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Many mixed problems i.e. initial value-boundary value problems for partial 
differential equations can be written in the form 

du(t)/dt = A(u(t)),u(0)=f. (I) 

Here the unknown function u maps nonnegative time ^ G R + = [0, oo) into a 
Banach space X, A is an operator acting on its domain tf)(A) c X to X, and 
the initial data ƒ is in fy(A). The boundary conditions are absorbed into the 
description of ty(A), and saying that the solution takes values in fy(A) 
amounts to saying that the (time independent) boundary conditions hold for 
all t. We assume that A is a densely defined linear operator, and we are 
interested in the case when the problem (1) is well posed, i.e. a solution exists, 
it is unique, and it depends continuously (in a suitable sense) on the 
ingredients of the problem, viz. ƒ and A. When this is the case let T(t) map 
the solution at time 0 (i.e. f) to the solution at time / (i.e. u(t)). Then the 
uniqueness gives the semigroup property T(t)T(s) = T(t + s) for M 6 R + , 
and we have T(t) ="etA" at least formally; but in general^ is an unbounded 
operator so one must be careful. 

The Hille-Yosida-Phillips theory of (one parameter strongly continuous) 
semigroups of (linear) operators makes this all precise. The theory says that 
(1) is well posed iff it is governed by a semigroup T — {T(t): t E R + } iff A 
generates a semigroup T; and moreover, A generates a semigroup T iff A 
satisfies certain explicitly verifiable conditions. For instance, when the semi­
group is contractive i.e. || 7X0II < 1 for all f > 0, the exponential formula 

suggests that T can be recovered from A if (I — XA)~l is an everywhere 
defined contraction (i.e. ||(7 — \A)~l\\ < 1) for each \ > 0. In this case A is 
called m-dissipative, and this condition is both necessary and sufficient for A 
to generate a contraction semigroup. 
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More generally, solving (1) by semigroup methods reduces to solving the 
time-independent problem 

u-\Au = h (2) 

for u given an arbitrary h G X and a sufficiently small \ > 0, and showing 
that the u satisfies certain conditions involving norm inequalities (such as 
llwll < ll*ll)« When (1) is a parabolic mixed problem, (2) becomes an elliptic 
boundary-value problem. But (1) also includes hyperbolic problems and other 
types of problems as well. 

The theory of semigroups of operators has been extensively developed, and 
the applications of this theory have greatly increased our understanding of 
mixed problems for partial differential equations. 

On the other hand, one wants to consider equations where the coefficients 
of the differential operator and/or the boundary conditions depend on time. 
This means that the generator A in (1) should be time dependent: A » A(t). 
In this case (1) is called a temporally inhomogeneous equation or an equation 
of evolution (although the solution u evolves in time in any case, so that (1) 
should be called an evolution equation whether or not A is time dependent). 
Write the solution of the well-posed problem 

du(t)/dt = A(t)(u(t))9u(s)=f 0 ) 

as u{i) = U(t9 s)f; the analogue of the semigroup property is 

U(t9s)U(s9r) = U(t9r) 

for t > s > r. The operator family U — {U(t, s): t > s > 0} has many 
aliases; it is called an evolution family, an evolution operator, a fundamental 
solution, a propagator, etc. 

Here is a formal construction of U. We want to solve (3) for u(t). Partition 
[s91] as s = T0 < rx < • • • < rn — t and choose f, e [T,_I, TJ. If A(f§) ap­
proximates A(r) for 7>_i < r < ri9 then 

t>(') - Tn(rn - Tj,.,) • • • r2(r2 - T , ) ! ^ ! - r0)/ (4) 

approximates u(t) as max^r, — rt_ Y) -» 0; here Tt denotes the semigroup 
generated by A{rt). Since the operators appearing in (4) do not commute in 
general, the order is important. The expression (4) is just the Cauchy-Peano 
polygonal approximation in operator-theoretic form: t?(Tj) — Tx{rx — T 0 ) / is 
the approximate solution at rl9 v(r^) — J 2 (T 2 — TJ)Ü(TI) is the approximate 
solution at T2, etc. 

The solution of the inhomogeneous problem 

du{t)/dt = A(t)u(t) + g(t)9 u(s) - ƒ (5) 

is given by the variations of parameters formula 

u(t) - U{t, s)f + ('U(t, r)g(r) dr. (6) 

When A is independent of t and s = 0, (6) reduces to 

u(t)=T(t)f+('T(t-r)g(r)dr. 
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The nonlinear problem 
du{t)/dt = A{t)u(t) + g(t, u(t))9 u(s) = ƒ (7) 

can often be solved by successive approximations: 

un(i) - U(t, s)f + ('U(t, s)g(r, U„_,(r)) dr. 

This comes from making a guess ut(t)9 plugging it into the nordinear (g) term 
in (7), solving the resulting inhomogeneous equation by (6), and iterating. In 
favorable circumstances, a fixed point theorem can be used to show that un 
converges (at least locally in time) to a solution of (7). 

Another nonlinear equation that can be solved by iteration (in some cases) 
is 

du{t)/dt - A(t, u(t))u(t), u(s) = ƒ. (8) 
Here A(t, w) should be a generator for which (t, w). The approximate 
solution solves 

dun(t)/dt = A(t, u„_,(/)K(0, "»« " /• (9> 
Even when A does not depend on / explicitly, so that (8) is du/dt = A(u)u, 
(9) becomes 

dun{t) - A{un_x{t))un{t) =An(t)un{t\ 

which is a temporally inhomogeneous linear equation. An example is the 
Korteweg-de Vries equation 

du/dt - d3u/dx3 + udu/dx. 
Here X is a space of functions ofjcGR, and one can take 

A(w)v = d3v/dx3 + wdv/dx 
(or A(w)v = d3v/dx3 + vdw/dx). Thus the nonautonomous linear equation 
(3) is important not only for linear problems but also for nonlinear autono­
mous problems as well. 

Before discussing Tanabe's book, let me recall briefly some important 
names in the history of temporally inhomogeneous equations of evolution. 
The first major result for (3) was obtained by T. Kato in 1953. Definitive 
results for parabolic versions of (3) (involving analytic semigroups) were 
established around 1960 and thereafter by Kato, H. Tanabe, and P. Sobolev-
skiï. Definitive results for (3) is general, including hyperbolic versions, were 
obtained in the early seventies by Kato. Many other authors have made 
important contributions, but two points are worth emphasizing. First, Kato is 
the leader in this field; it is hard to overemphasize the importance of his 
work. Second, Tanabe is an international authority in this field; it seems 
natural for him to have written the book under review. 

Tanabe's book covers semigroups of linear operators and temporary inho­
mogeneous equations of evolution. It should be accessible to graduate stu­
dents having some background in functional analysis and partial differential 
equations (although the exposition becomes quite sketchy in places). Applica­
tions include parabolic equations and symmetric hyperbolic systems. In 
addition to well-posedness results, Tanabe gives results on qualitative be-
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havior, e.g. regularity and asymptotic behavior. He also has a chapter on 
nonlinear equations, with emphasis both on the successive approximation 
theory associated with (7) and on monotone operator methods. (For recent 
results on equations such as (8), (9) see for instance Kato [1], [2].) The last 
chapter is concerned with optimal control theory. 

Tanabe's book is a good one. A lot of good material is gathered together 
and unified nicely. Notable features include a nice treatment of fractional 
powers of operators, a unified exposition of J.-L. Lions' variational approach 
with evolution operator theory, a sketch of higher order elliptic boundary 
problems in If spaces, 1 <p < oo, some nice applications of (nonlinear) 
monotone operator theory in reflexive Banach spaces, and more. 

Unfortunately, the book has some flaws. In many places the English is 
awkward and there are a number of errors, linguistic, typographical, and 
mathematical as well.1 When the book again goes to press, either for a second 
edition or a new printing, the book will undoubtedly benefit from having the 
services of a conscientious and competent translation editor. 

I wish to thank Professor James G. Hooten of L.S.U. for his helpful 
comments. 
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1I'll be happy to supply interested readers with a list of the errors. 
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Although Generalized Inverses (GIs) date back to about 1900, and have 
been developed more or less continuously since then, with explosive growth 
since the 1950s (the annotated bibliography of Nashed and Rail [2, pp. 
771-1041] lists 1775 related publications through 1975), the subject has long 
been a somewhat murky backwater. GI .theory is notorious for having 
spawned disproportionately many inferior published articles (presumably 
hundreds more having been deservedly ambushed on their way to print), and, 
apart from a wide acceptance by statisticians, there has as yet been only 
limited interaction with other parts of mathematics. The subject has not 
penetrated the undergraduate curriculum, and probably most working 
mathematicians regard GIs as at best a mystery-or even a kind of mysticism. 

Nevertheless, certain basic items of GI lore should, in the reviewer's 
opinion, become part of every mathematician's tool kit; and, among the 


