehead [1937], the complement S3 — Wis homeomorphic to the 
complement of the twisted version on the right. (Proof. Cut along a disk 
spanning C, rotate through any integral multiple of 2?r, and then paste back 
together.) Now by filling in a solid torus neighborhood of C we obtain the 
manifold S3 - K from the hyperbolic manifold S3 - (K (J C) s S3 - W. 
According to Thurston's theorem, this Dehn surgery must yield a new 
hyperbolic manifold, in all but a finite number of cases. 

The knots K obtained in this way are called Whitehead doubled knots. Thus 
Thurston shows that the complement of a Whitehead double has a hyperbolic 
structure whenever the number of twists is sufficiently large. Furthermore, the 
volumes of these manifolds tend from below to a finite limit. Note that the 
figure eight knot occurs as a special case. 

FIGURE 4. The Whitehead Link and a twisted version of it 
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Appendix. Volume in hyperbolic 3-space. Lobachevsky's formulas for the 
volumes of certain polyhedra in hyperbolic space can best be expressed in 
terms of the function 

J r0 
log|2 sin u\ du. 

o 
The Russian JI is in honor of Lobachevsky, although he himself never used 
precisely this expression. Compare Clausen [1832], Coxeter [1935], A graph is 
sketched in Figure 5. The basic properties can be listed as follows. 

LEMMA 1. This function JI(9) is odd, periodic of period IT, and satisfies the 
identity 

j\{nO) = n 2 R(fi + km/n) 
k modrt 

for every integer n. 

Evidently, JI(0) is a continuous function, smooth except at the zeros of 
sin 0, taking its maximum at 0 = 77/6. 

PROOF OF LEMMA 1. Start with the trigonometric identity 
AI — 1 

2 sin nO = II 2 sin(0 + km/n) 

which can be verified, for small positive values of 0, by substituting z = e~2l° 
in the equation 

\zn-l\= II \z - e2,nik/n\. 
k mod n 

The general case follows by analytic continuation. 

W(0) 

FIGURE 5. Graph of J I (0) 
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Integrating the negative log absolute value of both sides we obtain 

n-\ 
(1) Ji(n0)/n = 2 ^{9 + itk/ri) + constant. 

A:=0 

For example, if n = 2, then 

JI(20)/2 = JI (0) + JI(9 + TT/2) + constant. 

Substituting 9 = TT/2 or 9 = 0 in this last equation and subtracting, we see 
that JI(TT) — JI(0) = 0. Since the derivative J\'{0) = -log|2 sin 9\ is periodic of 
period 77, this proves that JI itself is also periodic of period 77. 

Finally, to prove that the constant in equation (1) is zero, we can simply 
average over all values of 9 mod 77, noting that JI has average zero since it is 
an odd function. • 

This function JI(0) is closely related to the dilogarithm function 

which has been studied by Euler, Abel, and many others. The precise 
relationship is described by the identity 

L2(e
m) = TT2/6 - 9{<TT - 0) + 2iji(tf) 

for 0 < 9 < 77. (Compare Lewin [1958].) This identity can be verified by 
differentiating both sides f or 0 < 9 < IT, using the limiting value as 9 -> 0 to 
compute the constant TT2/6. 

Taking the imaginary part of both sides, we obtain the uniformly conver­
gent Fourier series expansion 

(2) ^(sin2n9)/n2 = 2ji(9), 

which is valid for all values of 9. 
For actual computation, it is much better to work with the series 

„W-^-.̂ i + E^^), 
which converges for |0| < 77 and hence converges quite rapidly for small 9. 
Here 

^ 1 = 6» ^ 2 = = 30' * • ' 

are Bernoulli numbers. This equation can be proved by twice integrating the 
usual Laurent series expansion for -cot 9. 

Here is an illustration of the utility of this function in computing hyper­
bolic volumes. 

LEMMA 2. Consider an ideal hyperbolic 2>-simplex, that is a simplex A with all 
four vertices on the sphere of points at infinity. If a, fi, y are the dihedral angles 
along three edges meeting at a common vertex, then a + fi + y = IT, and 

volume(A) = Ji(a) + Ji({i) + Ji(y). 
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It does not matter which particular vertex we choose, since it follows easily 
that opposite dihedral angles are equal so that we obtain the same three 
dihedral angles a, /?, y incident to any vertex. 

This computation would follow easily from formulas of Lobachevsky 
[1836], although as far as I know he never worked out this particular example. 
(Compare Coxeter [1935].) 

PROOF. We will use the Beltrami upper half-space model, with metric 
ds2 = (dx2 + ay2 + dz2)/z2 and associated volume element dx ay dz/'z3, 
where z > 0. Let us position the ideal simplex A so that one of its faces lies in 
the hemisphere z = (1 — x2 — y2)ï/2, and its opposite vertex lies at the 
infinite point. Projecting A orthogonally to the unit disk in the x9 y -plane, we 
obtain a triangle inscribed in this disk with angles a, /?, y. These are the 
angles of a euclidean triangle; so evidently a + /? + y = 77. 

It follows easily from this picture that these angles determine A up to 
congruence (compare Andreev [1970]), and are subject to no other restric­
tions. 

FIGURE 6. A triangle inscribed in the unit disk 

If all three angles are acute, then barycentrically subdividing from the 
origin, we obtain six right triangles as illustrated in Figure 6. (The case of an 
obtuse angle can be handled by a similar argument, or by analytic continua­
tion.) Take the region in the upper half space lying over just one of these 
triangles, namely the shaded one. We must integrate the Beltrami volume 
element dx ay dz/z3 over the region defined by inequalities 

> y i - * 2 - 0 < y < x tan a, 0 < x < cos a. 

Integrating with respect to z, we obtain \ dx dy/(\ — x2 — y2). Integrating 
with respect to y, we obtain 

dx r i (A , . 1 (A x-ixtana dx, A cos a + x sin a 
- [\og{A + y ) - log(A -y)]0 = 4 ^ 1 ° g i < C 0 . a _ J c r i l | g 
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where A = (1 - x2)l/2. Substituting A = sin 0, x = cos 9, dx = -Ad9y and 
integrating, we get 

, 1 r«/2 2 sin(0 + a) ,n 

volume = - I log, . ; \dB 
4Ja 2 sm(0 - a) 

= ( - J I ( | + a) + ji(2a) + J I ( | - a) - J I ( 0 ) ) / 4 . 

Now, if we substitute the identity 

ji(2a) = 2;i(a) + 2ji(a + TT/2), 

this reduces easily to volume = ji(a)/2. Adding the volumes of the other 
five regions, we obtain the required formula. • 

COROLLARY. The maximum possible volume of a hyperbolic ^simplex is 
3JI(TT/3). 

This works out as 1.0149416 . . . . 
PROOF. We must maximize the continuous function ji(a) + JI(J8) + Ji(y) 

subject to the constraints a, /?, y > 0 and a + /? 4- y = TT. Since the degener­
ate cases, where one dihedral angle is zero, all have zero volume, the 
maximum must occur at an interior point, where the derivative JI'(0) = 
-log(2 sin 9) is defined and satisfies 

j i V ) = Ji'(0) = Ji'(y), 
hence sin a = sin ft = sin y. Inspection shows that a = /? = y = TT/3 is the 
only interior solution. • 

REMARK. Haagerup and Monkholm [1979] have proved the analogous 
theorem in «-dimensional hyperbolic space. The unique n-simplex of maximal 
volume is the regular ideal n-simplex. 

Now let us compare Lemma 2 with Humbert's formulas for the volumes of 
certain fundamental domains. The presentation will be based on Borel [1981], 
which contains much further information about arithmetic computations of 
volume. 

Let Z[a] be the ring of integers in an imaginary quadratic number field 
F = Q[a], with discriminant -D = (â — a)2 < 0; and let 

r = PSL2Z[a] CPSL2C 

be the corresponding Bianchi group of isometries of hyperbolic 3-space. Borel 
shows that a fundamental domain for T has 

volume - D3/2$F(2)/4TT2
9 

where fF is the Dedekind zeta function. Using the standard identity 

^ = w|J7)i 
(see for example Hecke [1923, §49]), where £Q(2) = 7r2/6, we obtain the 
formula 

0) volume = ^!s(z£)J_ 
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of Humbert. Here (-D/ri) is a generalized quadratic residue symbol, with 
values ± 1 or 0. In order to express this infinite series in terms of the function 
JI(0), note first that the real-valued function n \-^ (-D/ri) on Z/D is equal to 
its own Fourier transform, up to a factor of V-D = iVD . More precisely 

k£àD\ k I \ n I 

for every positive integer n. (See Hecke §§52, 58.) Substituting this formula in 
(3), we obtain 

volume = 4 2 (=§-)V*"V*-

Evidently the real parts of the exponentials must cancel out. Hence, using the 
Fourier series expansion (2) we obtain 

volume = — 2 ( ~r )*( W D )• 

Thus the volume of Humbert9s fundamental domain is a finite linear combina­
tion, with rational coefficients, of values of the function JI(0) at rational multiples 
of IT. 

This suggests the conjecture that there may be some direct geometrical 
argument, describing such fundamental domains in terms of cutting and 
pasting of ideal simplices. (Compare Ash [1977].) 

As an example, taking D = 3 we obtain 

volume = I ( * ( f ) - J X ^ ) ) = ! * ( ! ) . 

According to Riley, the figure eight knot complement must have volume 
equal to twelve times this number, or 6JI(7T/3). This is precisely twice the 
volume 3JI(T7-/3) of a maximal hyperbolic 3-simplex, thus checking Thurston's 
observation that the figure eight complement can be triangulated by two 
copies of a maximal 3-simplex. 

Such results suggest the interest of determining number theoretical proper­
ties of the real numbers JI(9). Here is an explicit guess. 

CONJECTURE. If we consider only angles 9 which are rational multiples of w, 
then every Q- linear relation 

qX0i) + ' * • + « , * ( * „ ) - 0 

is a consequence of the relations 

Jl(77 + 0) = Jl(0), Jl(-0) - -Jl(0), 

Ji(n6) = n 2 a(0 + kir/n) 
k mod n 

of Lemma 1. 
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For example ^(7r/3) and JI{IT/6) are subject to the Q-linear relation 

2JI(TT/6) = 3JI(W/3), 

as one easily verifies. But the conjecture would imply that JI(TT/3) and JI(7T/4) 

are rationally independent. In other words, no finite covering manifold of the 
figure eight complement should have the same volume as some covering of 
the Whitehead link complement. 

A completely equivalent conjecture would be the following. For any fixed 
n > 2, the q>(ri)/2 real numbers nikm / ri), with 0 < k < n/2 and k relatively 
prime to n, are linearly independent over Q. Here <p is the Euler cp-function. 

The author hopes to discuss this question further in a later paper.2 
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