BULLETIN (New Serigs) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 1, Number 4, July 1979

DIVISION ALGEBRAS OF DEGREE 4 AND 8 WITH INVOLUTION
BY S. A. AMITSUR, L. H. ROWEN1, AND J. P. TIGNOL2

ABSTRACT. Examples are given of division algebras with involution (x) of the
first kind, one of degree 8 which is not a tensor product of quaternion subalgebras,
the other of degree 4 which is not a tensor product of (+)-invariant quaternion sub-
algebras.

Suppose D is a division algebra with center F, and [D: F] <oo. Then [D: F]
= n? for suitable #; n is the degree of D, and D is a quaternion F-algebra when
deg(D) = 2. We further assume D has characteristic # 2, and has an involution (*)
of the first kind, i.e. (¥) is an anti-automorphism of degree 2 which fixes F. This
situation is treated in depth in [1, Chapter 10], and it arises if and only if D has
exponent 2 in the Brauer group,i.e. D ® D°P ~ Mn2(F ), the algebra of n? x n?

matrices over F. Thus, in this case, the degree of D is a power of 2. Until now, the
only known such algebras were tensor products of quaternion F-subalgebras.

QuUESTION 1. Is D necessarily a tensor product of quaternion F-subalgebras?

QuESTION 2. Is D necessarily a tensor product of (*)-invariant quaternion
F-subaigebras?

Question 1 dates back about 60 years; Albert [1] showed it is true when
deg(D) < 4. The main object of this paper is to give a counterexample for
degree 8. Also, we shall give a counterexample to Question 2 for degree 4, which
is clearly sharp. (Incidentally, for symplectic involutions, question 2 has no
counterexample of degree 4, cf. [3, Theorem B].) Our counterexample makes
the following result of Tignol [4] sharp: If deg(D) = 8 then M, (D) is a tensor
product of quaternion subalgebras. A more detailed description of our methods
will appear in the Israel Journal of Mathematics.

The main idea is to use the generic abelian crossed products of [2], modi-
fied slightly to account for the presence of an involution. Suppose R is an
abelian crossed product, i.e. D has a maximal subfield K Galois over F, having
Galois group G = (o) @ - - ©(0g,), a direct sum of cyclic groups, and for our
purposes we assume that o; has order 2. Then, choosing z; such that o;(x) =
z;xz; ! for all x in K, we define Uy =2z,z;2; 'z and b, = z}, elements of K.
[2, Lemma 1.2] gives the following conditions for all i (where N;(x) = x0;(x)
by definition).
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(1) u;=1and u;' = uy; for all i;

(@) 0; () 0(uy ) 0, () = iy for all 4, j, k;

(3) N;W(uy)) = 1 for all , j;

@) 0;(0)b; ! = Nyu;;) for all i, j.

Conversely, these conditions for given elements of a Galois field extension
K of F with abelian Galois group G, define a simple F-algebra R of dimension
G ? and center F.

THEOREM 1. Notation as above, R has an involution iff, modifying the
u;; and b; suitably, we can satisfy (1)—(4) above, as well as the following extra
conditions, where T € G is arbitrarily chosen:

(5) 7(u)ooi(w;) = 1 for all i, j,

6) 7(b;) = b, for all i.

Proof. (=) Using the proof of [3, Propositions 5.4 and 5.5], one sees
easily that R has an involution iff R has some involution (*) whose restriction to
K is 7. For all elements k in K, z;k = 0,(k)z;, taking (*) on both sides, and
substituting, shows z# € z,K, so we can replace z; by z; + z¥, (5) and (6) follow
easily.

(¢) Define (x) by (Ekaz‘fl e zzq)* = Ez:q z‘;l'r(ka), k, in K, using
(5) and (6) to prove () is an involution. Q.E.D.

Write U for {uijll <i,j<q} and B for {b;|1 <i<3}. We restrict our-
seves to the case ¢ = 3, i.e. K is a given Galois extension of F with Galois group
Z,®Z, ®Z,. Thus, we can write K = F(§,, &,, &;) with Eiz €F oy%) =
—§;,and oi(éj) =§ forj #i. Also take 7 = 0,0,0;.

THEOREM 2. Given B, we can find U satisfying (1)—(6) above iff there are
elements v, ,v,, vy in K satisfying

Q) vy =1,

B) N =1,
as well as the following conditions for every permutation © of (1,2, 3):

(4)' oﬂl(bn2)b;2l = (N1r2(v7r3))sgn;

(5)' bnl eF(‘é=':1'(2‘{=:1r3)'

ProOF. Straightforward computations, defining v, = u,; = u;2l s Uy =
Uy, = uys,v3=u,, =u;},and Uy, =uy, =uz;=1 QED.

The proof of Theorem 2 also shows (1)—(5) imply (6).

THEOREM 3. Given v, v,, vy satisfying (2), (3)', there exists B satisfying
@' and (5)' such that, for every permutation m,

b‘l'{l = F(Enzsﬂa) n F(£1r2)N1rl(K) n F(s"3)N"1(K)'

PRoOOF. Define u;; as in Theorem 2, so that (1), (2), and (3) are satisfied.
By [2, equation (14)], which should read a, 0;(a; 1) etc., we obtain the elements
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a;, which we rename b,, satisfying (4). We readily get (2)'—(5)'. By Hilbert’s
theorem 90, we have y; such that v; = o,(y)¥7"'; b,N,(y5) is fixed under o,
s0 b,N,(y;) € F(£,) and b, € F(§,)N,(y3"). Likewise b,N,(y5 ') € F(£3)
etc. Q.E.D.

Suppose now we are given b € K satisfying

(7) b € F(5,55) N F(E)N,(K) N FEN, K).
Then, taking b = a,N,(w) = azN,(W"), put v, = w™lo,(W), v; = W) ta,W')
and v, = (v2v3)“1. Theorems 3 and 2 then apply, giving B and U; b € Fb, so
we replace b, by b. Form the corresponding abelian crossed product R. The
generic abelian crossed product R’ (cf. [2]) is a division ring with involution, by
Theorem 1. If R’ is a tensor product of quaternion subalgebras, then R’ has some
set of square-central elements 7, . . . , ¥y,, independent over Cent(R") with
rr=% rir; foralli, j. An argument based on taking leading monomials (cf. [2,
Lemma 2.1]) then shows there is such a set of elements of R, each having the
form k,.zillz'zzz?, with k; € K. In particular, one of these elements must be of
the form kz,, implying some o = (kzl)2 = bN,(k), so b € FN,(K). Thus, to
answer Question 1 negatively, we need to find F, K = F(§,, &,, &3),and b €K,
such that (7) holds and b €FN,(K). (The counterexample will be R")

Take F = Q(N), the field of rational functions in one indeterminate A and
¢ such that §2 = =1, 82 = = (A% + 1), and £2 = \, with b = £,&,. Then (7)
holds. If b €FN(K) then N(A2 + 1) EN TFEDIVIVEEE)DIF) N NEF (5,83)/F)),
where N( ) denotes the norm of a field extension. (This step is not easy.) This
is impossible, seen by taking polynomials modulo 2.

Similarly, Question 2 has a counterexample iff there is a field extension
K =F(,, &) of F and some b € FN,(K), with b E&Fk? for all k in F(&,).
Take F = Q(A), £2 =2, £2 =, and b = A — 1 +2§,.

REFERENCES

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ. no. 24, Amer.
Math. Soc., Providence, R.IL., 1961.

2. S. A. Amitsur and D. Saltman, Generic abelian crossed products, J. Algebra 51
(1978), 76—87.

3. L. Rowen, Central simple algebras, Israel J. Math. 29 (1978), 285—-301.

4. J. Tignol, Sur les classes de similitude de corps a involution de degré 8, C. R.
Acad. Sci. Paris, Sér A 286 (1978), 875—876.

s. , Décomposition et descente de produits tensoriels d algebres de quater-
nions, Rap. Sém. Math. Puré UCL 76 (1978).

DEPARTMENT OF MATHEMATICS, HEBREW UNIVERSITY OF JERUSALEM,
JERUSALEM, ISRAEL

DEPARTMENT OF MATHEMATICS, BAR ILAN UNIVERSITY, RAMAT GAN,
ISRAEL

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF LOUVAIN,
LOUVAIN-LA-NEUVE, BELGIUM



