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DIVISION ALGEBRAS OF DEGREE 4 AND 8 WITH INVOLUTION 
BY S. A. AMITSUR, L. H. ROWEN*, AND J. P. TIGNOL2 

ABSTRACT. Examples are given of division algebras with involution (*) of the 

first kind, one of degree 8 which is not a tensor product of quaternion subalgebras, 

the other of degree 4 which is not a tensor product of (*)-invariant quaternion sub­

algebras. 

Suppose D is a division algebra with center F, and [D: F] < <». Then [D: F] 
= n2 for suitable n\ n is the degree of D, and D is a quaternion F-algebra when 
deg(D) = 2. We further assume D has characteristic ^ 2, and has an involution (*) 
of the first kind, i.e. (*) is an anti-automorphism of degree 2 which fixes F. This 
situation is treated in depth in [1, Chapter 10], and it arises if and only if D has 
exponent 2 in the Brauer group, i.e. D ®Dop ^M 2(^0> the algebra of n2 x n2 

matrices over F. Thus, in this case, the degree of D is a power of 2. Until now, the 
only known such algebras were tensor products of quaternion F-subalgebras. 

QUESTION 1. Is D necessarily a tensor product of quaternion F-subalgebras? 
QUESTION 2. Is D necessarily a tensor product of (*)-invariant quaternion 

F-subalgebras? 
Question 1 dates back about 60 years; Albert [1] showed it is true when 

deg(D) < 4. The main object of this paper is to give a counterexample for 
degree 8. Also, we shall give a counterexample to Question 2 for degree 4, which 
is clearly sharp. (Incidentally, for symplectic involutions, question 2 has no 
counterexample of degree 4, cf. [3, Theorem B].) Our counterexample makes 
the following result of Tignol [4] sharp: If deg(D) = 8 then M2(D) is a tensor 
product of quaternion subalgebras. A more detailed description of our methods 
will appear in the Israel Journal of Mathematics. 

The main idea is to use the generic abelian crossed products of [2], modi­
fied slightly to account for the presence of an involution. Suppose R is an 
abelian crossed product, i.e. D has a maximal subfield K Galois over F, having 
Galois group G — (ox) © • • • © <a >, a direct sum of cyclic groups, and for our 
purposes we assume that ot has order 2. Then, choosing zi such that ot(x) = 
ZjXzf1 for all x in K, we define utj - ztz.zjlzjl and bi = zf9 elements ot K. 
[2, Lemma 1.2] gives the following conditions for all / (where Nt(x) = xot(x) 
by definition). 
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(1) uu = 1 and utj
 l = «.,. for ail /; 

(2) °i(ujk)aj(uki)°k(uij) = unujkuki f o r a11 i h k"> 
(3) NWfajj) = 1 for ail i, y, 

(4) aj(bi)bf1=Nfiiii)ioiàat,f. 
Conversely, these conditions for given elements of a Galois field extension 

K of F with abelian Galois group G, define a simple F-algebra R of dimension 
G 2 and center F. 

THEOREM 1. Notation as above, R has an involution iff, modifying the 

Uy and bi suitably, we can satisfy ( l)-(4) above, as well as the following extra 

conditions, where r E G is arbitrarily chosen: 

(5) Tfu^OjOjiUy) = 1 for all i, j , 

(6) T@,) = i , for all I 

Proof. (=>) Using the proof of [3, Propositions 5.4 and 5.5], one sees 
easily that R has an involution iff R has some involution (*) whose restriction to 
K is r. For all elements k in K, z(k = ot(k)zv taking (*) on both sides, and 
substituting, shows zf G ztK, so we can replace zi by zt ± zf, (5) and (6) follow 
easily. 

(«=) Define (*) by ( S ^ 1 • • • zj*)* = SzJ* • • • z"1^), ka in K, using 
(5) and (6) to prove (*) is an involution. Q.E.D. 

Write U for {utj\ Ki,f<q} and B for {bt\ 1 < i < 3} . We restrict our-
seves to the case q = 3, i.e. A is a given Galois extension of F with Galois group 
Z2 © Z2 0 Z2 . Thus, we can write K = F(%X,%29 £3) with £? G F, a ^ ) = 
— iff, and (̂ .(Ç.) = £;. for ƒ =£ i. Also take r = o1o2o3. 

THEOREM 2. Given B, we can find U satisfying ( l )-(6) above iff there are 

elements vt,v2,v3 in K satisfying 

(2)' vxv2v3 = 1, 

(3)' tf,(u,)=l, 
as well as the following conditions for every permutation TÏ of (1 ,2 , 3): 

(4)' a^ib^b-i =(N„2(vn3)fS"; 

(5) ' bnleFQn2^3). 

PROOF. Straightforward computations, defining vx = u23 = u32 , v2 = 

u31 = uj3, v3 = u12 = u2l, and ulx = u22 = u33 = 1. Q.E.D. 

The proof of Theorem 2 also shows ( l )-(5) imply (6). 

THEOREM 3. Given vl,v2> v3 satisfying (2)', (3)', there exists B satisfying 

(4)' and (5)' such that, for every permutation irs 

PROOF. Define ut, as in Theorem 2, so that (1), (2), and (3) are satisfied. 

By [2, equation (14)], which should read akoi(a^1) etc., we obtain the elements 
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ap which we rename bv satisfying (4). We readily get (2) '-(5)\ By Hubert's 
theorem 90, we have y. such that vi = o^y^yf1; bxNx{y^) is fixed under a3, 
so b.N^yJ G F($2) and ^ G F f t ^ O ^ 1 ) . Likewise bxNx(y2

l) G F(*3) 
etc. Q.E.D. 

Suppose now we are given b GK satisfying 

(7) b G F(£2S3) O Fa2)Nx(K) n F^N^K). 

Then, taking 2? = Ö^A/^VV) = Û^TV^W'), put u2 = w _ 1 a 2 (w) , u3 = (w f)~1a3(w') 
and vx = ( t ^ * ^ ) - 1 . Theorems 3 and 2 then apply, giving B and {/; & G Fbv so 
we replace £j by Z>. Form the corresponding abelian crossed product R. The 
generic abelian crossed product R' (cf. [2]) is a division ring with involution, by 
Theorem 1. If R' is a tensor product of quaternion subalgebras, then Rf has some 
set of square-central elements r'v . . . , r'64, independent over Cent(R') with 
r'.r'j — ± rVj for all i, ƒ. An argument based on taking leading monomials (cf. [2, 
Lemma 2.1]) then shows there is such a set of elements of JR, each having the 
form A:I.z1

1z2
2z3

3, with ki G K. In particular, one of these elements must be of 
the form kzx, implying some a. = (kzx)

2 = bNx(k), so b G FNX(K). Thus, to 
answer Question 1 negatively, we need to find F, K = F ( | j , £2, £3), and b E.K, 

such that (7) holds and b éFNx(K). (The counterexample will be R\) 

Take F = Q(X), the field of rational functions in one indeterminate X and 
% such that %\ = - 1 , %l = - (X2 + 1), and | f = X, with Z> = g2$3. Then (7) 
holds. If i <ÉFÀr(£) then X(X2 + 1) G ̂ ( F ^ X A ^ F ^ y / F ) n N(F(£2ï3)/F))t 

where iV( ) denotes the norm of a field extension. (This step is not easy.) This 
is impossible, seen by taking polynomials modulo 2. 

Similarly, Question 2 has a counterexample iff there is a field extension 
K = F(£v %2) of F and some b G FNt(K), with i <£Ffc2 for all * in F(£2). 
Take F = Q(X), %\ = 2, %\ = X, and ft = X - 1 + 2£2 . 
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