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1. We shall focus on recent progress concerning one fundamental problem 
in Banach space theory. In so doing, we will be neglecting a vast amount of 
remarkable current research. In particular, we will be neglecting strong recent 
work on the structure of uniformly convex spaces, the location of nice 
finite-dimensional subspaces in general spaces, and injectivity. Before passing 
to our main considerations, we would just like to indicate the nature of the 
advances in these three other directions. 

The work on uniformly convex Banach spaces is due to G. Pisier [46] based 
on earlier work of R. C. James [30] and P. Enflo [15]. It makes essential use of 
martingale theory to get powerful norm estimates on general uniformly 
convex spaces. Pisier showed that every uniformly convex space admits an 
equivalent norm such that all its two-dimensional spaces are "power-type" 
smooth and convex. Enflo had previously obtained the uniform smoothness 
and convexity without the power-type estimates, while James showed that 
nonreflexive Banach spaces always have two-dimensional spaces whose unit 
balls are almost square, i.e. as far from being uniformly convex or smooth as 
is possible. Precisely, we have the 

THEOREM. If a Banach space B is uniformly convex, then it admits an 
equivalent norm || • || so that there are 8,p and q with 8 > 0 and 1 < q < 2 < 
p < oo such that for all x and y in B, 
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and 

ixr^- i /r>" + J , r ; M " J "' . 
On the other hand, if B has no equivalent uniformly convex norm, then for any 
equivalent norm || • || on B and S with 0 < 8 < 1, there exist norm one elements 
x and y satisfying 

The work on nicely placed finite-dimensional subspaces is due to J. L. 
Krivine [35] (see also [55] for an alternate exposition). This work provides a 
kind of substitute for the conjecture that every infinite dimensional Banach 
space B contains a subspace isomorphic to c0 or lp for some 1 < p < oo. 
(For counter-examples to the conjecture, see [61] and [18].) It appears to be 
an outgrowth of Krivine's earlier joint work with D. Dacunha-Castelle [10] on 
whether the conjecture is valid for B a subspace of L1, a problem which 
remains unsolved. (L1 denotes Ll([0, 1]), the space of equivalence classes of 
Lebesgue integrable functions on the unit interval; c0 the space of sequences 
of scalars vanishing at infinity; lp the space of sequences (.*,) with 2J l i \xj\p 

< oo ; "isomorphic" means "linearly homeomorphie".) Krivine's proof uses 
intuitions from probability theory. The techniques are analytical and 
combinatorial, not geometrical, and yield a new proof of the famous theorem 
of Dvoretzky that I2 is finitely represented in every Banach space [13]. 
(Tzafriri [62] gave an earlier nongeometrical proof that some isomorph of I2 is 
finitely represented in every Banach space.) Let 1 < p < oo and (xj) a 
sequence of elements in some Banach space. Say that lp or c0 is block finitely 
represented in (xj) if there exist arbitrarily long finite strings of successive 
linear combinations of the JC/S whose linear combinations are arbitrarily close 
in norm to the lp or c0 norm. Precisely, if for every e > 0 there are n finite 
subsets Fx,..., Fn of the positive integers N with max Ft < min Fi+l for all 
1 < i < n - 1 and elements bx,..., bn with bt in the linear span of {xy. 

j E Fê) for all i so that for all scalars c{,..., cn9 

(1 - e)(S kr) , /'<|2 Cb\< O + e)(2 M)'* 
(where (2 \ct\

p)l^p = sup \c;\ in the c0 or "p = oo" case). Now Krivine's 
theorem may be stated as follows: Let (xj) be a sequence in a Banach space 
with infinite-dimensional linear span. Then either lp is block finitely represented 
in (xj) for some 1 < p < oo or c0 is block finitely represented in some 
permutation of(xj). 

The discovery concerning injectivity is due to M. Zippin [64]. A Banach 
space B is said to be injective if the space of scalars can be replaced by B in 
the qualitative version of the Hahn Banach theorem; precisely, if for every 
Banach space Z, closed linear subspace Y, and bounded linear operator T: 
Y -» B9 there exists a bounded linear operator f: Z -» B extending T. B is 
said to be separably injective if B is infinite-dimensional separable and the 
above extension property holds for all separable spaces Z. Ail early result of 
Sobczyk [57] established that c0 is separably injective (for a short proof, see 
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[63]). It's trivial that then any space isomorphic to c0 is separably injective. 
Zippin has proved the converse: Every separable injective Banach space is 
isomorphic to c0. The proof makes essential use of several discoveries in 
Banach space theory over the last 15 years. In particular, work of Amir [2], 
Pçltzynski [44], Szlenk [60], Rosenthal [50] (see also [53]), Lindenstrauss 
(unpublished), Johnson and Zippin [33], and Alspach [1] is basic to the 
demonstration. Zippin's essential new ingredient is a remarkable appro­
ximation lemma concerning arbitrary Banach spaces B with separable dual. 
The lemma shows that such a space B may be embedded in C([0, 1]) in such 
a way that its elements may be closely approximated by functions in a 
subspace isometric to C(K) for some compact countable K c [0, 1], (C(K) 
denotes the space of continuous scalar valued functions on K under the 
supremum norm). The techniques of his proof are functional-analytic and 
topological (in the point-set sense). For simplifications and some extensions, 
see [5]. No infinite-dimensional separable space is injective; in fact every such 
space contains a subspace isomorphic to I00 (the space of all bounded 
sequences of scalars) [48]. The problem of classifying injective spaces up to 
isomorphism remains open: see [38] and [49] for a discussion of the known 
results.* 

For the remainder, we shall deal with the following fundamental question, 
hereafter referred to as the Problem: 

Does every infinite dimensional Banach space B contain a subspace which is 
isomorphic to CQ, isomorphic to I \ or reflexive and infinite dimensional^ 

The main progress so far effectively eliminates the /'-case. The two most 
powerful results are as follows: 

THEOREM 1. Let (bj) be a bounded sequence in some Banach space. Then 
either (bj) has a weak Cauchy subsequence or (bj) has a subsequence (bj) so that 
there is a 8 > 0 with ||2"_i Cjbj\\ > 8 2"»! \cj\ for every n and scalars 
c , , . . . , cn. 

THEOREM 2. Let B be a separable Banach space which contains no subspace 
isomorphic to ll. Then every bounded subset of B** is weak*-sequentially dense 
in its weak* closure. 

A sequence (bj) in a Banach space B is said to be a weak-Cauchy sequence 
if the scalar sequence (b*(bj)) converges for every b* E B*, the dual of B. A 
sequence (bj) satisfies the second alternative of Theorem 1 if and only if it is 
equivalent to the usual Z1 basis, that is, if for any sequence of scalars (cj), 
2 Cjb'j converges if and only if 2 \cj\ < oo. Since the usual /'-basis is not a 
weak-Cauchy sequence, the two alternatives of Theorem 1 are mutually 
exclusive. 

Theorem 1 was proved by the author for the case of real scalars in [51]. 
Later, L. Dor obtained a proof for the complex scalars in [11], which also 
streamlined some of the arguments in [51]. We present a self-contained and 
hopefully motivated proof for Theorem 1 in §2; the argument is real-variable 
and combinatorial, requiring only elementary ideas. Theorem 2 is a 

•ADDED IN PROOF. For some recent fundamental progress, see R. Haydon, On dual Lx-spaces 
and injective bidual Banach spaces (to appear). 
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consequence of Theorem 1 and work of J. Bourgain, D. H. Fremlin and M. 
Talagrand [7] based on earlier work of the author's concerning point-wise 
compact subsets of the first Baire class [54]. The techniques here are point-set 
topological and combinatorial. The base of the arguments is a beautiful 
characterization theorem published by R. Baire in 1899. We present the 
relevant ideas in §3. (For a Banach space X, the weak*-topology on X* refers 
to the X-topology on X* in the natural pairing, while the weak-topology on X 
refers to the A"*-topology on X. A subset A of a topological space Y is said to 
be sequentially dense in its closure if for every point y in the closure of A 
there exists a sequence av a2>... of elements of A with an -> y as n -» oo.) 
For the remainder of the present section, we deduce some consequences of 
these two theorems, present other characterizations of Banach spaces 
containing /', and give some comments concerning the Problem. (For an 
application of Theorem 1 to Banach spaces and probability theory, see [8]. 
An extension of the result to "trees" of elements in Banach spaces is derived 
in [59].) 

It is easily seen that if an infinite-dimensional B has a separable dual B*, 
then every bounded sequence in B has a weak-Cauchy subsequence. A 
natural conjecture is that a separable B contains a subspace isomorphic to /l 

if B* is nonseparablc. This conjecture was disproved independently by R. C. 
James [31] and J. Lindenstrauss [37] (see also [22] for another counter­
example). Nevertheless, there is a form of the conjecture, due to E. Odell and 
the author [42] which is valid: if B* is so nonseparable that the cardinality of 
j£** is larger than that of B, then B does contain an isomorph of l\ (The 
latter result follows easily from Theorem 2 as do most of the characterizations 
of spaces containing ll which we present.) An important open question 
related to the Problem is whether a separable B contains a subspace 
isomorphic to / l if Y* is nonseparablc for every infinite-dimensional subspace 
Y of B. The following result of [32] may be of some use in isolating out the 
reflexive case in the Problem: If B** is separable and B is infinite 
dimensional, then B contains an infinite-dimensional reflexive subspace. 

It is a result of R. C. James [29] that the answer to the Problem is 
affirmative if B has an unconditional basis. It is in fact an open question 
(which the author believes to be more difficult than the Problem) if every 
Banach space has a subspace with an unconditional basis. Theorem 1 reduces 
the latter problem to the case of spaces containing a nontrivial weakly null 
sequence (i.e. a sequence converging weakly but not in norm, to zero). 
Indeed, if B contains no isomorph of l\ let (bn) be a bounded sequence in B 
with ||bn - bm\\ > 1 for n ^ m. If (b'n) is a weak-Cauchy subsequence, 
(*2« — *2«+i) is a nontrivial weakly null sequence. It is proved in [56] that a 
nontrivial weakly null sequence has a subsequence with certain unconditional 
properties. However joint work of B. Maurey and the author [39] exhibits a 
nontrivial weakly null sequence with no unconditional subsequence (the 
question of whether such sequences exist was raised some time ago by C. 
Bessaga and A. Pçfczynski [6]). 

We pass now to some evident consequences of the Theorems. It is an 
immediate consequence of Theorem 1 that a Banach space contains an 
isomorph of ll if and only if it contains a bounded sequence with no 
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weak-Cauchy subsequence. (This characterization was obtained by the author 
for both real and complex Banach spaces in [51], prior to the work in [11].) 
We then easily obtain the following consequence: 

COROLLARY 1. Let B be a weakly sequentially complete Banach space. Then 
either B is reflexive or B contains a subspace isomorphic to ll. 

PROOF. Suppose that B contains no isomorph of ll and let (bj) be a 
sequence of elements in the unit ball of B; i.e. \\bj\\ < 1 for ally. Then (bj) has 
a weak-Cauchy subsequence (bj). Since B is weakly sequentially complete, 
(bj) converges weakly to some element in B. Thus the unit ball of B is weakly 
sequentially compact, so by a standard result, B is reflexive. 

Any closed linear subspace of a weakly sequentially complete Banach 
space is also weakly sequentially complete. Now L1 is a weakly sequentially 
complete Banach space (a rather nontrivial classical result). Thus if B is a 
closed linear subspace of L\ B satisfies the conclusion of the Corollary. This 
result is due to M. I. Kadec and A. Pçltzynski [34]. Their elegant proof uses 
very natural special properties of L1, but gives no hint that the Corollary 
holds in its general setting. 

For the next result, we recall that a Banach space B is said to have the 
Dunford-Pcttis property if for every pair of weakly null sequences (bj) and 
(bf) in B and B* respectively, bf(bj) -» 0 as 7 -» 00. It can be seen that if B 
has the D-P property and (bj) and (bf) are sequences in B and B* respec­
tively, then bf(bj) -> 0 as j - • 00 provided one of the two sequences is weakly 
null and the other is weak-Cauchy. Perhaps the most important spaces with 
the D-P property are L1 and C([0, 1]) (c f. [12]). 

COROLLARY 2. Suppose there exists a subspace Y of B* with the D-P property 
so that Y contains a nontrivial weakly null sequence. Then B contains a 
subspace isomorphic to ll. 

PROOF. Choose a weakly null sequence (yj) of norm-one elements of Y. 
Choose a sequence (bj) of norm-one elements of B with yj(bj) > \ for ally. In 
view of Theorem 1, we merely need show that (bj) has no weak-Cauchy 
subsequence. Suppose to the contrary that (b ) were a weak-Cauchy 
subsequence. Then definingy*(y) =•= y(bn) for ally and>> G F, (y*) would be 
a weak-Cauchy sequence in Y*. Then oy our observations concerning the 
D-P property, y*(ynj) -> 0 as y -» 00, yet y*(y„j) > { for ally, a contradiction. 

This Corollary is due to H. Fakhoury [16]. Since L1 has the D-P property 
yet contains a nontrivial weakly null sequence, Corollary 2 implies the result 
of A. Pçfczynski [43] and J. Hagler [20]: if B* contains an isomorph of L\ B 
contains an isomorph of Z1. Pçltzynski showed in [43] that the converse of this 
statement is true, using the fact that every separable Banach space is a 
continuous linear image of / ! together with some reasoning involving injec-
tivity. These considerations incidentally suggest the following question: Is 
there a Banach space Y so that Y 

(i) has the D-P property 
(ii) contains a nontrivial weakly null sequence 
(iii) is weakly sequentially complete 
(iv) contains no subspace isomorphic to L1? 
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We pass now to a summary of most of the known characterizations of 
Banach spaces containing /*, with some comments concerning certain 
nonseparable generalizations. (C denotes C([0, 1]); for a set T, /!(r) (resp. 
/°°(r)) denotes the space of all scalar valued ƒ on T with 2 r e r |/(y)| < oo 
(resp. supyer |/(y)| < oo).) 

THEOREM 3. Let B be a separable Banach space. The following are equiva­
lent: 

1. B contains no subspace isomorphic to ll. 
2. B is weak*-sequentially dense in B**. 
3. The cardinality ofB** equals the cardinality of B. 
4. Every bounded sequence in B has a weak-Cauchy subsequence. 
5. Every bounded sequence in B** has a weak*-convergent subsequence. 
6. Every bounded subset of B is weakly sequentially dense in its weak closure. 
I. Every bounded subset of B** is weak*-sequentially dense in its weak* 

closure. 
8. Every bounded weak*-closed convex subset of B* is the norm-closed 

convex hull of the set of its extreme points. 
9. If Y is a subspace of B* with the Dunford-Pettis property then every 

weakly-compact subset of Y is norm-compact. 
10. B* contains no subspace isomorphic to Ll. 
II. B* contains no subspace isomorphic to l\T)for any uncountable set T. 
12. C is not a continuous linear image of B. 

Characterizations 4 and 5 are due to the author ([51] and [54]; see also [52] 
for a more direct proof of 1 => 5); 2, 3 and 8 are due jointly to E. Odell and 
the author [42], 6 and 7 follow from [54] and the work of J. Bourgain, D. H. 
Fremlin and M. Talagrand [7], 9 (which is equivalent to Corollary 2 above) is 
due to H. Fakhoury [16], and 10-12 are due to A. Pçltzyiiski [43] and J. 
Hagler [20]. The characterizations 4, 8, 9 and 10 do not require the separa­
bility of 5, nor does the following statement, also equivalent to 1 ([43] and 
[20]): B* contains no subspace isomorphic to (C[0, 1])*. The equivalence of 1 
and 8 for general Banach spaces is due to R. Haydon [25]. Of course this 
equivalence is related to the result of Huff and Morris [28] based on a 
construction of Stegall [58]: For B separable, B* is separable if and only if 
every norm-closed bounded convex subset of B* is the norm-closed convex 
hull of its extreme points. We do not know if 1 =» 6 for general Banach 
spaces. The remaining characterizations are all false for general Banach 
spaces, as may be seen by considering B « CçfiT) for T a set of cardinality the 
continuum, for 2, 3, 5, 7, and 11. (c0(T) denotes the closure in /°°(r) of all 
functions vanishing off a finite set.) Of course 1 => 12 holds in general, but 
12 # 1 for e.g. 5 » l°°. 

Here is a sketch of the proof of these equivalences modulo Theorem 2. It is 
easily seen that 7 implies all the remaining assertions with the exception of 8. 
Indeed, 7 =» 6 is trivial, since the weak topology on B is the same as the 
relative weak*-topology on B regarded as a subset of B**. To see that 7 =» 5, 
let (ƒ*) b* a bounded sequence in B**. 

By the weak*-compactness of bounded weak*-closed subsets of B**9 there 
exists a point ƒ in B** which is a weak*-cluster point of the sequence (ƒ„). If 
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infinitely many/,'s equal/, we are done. Otherwise, ƒ is in the weak*-closure 
of A = {ƒ„ f 2 , . . . }; hence there is a sequence of elements of A which 
converges weak* to / ; i.e. there are n{ < n2 < . . . with f -> ƒ weak*. 5 =>4 
follows trivially, by the same reasoning as 7 => 6. 7 => 2 in view of Goldstine's 
theorem. That is, if A = {b E B: \\b\\ < 1}, A is weak*-dense in the unit ball 
of B** (where B is regarded as a subset of 2?**), so ^ is sequentially dense in 
the unit ball of B** which implies 2. 2 =» 3 by a simple cardinality argument. 
Indeed, assuming B is not the zero space, B has cardinality c, the continuum. 
Now let D be a countable norm-dense subset of B*. Then it is easily seen that 
D is also sequentially dense in /?**, whence the cardinality of B** is at most 
the cardinality of the set of all sequences of elements of D, which of course 
has cardinality c. 4=» 1 since any sequence equivalent to the usual /'-basis 
has no weak-Cauchy subsequence. 2=»8 follows from the Hahn-Banach 
theorem and results of Choquet on resultants [9] (see also §3 and 12 of [45]). 
Suppose A is a weak* compact convex subset of B*; let E be the set of 
extreme points of A and suppose there is an element a E A which is not in 
the norm-closed convex hull of E. By the Hahn-Banach theorem there exists 
an ƒ E B** with f (a) > supeGEf(e). By the results of Choquet, there exists a 
probability measure /x on the Borel subsets of A with ix(A ~ E) = 0 and 
S(a) x f g dp for each affine function g on A of the first Baire class. But ƒ is 
of the first Baire class on A by 2. Indeed, ƒ is the weak* limit of some 
sequence (bn) in B, and the bn

9s may be regarded as continuous functions on 
A. Hence f (a) = fE ƒ dp < supeG£ f(e% a contradiction. 4=>9 follows 
immediately from Corollary 2. 9=> 10 follows from the fact that L1 has the 
D-P property (see e.g. [12]), while 10 => 12 follows from the fact that L1 is 
isometric to a subspace of C*. Finally, to see that 7 => 11, suppose there were 
an uncountable set T with / !(r) isomorphic to a subspace of B*. It follows by 
the Hahn-Banach theorem that there exists a weak* compact set K c 5** 
and a weak* continuous surjective map <f>: K -> S, where S denotes the unit 
ball of (/!(r))* in its weak* topology. Now S contains a set A which is not 
weak*-sequentially dense in its closure. Indeed, (/^T))* may be identified 
with /°°(r). Letting A denote the unit ball of c0(T), then A is weak* dense in 
the unit ball of /°°(r) but every element in the weak*-sequential closure of A 
vanishes off some countable subset of T. It follows that <f>~\A) is not 
sequentially dense in its weak*-closure, contradicting 7. Thus 7 implies all the 
other assertions. 

The fact that 1 => 7 is the main point of Theorem 2, to be discussed in §3. 
Assuming this fact, it is enough to show that all the assertions 2-12 are false if 
B is separable and contains a subspace isomorphic to Z1. It is really quite 
simple to see this directly, except for the case of 12 and possibly 10. It is 
enough to show that 3, 6, 8, 10, 11 and 12 are false, from what has already 
been shown. Any separable Banach space is isometric to a quotient space / \ 
hence so is C. It follows that C* is isometric to a subspace of (I1)* = /°°. 
Now /!([0, 1]) is isometric to a subspace of C*, namely the space of all atomic 
finite signed Borel measures on [0, 1] (where C* is identified with the space of 
all finite signed Borel measures). Hence /°°([0, 1]) is a continuous linear image 
of (Z1)**. Then 2e * card/°°([0, 1]) < card (/*)** < card£**, establishing 
the failure of 3. Any infinite-dimensional Banach space Y has the property 
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that 0 is in the weak closure of S = {y 6 Y: \\y\\ = 1}. Now if Y is 
isomorphic to l\ then any sequence in Y which converges weakly to zero 
converges in norm (this result may be found in Banach's book [4]). Hence 0 is 
not in the weak-sequential closure of S9 so 6 fails to hold. To see that 8 fails 
to hold, note that if a space B satisfies 8, then any Banach space isomorphic 
to a quotient of a subspace of B also satisfies 8. But as observed already, 
assuming / ! embeds in B, then C is isomorphic to a quotient of a subspace of 
B. The atomic finite signed measures on [0, 1] of norm at most one constitute 
a norm-closed subset of (C*) which contains all the extreme points of the unit 
ball of C*, hence C fails 8. Since the failure of 12 implies the failure of both 
10 and 11, we finally pass to 12 => 1 (which is due to Pçltzynski [43]). Let X 
be an injective Banach space with C C X. (For example, X = C** will do.) 
Supposing B D Y isomorphic to l\ let T: Y -* C a bounded linear surjection. 
By iniectivitv there exists a bounded linear f: B~*X extending T. Then 
W = f (B) is separable and W D C. By a result of Pçfczynski [44], there 
exists a subspace Z of C with Z isomorphic to C and a bounded linear 
projection P from W onto Z. The operator Pf is then a surjective map from 
B onto an isomorph of C, establishing 12 =» 1. 

We conclude this section with some remarks concerning possible 
nonseparablc extensions. Since every sequence in tl which tends to zero 
weakly tends to zero in norm, if ll embeds in a Banach space B then B** 
contains a subspace in which every sequence tending to zero weak* tends to 
zero in norm. This motivates the following question: 

Let AT be a Banach space so that X* has an infinite-dimensional closed 
linear subspace in which every sequence which tends to zero weak* tends to 
zero in norm. Does X have a subspace isomorphic to l\T) for some uncount­
able set T? 

J. Hagler and W. B. Johnson show in [23] that under these hypotheses, X 
has a subspace isomorphic to /!. Their proof is related to a construction of A. 
Nissenzweig [41]. (Of course Theorem 3 shows that the answer is affirmative 
if X is isomorphic to y* for some separable Y,) Suppose we just assume the 
weaker hypothesis 

X* has a bounded sequence with no weak* convergent subsequence. (*) 

Then if c0 is not isomorphic to a quotient space of X, the results of [32] and 
[51] again imply that the stronger hypotheses of the question hold, hence lx 

embeds in X. On the other hand, J. Hagler and E. Odell [24] have constructed 
a space X containing no isomorph of / ! yet satisfying (*). In earlier work, R. 
Haydon [25] constructed a compact Hausdorff space S so that X = C(S) 
satisfies (*) yet contains no isomorph of ll(T) for any uncountable set T. If X 
satisfies (»), then Johnson and Hagler also show in [23] that X has a separable 
subspace with a nonseparable dual. 

There seems to be no known criterion similar to the failure of 4, for 
characterizing Banach spaces containing an isomorph of ll(T) for some 
uncountable T. Both Hagler [21] and Haydon [26] have constructed spaces X 
containing no isomorph of ll(T) for any uncountable F, yet containing an 
uncountable set in which there is no weak-Cauchy sequence. Hagler 
generalized the implication 1 *=> 11 in [20] by showing that for general B9 I

l 
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embeds in B provided /!(F) embeds in B* for some set V with dim B < 
card I\ where dim B is the smallest cardinality of a subset of B with dense 
linear span. Haydon obtained a strong nonseparable analogue for the equiva­
lence of 1 and 10 in [26]. He showed that if r is a regular cardinal number so 
that 911" < T whenever 91L < T, then ll(r) embeds in B if and only if 
L,({0, l}r) embeds in B*. Haydon also obtains a kind of generalization of the 
criterion in 3 to nonseparable B in [25]. Let K denote the unit ball of B* in its 
weak*-topology. 3 implies that every element of B** is Baire-1 on K and 
hence Borel measurable on K, assuming B is separable. For general B, a 
function <f> on K is said to be universally measurable provided it is measurable 
with respect to the completion of any regular Borel probability measure on K. 
Haydon's criterion then asserts that /' does not embed in B if and only if 
every element of B** is universally measurable on K. 

2. Sequences of functions with no point-wise convergent subsequence. 
Theorem 1 of § 1 follows immediately from the following result: 

THEOREM 2.1. Let S be a set and (fj) a uniformly bounded sequence of scalar 
valued functions on S with no point-wise convergent subsequence. Then (ff) has 
a subsequence (fj) so that there is a 8 > 0 with supj6S |2J»i cjj(s)\ > 
8 2", i \cj\ for every n and scalars c , , . . . , cn. 

To deduce Theorem 1, let B be a Banach space and let (bj) be a bounded 
sequence in B with no weak-Cauchy subsequence. Let S be the unit ball of 
B* and define fj(s) * s(bj) for all j and s E «S. Then (fj) is uniformly 
bounded with no point-wise convergent subsequence; choosing (fj) and 8 as 
in 2.1 and letting (bj) be the corresponding sequence in B, we have that 

1 i 9*; 
M - 1 1 

>sup 
1 ses 

£ cjÇ(s)\ 

for every n and scalars c„ . . . , cn, thus proving Theorem 1. 
We will discuss 2.1 for the case of real scalars. See [11] for the complex 

scalars case. 
Theorem 2.1 frees us from thinking about general Banach spaces; we just 

consider sequences of functions defined on some set. We can try to make the 
functions as simple as possible, to see what is happening. If the functions are 
1-valued, i.e. constants, then nothing is happening; a bounded sequence of 
constants has a convergent subsequence. However suppose the functions 
ƒ „ / 2 , . . . are two-valued, say {1, — l}-valued. Then a great deal is 
happening and the fundamental idea of the proof of Theorem 2.1 is revealed. 

Let An » [x E S: fn(x) ~ 1} and Bn * {x E S: ƒ„(*) * - 1 } . It is easily 
seen that (ƒ„) converges point-wise if and only if (An) converges, where (An) is 
said to converge provided (Xij) converges pointwise fa denotes the 
characteristic function of the set A). On the other hand, suppose the An'$ are 
Boolean independent, that is, for any disjoint finite subsets F and G of 
indices, nneFA„n n„ea ^n ^ •• (We make the convention that if F is 
empty, DneFAn » S.) Then it is easily seen that the/n's are isometrically 
equivalent to the usual ll -basis in the supremum norm. Indeed, given real 
scalars c„ . . . , cn, let F * {i: c, > 0} and G * {i: c, < 0}. Choose / E 
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2 ^ ( 0 = 2 ^(/)+ 2 cjt(t) 
1*1 i S F l '6(r 

= 2 <*+ 2 -<v = 2 14 
iSF ÎE.G i = l 

Hence sup/e5|2"-i cJM\ = 2 / , ! |cf-|. The 2-valucd case for Theorem 2.1 
thus follows from the following combinatorial result in set theory, discovered 
by the author in [51]: THEOREM. Let (An) be a sequence of sets with no 
convergent subsequence. Then (An) has a Boolean independent subsequence. 

We note in passing that the so-called Rademachcr sequence fn(x) « 
sign sin 2"irx is perhaps the generic example of a sequence equivalent in the 
supremum norm to the usual /'-basis. In this case the Boolean independence 
of the corresponding An's is a consequence of their statistical independence. 

We require a slight generalization of the above Theorem, in order to derive 
our combinatorial proof of Theorem 2.1. It is also convenient to introduce the 
following terminology: By a sequence we shall mean a set of objects indexed 
by some infinite subset M of the positive integers N. We shall understand by 
"a subset of M" an infinite subset of M, unless the contrary is explicitly stated. 
Given L and M subsets of N, say that L is almost contained in M (notation: 
L ca M) if L n ~ M is a finite set, ("~ M" denotes the complement of the 
set Af). Given a sequence (fn)neM and L and Q subsets of M with L caQ, 
we call (fn)„eL a subsequence of (fn)nŒQ. We now need to generalize the 
notions of convergence and independence of sequences of sets to sequences 
of pairs of sets. 

DEFINITION. Let (An, Bn)n€EM be a sequence of pairs of subsets of the set S 
with An n Bn * 0 for all n and let X be a subset of S. We say that 
(An, Bn)neM converges if every point s E S belongs to at most finitely many 
An

9s or finitely many Bn
9s. We say that (An9 Bn)neM converges on X if 

(An n X, Bn n X)nŒM converges. We say that (An, Bn)nEM is independent if 
for every pair of disjoint finite subsets F and G of M, 

n An n n Bn * o. 
Note that in the special case Bn = S ~ An for all n9 (An, BH) converges on 

X if and only if XA„ converges point-wise on X. The generalization of the 
above Theorem now goes as follows: 

THEOREM 2.2. Let (An, Bn)nEN be a sequence of pairs of subsets of S witn 
An n Bn * 0 for all n, and suppose (An, Bn)n(EN has no convergent 
subsequence. Then (An, Bn)neN has an independent subsequence. 

J. Farahat [17] has derived this result from a combinatorial result of F. 
Galvin and K. Prikry [19] concerning Ramsey subsets of N (based on earlier 
work of C. St. J. A. Nash-Williams [40]; see also [14]). We prefer, however, to 
go over the original ideas of the proof given in [51]. Before doing so, we shall 
deduce 2.1 from 2.2. 

PROPOSITION 2.3. Let (fn) be a sequence of real-valued functions on S and r, 
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8 real numbers with 8 > 0 so that (An, Bn)nSN is independent, where 

An = {sES:fn(s)>r + 8) 

and 

Bn = {sES:fn(s)<r} for all n. 

Then for any n andscalars cl9..., cn9 

sup 2 Cjfj{s) 
y - 1 

> ? 2 14 
7*1 

{Consequently if(fj) *s uniformly bounded it is equivalent in the stpremum norm 
to the usual ll-basis.) 

PROOF. We adopt the convention that the sum of an empty family of 
scalars is 0; i.e. 2 / e * dj = 0. Fix n, let c„ . . . , cn be real scalars, and let 
9 - {/: c, > 0} and 91 - {/: ct < 0}. By the independence of (Aj9 Bj)JeN we 
may choose x E Hj^Aj n OJ^^BJ and y G DJB^AJ n r\Je<$Bj. We 
then have 

2 cjfj{x)> 2 \cj\(r + 9) 

2 c/j(x)= 2 -Cj(-fj(x))> 2 \cj\(-r) 
y e 9 l y e 91 ye9 t 

- 2 c ^ W - 2 cji-fj(y))>2 \cj\i-r) 
yê P ye^ ye6> 

- 2 c/j(y)> 2 |Cy|(r + «). 
ye9t ye9i 

Adding the inequalities (l}-(4), we obtain 

(1) 

(2) 

(3) 

(4) 

2 Cjfj(x)-± cjfj(y)>l± kylk (5) 
y-i y-i w - i / 

Proposition 2.3 follows from (5) and the observation that 

sup 
ses 

2 c/j(s)\ >màx\ 2 c^(x) 
y-i I y-i 

S <y£(>0 
y - i 

z \ y - i y - i / 

We require one more result to obtain Theorem 2.1 from Theorem 2.2. 

LEMMA 2.4. Let (fj)JSN be a point-wise bounded sequence of real-valued 
functions defined on S and having no point-wise convergent subsequence. Then 
there exist an N' c N, and real numbers r and 8 with 8 > 0 so that for all 
M c N', there is ans E S with 

fm(s) > r + 8 for infinitely many m E Mand 

fm(s) < r for infinitely many m G Af. (6) 

file:///cj/i-r
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To deduce Theorem 2.1, let (fj)JeN be as in its statement. Choose N' c N 
and r and 8 with 8 > 0 satisfying (6) of Lemma 2.4 for all M c N'. It follows 
that if An = {s G S: fn(s) > r + 8} and 5„ - {s G S: ƒ„(*) < r} for all 
/i G Af', then (̂ 4n, Bn)n^N> has no convergent subsequence. By 2.2 there exists 
an N" c N' with (4,, Bn)nGN» independent. Hence by Proposition 2.3, 
(fn)n(=N" satisfies the conclusion of Theorem 2.1. 

PROOF OF LEMMA 2.4. For M c N and s E S we set lim infmeA/ fm(s) — 
lim inf,Woo ƒ„,.(*) and lim supmG„ /m(5) - lim s u p , ^ f (s) where 
{/w„ m2, • . . } is a strictly increasing enumeration of M. Let (rh 8,), 
(r2, S2) , . . . be an enumeration of all pairs of rational numbers (r, 5) with 
8 > 0. Say that N' c N, r, 8 work if they satisfy the conclusion of the 
Lemma. Suppose nothing works. Since N, r„ and 8X don't work, we may 
choose M, c N so that (6) fails for all s G S and "Af"» Af„ V=-= r, and 
"8"~ 5,. Having chosen Mn c # , since Af„, rn+, and 5W+1 don't work, we 
may choose Mn+X c Mn so that (6) fails for all 5 G 5 and "M"~ A/ll+„ 
"r"~ rn+1 and "S" = 8,,+,. Now by the Cantor diagonalization procedure, we 
may select an M c N with M almost contained in Mn for all n. Then (fj)jBM 

converges point-wise. Indeed, if not, by point-wise boundedness of (fj) we 
may choose ans G S and rational numbers r, 8 with 8 > 0 so that 

lim inf ƒ„ (5) < r < r + 8 < lim sup /m (s). (7) 

Now choose n so that (r, 8) = (/•„, 8,,). Since M ca Mn we have that 

lim inf /m (s) < rn < rn + S„ < lim sup ƒ„ (5). (8) 

But by construction of the A '̂s, lim supmGA/w /m(^) < rn + 8n or 
lim infmGA^ fm(s) > /•„, contradicting (8). Hence (fj)JeN has a point-wise 
convergent subsequence, contradicting our initial assumptions and comple­
ting the proof of the lemma. 

We now pass to the proof of Theorem 2.2. For the remainder of this 
discussion, (An9 Bn)nBN shall denote a sequence of pairs of subsets of S with 
An n Bn » 0 for all n. It is easy to verify the following permanence 
properties of convergence of such sequences: if L c M c N9 X c S, and 
(Aj, Bj)J(EN] converges on An; otherwise set eny » — 1. Suppose k > 1 and 
converges on X, it converges on Y. If Xx, X2,... are subsets of S and 
X « U £ i -Y,-, 04„, Bn)nE:M converges on X if it converges on Xt for all 1. 
Finally, (An> Bn)neN converges on the empty set. We introduce the following 
notation: +An = An and —An « Bn for all n. For y G N and Af c N9 we say 
that y and M work provided (/*„, B„)nGM has no subsequence convergent on 
either Aj or 2?,. For the first step of the proof, we shall exhibit a kind of 
constructive procedure which shows that if nothing works, (An, Bn)nGN has a 
convergent subsequence. 

Let nx G AT be arbitrary. Suppose nx and N don't work. Then we may 
choose Nx c N so that (AJ9 Bj)JeNi converges on Anx or B„r Set eni * +1 if 
(4,, Bj)Jf=Ni converges on i4 ; otherwise set eni — — 1. Suppose k > 1 and 
/**_, and #*_, c iV have been chosen. Let nk G Nk_x with w* > nk_x. 
Suppose nk and A^_, don't work. Then choose Nk C N so that (/!,, Bj)Jf=Nk 

converges on ^ or B^ ; set 6̂  * +1 if the former happens, otherwise set 
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e^ = - 1 . Suppose we can continue this procedure indefinitely. Then setting 
M = {/*„ nl9... }, we have that for each k9 (AJ9 Bj)JBM is a subsequence of 
(AJ9 Bj)jeNk which converges on {e^A^}. Hence (AJ9 Bj)JeM converges on 
U *» i e^A^. Now choose M' C M infinite so that either 

(i) em = +1 for all m E M ' or 
(ii) em = - 1 for all m E M'. 

We claim that (Aj9 Bj)JeAr converges. Indeed, supposing (ii) holds, we have 
that (AJ9 Bj)JeM. converges on U meM'*m*m - U m e A r **.. s i n c c 

U m e A/' cm^m C U?«i c v * v Hence if s E S belongs to infinitely many Bfs 
for j E Af ', .y E UmGA/' 5m so s belongs to only finitely many A/s for 
j E A/'. Thus every s belongs to at most finitely many A/s or at most finitely 
many B/s for j E M'. The proof supposing (i) is the same. We may 
summarize what we have proved as follows: 

LEMMA 2.5. Suppose there exist N = N0D NXD N2D . . . and nx < n2 

< . . . so that for all k > 1, nk E Nk_x and (Aj9 Bj)JGNk converges on either 
A„k or B„k. Then (Aj9 BJ)JeN has a convergent subsequence. 

We may now easily deduce the following result by induction: 

LEMMA 2.6. Let I > 1, Xl9..., Xl disjoint subsets of S9 N' c N9 and 
suppose that for each i9 1 < / < /, (An9 Bn)nŒN, has no subsequence convergent 
on X;. Then there exist aj E N' and an M c N' so that for each i, 1 < i < /, 
(An9 Bn)n(EM has no subsequence convergent on Aj n Xi or Bj n Xt. 

PROOF. Suppose this has been proved for / - 1 (in case / > 1). Say that for 
r > 09j and M c N r-work provided r * 0 or r > 1 and (An9 Bn)n(EM has no 
subsequence convergent on Aj n Xt or Bj n Xt for all 1 < i < r. Note that if 
j and Ml— 1-work, then j and M don't /-work if and only if (An n Xl9 

Bn n Xi)neM has a subsequence converging on either Aj n Xt or Bj n Xt. 
Choose nx and N[ c N' so that nx and N[ I - 1-work. By discarding a finite 
subset of N[ if necessary, we may assume nx < n all n E N[. If w, and Af{ 
don't /-work, choose AT, c N[ so that (y4n, Bn)n(=Ni converges on either 
Ani n Xt or 2?Wi n A";. Suppose k > 1 and nk_x and A^_! c AT have been 
chosen with nk_x < n for all n E Nk_x. Since 04,, Bj)JGNk^has no convergent 
subsequence, by the induction hypothesis there is an Nk c A^_, and an 
nk E Nk_x so that w* and Nk I — 1-work. Again we may assume that nk < n 
for all /* E A/*. So if nk and A '̂ don't /-work, choose AT* c Nk so that 
04„, Bn)nGNk converges on either yi n Xt or 5^ n A",. We cannot continue 
this process indefinitely, for otherwise (Aj n Xl9 Bj n X^J^N' would have a 
convergent subsequence by the preceding Lemma. Hence for some k9 nk and 
A '̂ /-work, completing the proof. 

PROOF OF THEOREM 2.2. Assume (AJ9 Bj)JfEN has no convergent 
subsequence. We may then choose nx and Nx c N so that n > nx for all 
n E Nx and (AJ9 Bj)JfENi has no subsequence convergent on Ani or B„r 

Suppose k > 1 and nx < n2 < • • • < nk and Nk c N have been constructed 
so that n > nk for all n E Nk and for each (c„ . . . , ek) with e/ = ±1 for all /, 
(v4y, Bj)JSNk has no subsequence convergent on Pl*»i M v By Lemma 2.6 
there exist Nk+X c Nk and nk+x G Nk so that ( 4 ^ - 6 J V H I has no 
subsequence convergent on (nf«i M/%) n A^t or (n{Li e,-^)*n ^ + I . Of 
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course, we may assume n > nk+x for all n G Nk+X. It now follows that 
(A^9 JB^Jli is independent, since H ^ i qA^ =£ 0 for all k and (el9..., 6̂ ) 
with e, « ±1 for all i. 

The complex-scalars case of Theorem 2.1 is deduced from Theorem 2.3 in 
[11] by suitable complex analogues of Proposition 2.3 and Lemma 2.4 above. 
The analogue of Proposition 2.3 asserts that a uniformly bounded sequence 
(fn)nŒN *s equivalent in the supremum norm to the usual /*-basis over the 
complex scalars provided there exists a pair of open discs (/>„ D2) in the 
complex plane with equal diameters smaller than one half the distance 
between them so that (AH9 Bn)nSN is independent, where An * {s: fn(s) G 
Dx) and B„ = {s: fn(s) G D2) for all n. The analogue of 2.4 asserts that if (ƒ„) 
has no point-wise convergent sequence and is uniformly bounded, then it has 
a subsequence (fn)nŒM for which there exist such discs Dx and D2 so that 
(An9 Bn)nGM has no convergent subsequence. For details, see [11] and also pp. 
99-101 of [38]. 

3. Point-wise compact subsets of the first Baire class. This section is devoted 
to a discussion of Theorem 2 of §1. We first require some definitions. Let X 
be a topological space. A real-valued function ƒ on X is said to belong to the 
first Baire class on X provided there exists a sequence of real-valued 
continuous functions on X which converges to ƒ point-wise. We let BX(X) 
denote the family of all Baire-1 functions on X endowed with the topology of 
point-wise convergence; that is, a net (/a)aez> of elements of BX(X) converges 
to an ƒ G BX{X) if and only if limaGZ) fa(x) = f(x) for all x G l W e also 
note the following form of the definition of the topology of point-wise 
convergence: Given G a family of real-valued functions on X, then a function 
ƒ on X is in the point-wise closure of G if and only if for every e > 0 and 
finite number of points xx,..., xn in X, there is a g G G with | g(x/) - ƒ(jcf-)| 
< e for all 1 < i < n. We recall finally that X is said to be a Polish space if X 
is homeomorphic to a complete separable metric space. 

The result we wish to discuss is due to J. Bourgain, D. H. Fremlin and M. 
Talagrand [7], based on earlier work of the author's [54]. It goes as follows: 

THEOREM 3.1. Let X be a Polish space and F be a subset of BX(X) so that 
every countable subset of F has a cluster point in BX(X). Then F is relatively 
compact and sequentially dense in its closure. That is, the set of all limits of 
point-wise convergent sequences of elements of F forms a point-wise compact 
subset of the first Baire class. 

Certainly the depth of this result is contained in the case where X = [0, 1]; 
indeed, most of the applications to Banach space theory can be deduced from 
this case. The result is not stated in the context of arbitrary Polish spaces just 
for the sake of generality, however. One of the steps in the proof involves the 
introduction of a finer Polish topology on X; so if X = [0, 1], it still seems 
necessary to introduce a noncompact Polish topology on [0, 1] in order to 
complete the proof. 

We shall first discuss some immediate consequences of the Theorem. 

COROLLARY 3.2. When X is a Polish space, a relatively compact subset of 
BX(X) is sequentially compact. 
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Indeed, let F be relatively compact and ( fn) a sequence of distinct elements 
of F. Since F is relatively compact, there exists an ƒ E BX(X) which is a 
cluster point of { ƒ„: « = 1 , 2 , , . . ) . But then some subsequence of (ƒ„) 
converges to ƒ. Corollary 3.2 is due to the author, and is in fact required as 
one of the steps of the proof of Theorem 3.1 (see Lemma 3.8 below). 

This corollary shows that Theorem 3.1 may be viewed as a generalization 
of the Helly selection theorem. Indeed, let H denote the family of 
nondecreasing functions mapping the unit interval [0, 1] into itself. It is easily 
seen that H is a point-wise compact subset of BY([09 1]). Thus the corollary 
implies that any sequence (ƒ,) in H has a point-wise convergent subsequence; 
this is essentially the Helly selection theorem. 

Next, let us deduce Theorem 2 of §1. Suppose B is a separable Banach 
space containing no isomorph of l{ and let X denote the unit ball of B* 
endowed with the weak*-topology. Then A" is a compact metrizeable space, 
hence is Polish. Every element of B, regarded as a subset of B**, is a 
continuous function on X. Now let F denote the unit ball of B and G the unit 
ball of B** endowed with the weak*-topology. Theorem 1 implies that every 
(bn) in F has a weak-Cauchy subsequence (b'n). Defining ƒ (x) = lim,,^^ x(b'n) 
for all x E X9 ƒ is Baire-1 on X, hence F is a relatively compact subset of 
BX(X) by Theorem 3.1. Goldstine's theorem asserts that G equals the point-
wise closure of F, hence G is a compact subset of BX(X). Thus by 3.1, every 
subset of G is sequentially dense in its point-wise closure, which implies 
Theorem 2 of §1. 

The above argument yields immediately a stronger version of Theorem 2 
(in view of Theorem 1). Say that a subset of a Banach space is weakly 
pre-compact if every sequence in the subset has a weak-Cauchy subsequence. 
The uniform boundedness principle implies that a weakly pre-compact set is 
bounded in the norm topology. We then have: 

COROLLARY 3.3. Let F be a weakly pre-compact subset of a separable Banach 
space B. Then every subset of the weak*-closure of F in B** is sequentially 
dense in its weak*-closure. In particular, F is weakly sequentially dense in its 
weak closure. 

We note in passing that if B is separable and X is as in the proof of 
Theorem 2 above, then a result of E. Odell and the author [42] asserts that if 
h G B** is Baire-1 onX, there exists a sequence (bn) in B with bn-*h weak* 
as n -» oo. It follows that the subsets of B** which are point-wise compact 
subsets of BX(X) coincide with the weak*-compact subsets of B** which are 
contained in the sequential closure of B in B**. (By the sequential closure of 
B we mean the set of all elements of B** which are the weak*-limit of some 
weak-Cauchy sequence in B.) This suggests the following question: Let B be a 
separable Banach space and G be a weak*-compact subset of B** contained in 
the sequential closure of B. Does there exist a weakly pre-compact set F in B so 
that G is contained in the weak*-closure of Fl** 

We give one last immediate corollary, proved by the author in [54] using 
cumbersome techniques. 

** ADDED IN PROOF. This question has been answered in the negative by J. Bourgain in a paper 
entitled Some remarks on compact sets of the first Baire class (to appear). 
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COROLLARY 3.4. Let X be a Polish space and F a uniformly bounded 
relatively compact subset of B{(X). Let (fa)aSD be a point-wise convergent net 
of elements of F with limit f. Then f is Borel measurable and ƒ/ad/x -> ƒ f dp for 
all signed Borel measures JU, on X. 

The proof (as given in [7]) goes as follows: Let G denote the closure of F in 
B{(X). Then ƒ E G and every element of G is Borel-measurable, being 
Baire-1 on X. Define a function <f>: G -» R by <f>(g) = ƒ g dp for all g E G. It 
suffices to show that <f> is continuous. Now </> is sequentially continuous by the 
bounded convergence theorem. Theorem 3.1 then implies that <f> is 
continuous. Indeed, let A be a closed subset of R, the real numbers. If g 
belongs to the closure of <j>~l(A), then Theorem 3.2 shows that there exists a 
sequence (gn) in $~\A) with gn ->g. But then <K&,)-><Kg)> so <Kg) E A 
and thus g E <f>~\A), i.e. <f>~!(v4) is closed. 

Before passing to a detailed discussion of the proof of Theorem 3.1, we 
would just like to mention the following deep stability property of point-wise 
compact subsets of the first Baire class, due to Bourgain, Fremlin and 
Talagrand [7]: 

THEOREM. Let X be a Polish space and F a uniformly bounded relatively 
compact subset of BX{X). Then the convex hull of F is also relatively compact in 

This result immediately gives the following corollary, due to C. Stegall: Let 
F be a weakly pre-compact subset of some Banach space. Then the convex hull 
of F is also weakly precompact. StegalPs proof used Theorem 1 of §1. For a 
discussion of a related argument, see the addendum of [54]. 

We pass now to the proof of Theorem 3.4. The demonstration lies far 
below the surface, and makes use of topological reasoning and transfinite 
induction. We break the proof into ten steps, giving the key ideas in the 
demonstration of each step. Those steps requiring several others or fairly 
involved arguments are called "Lemmas", while those with shorter proofs are 
termed "Scholiums". For detailed proofs of the various steps, see [7] and [54]. 
Throughout, we let X denote a fixed Polish space, N the natural numbers and 
«o, the first uncountable ordinal. We follow the notations and conventions 
established in §2. We shall make use of the following simple consequence of 
the Cantor diagonalization method: 

if Afi, Af2,... are subsets of N with MnDa Mrt+1 for all n, 
then there exists a subset M of N with MnDa M for all n. (9) 

We shall also make use of the following standard result: Given {Ka: 
a < o){) with Ka D Kfi and Ka a closed subset of X for all a < /? < wl9 there 
exists an OQ < (o, with Ka * Kao for all a > a0. Phrased another way, there 
exists no strictly descending, uncountable transfinite sequence of closed subsets of 
a Polish space. 

In a certain sense, the heart of the entire argument is contained in the 
"independently stated" Lemma 3.11, proved in [7], and occurring as a sort of 
"mid-point" of our discussion. The results preceding this lemma were proved 
in [54] and seem necessary to its proof. The reader already familiar with the 
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earlier results of [54] may wish to pass directly to Lemma 3.11 and the 
discussion following it. 

The overall proof of Theorem 3.1 makes crucial use of the following 
beautiful result published by R. Baire in 1899 [3] (see also [36] and pp. 
288-289 of [27]): 

LEMMA 3.5 (THE BAIRE CHARACTERIZATION THEOREM). A real valued 
function ƒ defined on X belongs to the first Baire class on X if and only if for 
every nonempty closed subset K of X, f\K has a point of continuity relative to 
the topological space K. 

Perhaps the simplest example of a non-Baire-1 function on the line is 
ƒ " XQ> where Q denotes the set of rational numbers. The Baire characteri­
zation theorem allows us to say that any non-Baire-1 function on X looks like 
XQ relative to some subset of X. 

DEFINITION. Let f be a real-valued function defined on a topological space Y 
and L a subset of Y. We say that f satisfies the Discontinuity Criterion on L 
provided L is nonempty and there are real numbers r and 8 with 8 > 0 so that 
for every nonempty relatively open subset U of L, there are y and z in U with 
f(y) > r + 8 andf(z) < r. 

The first step in the proof of 3.1 follows from the Characterization 
Theorem and arguments in [42]. 

SCHOLIUM 3.6. A real-valued function f defined on X fails to belong to BX(X) 
if and only if f satisfies the Discontinuity Criterion on some countable subset of 
X. 

PROOF. If ƒ satisfies the Discontinuity Criterion on L then f\L has no points 
of continuity relative to L, hence ƒ £ BX{X) by the Characterization 
Theorem. On the other hand, suppose ƒ £ BX{X). By the Characterization 
Theorem, choose a closed nonempty K c X so that f\K has no points of 
continuity relative to K. It follows that for every k E K there exist rational 
numbers r and 8 with 8 > 0 so that 

for every relatively open subset U of K with k E U, there 
exists and z in U with ƒ (y) > r + 8 and f(z) < r. (10) 

Let (r,, 8,), (r2, 8 2 ) , . . . be an enumeration of all pairs of rational numbers 
(r, 8) with 8 > 0. For each n, let An * {k E K: k satisfies (10) for r * rn and 
8 * 8n}. Then An is closed for all n and K - U ?L i An. By the Baire category 
theorem there exists an n so that An has nonempty interior V relative to K. It 
follows that ƒ satisfies the Discontinuity Criterion on V. Let Vu V2,... be a 
countable base for the relatively open subsets of V. For each j , choosey and 
Zj in Vj with f(yj) > r + 8 and f(zf) < r. Then setting L * {yjy zy. j * 
1, 2 , . . . }, ƒ satisfies the Discontinuity Criterion on L. 

REMARK. Using the above result, it is easily seen that if / is not Baire-1 on 
X, there exists a compact totally disconnected perfect subset A" of A" so that 
f\K is not Baire-1. That is, ƒ is not of the first Baire class relative to a subset 
of X homeomorphic to the Cantor discontinuum. (This remark won't be used 
in the sequel.) 
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We are now prepared for the first assertion of 3.1. 

LEMMA 3.7. Let F be a subset of BX(X) so that every countable subset of F 
has a cluster point in BX{X). Then F is relatively compact. 

PROOF. The hypotheses imply that for each x E X, Mx = sup / e F \f(x)\ < 
oo. Now letting R* denote the space of all real-valued functions on X 
endowed with the topology of point-wise convergence, it follows that the 
closure of F in R*, denoted by G, is compact. Indeed, F c Uxf=x I ~~ Af*> Mx] 
which is compact by the Tychonoff theorem. Since the topology on BX(X) is 
simply the relative topology of R* on BX(X), we need only show G c BX(X). 
Suppose ƒ E G yet ƒ £ BX(X). By Scholium 3.6, there exists a countable set 
I c i so that ƒ satisfies the Discontinuity Criterion on L. Since L is 
countable and ƒ is a point-wise cluster point of F, there exists a sequence (ƒ„) 
in F so that fn -» ƒ point-wise on L. But then if g is a cluster-point of (ƒ„) in 
R*, g\L = ƒ[L, so by Scholium 3.6, g & BX(X), a contradiction. 

The next step lies rather deeper; it is one of the main results in [54]. 

LEMMA 3.8. A compact subset of BX(X) is sequentially compact. 

PROOF. Let F be a compact subset of BX(X) and (fn) a sequence in F. 
Suppose that (ƒ„) has no point-wise convergent subsequence. We shall show 
that there exists a countable subset L of X and a subsequence (ƒ„') of (ƒ„) 
converging to a function ƒ satisfying the Discontinuity Criterion on L. 
Scholium 3.6 then implies (ƒ„') has no Baire-1 cluster points, a contradiction. 

The proof of the Lemma now breaks into three steps. 
Step 1. By Lemma 2.4, we may choose an N' c N and real numbers r and 

8 with 8 > 0 so that for all M c N\ there is an x E X with 

fm(x) > r + 8 for infinitely many m E M (11) 

and 

fm(x) < r for infinitely many m E M. (12) 

Step 2. For every M c N\ let K(M) equal the closure of the set of x E X 
satisfying (12); by Step 1, K(M) is nonempty. Then we may choose an 
M c JV' so that K(M') » K(M) for all M' c f l M. Indeed if not, since 
M' ca M implies K(M ) c K(M), we could choose by transfinite induction 
a family (Afa)a<t0i, of (infinite) subsets of N' so that for all a < /3 < w„ 
MpaaMa and ^(A^) c K(Ma). The family (#(Ma))tt<Wi, would thus be a 
strictly descending uncountable transfinite sequence of closed sets, and there 
exists no such family in a Polish space. 

Step 3. Choose M as in Step 2 and put K * K(M). It follows that for every 
M ' c M and non-empty relatively open subset U of A', there exists M " c Af ' 
and>>, z in {/with 

K m J m { y ) > r + 8 and lim,/„(z) < r. (13) 

Now let I/,, t / 2 , . . . be a base for the relatively open subsets of K. Then 
choose Af, D M2 D . . . subsets of M and ƒ,, z„ j>2>

 z2> • • • s o that for every 
rt, >>„, z,, E (/„ and (13) holds for M" = Af„ and y = yn9 z = zrt. Finally, 
choose M and M ca Mn for all n, and set L = {yn9 zn: n = 1, 2 , . . . }. It 
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follows that (jÇ)yeM converges on L to a function satisfying the Discontinuity 
Criterion. 

REMARK. The above argument shows that if ( fn) is any point-wise bounded 
sequence of real-valued functions on X with no point-wise convergent 
subsequence, then there exists a subset L of X and a subsequence ( ƒ„') of (ƒ„) 
converging on L to a function ƒ satisfying the Discontinuity Criterion on L. It 
may be proved by a short direct argument that if G is a uniformly bounded 
family of functions on X so that such an ƒ is in the point-wise closure of 
{g\L: g E G}9 then G contains a sequence (gn) satisfying the criterion of 
Proposition 2.3 (where "S" of 2.3 equals L), and hence (gn) is equivalent to 
the usual /!-basis. (See Proposition 2 of [52].) This gives a "topological-
analytical" proof of Theorem 2.1 which by-passes the combinational Theorem 
2.2 as well as the Baire Characterization Theorem; it also yields a proof of 
1 => 5 of Theorem 3 of §1. See [52] for details. 

The next result is far away from the final conclusion of 3.1; yet it seems to 
be central to the proof. 

LEMMA 3.9. Let F be a relatively compact subset of BX(X). Then every 
element of the closure of F lies in the closure of some countable subset of F. 

We deduce this lemma from the following consequence of a special case: 

SCHOLIUM 3.10. Let F be as in 3.9 so that f > Ofor all f E F and assume 0 
is in the closure of F. Then for every e > 0 there exists a countable nonempty 
subset H of F with infAe// h(x) < e for all x E X. 

PROOF. Suppose not. Then there is an e > 0 so that for every countable 
nonempty H c F, 

X(H) is nonempty, where X(H) =» [x E X: inf h(x) > c). (14) 

Now if H c H' with H' a countable subset of F9 then X(H) D X(H'). It 
follows that there exists a countable nonempty H so that 

T(H) * X(H') for all countable H' c F with H c H'. (15) 

Indeed, if not we choose by transfinite induction a family (//a)«<Wl of 
countable subsets of F so that for all a < fi < <o„ Ha c Hfi and 
X(Ha) D X(Hp); the family {X(Ha): a < <o,} is thus a strictly descen­
ding (o,-sequence of closed subsets of X, but there exists no such family in a 
Polish space. 

Now choose H as in (15) and let D be a countable dense subset of X(H). 
Since 0 is in the closure of F, there exists a sequence/1?/2,... in F so that 
f„(d)-*0 for all d E D. Finally set K =X(H) and let g be a point-wise 
cluster point of the sequence (ƒ,). Then K is nonempty by (14) and g vanishes 
on Z>, a dense subset of K. On the other hand, setting H' * H u {ƒ„: 
n * 1, 2 , . . . }, then since X({fn: n * 1, 2 , . . . }) D X(H'\ g(x) > e for all 
x E X(H'), but X(H') is another dense subset of K by (15). Hence g\K has 
no points of continuity relative to K, so by 3.5 (the Bairc-Characterization 
Theorem), g ÇÉ BX(X), a contradiction. _ 

PROOF OF LEMMA 3.9. Let F be as in 3.9, g E F, and m be a positive 



822 H. P. ROSENTHAL 

integer. Let Xm denote the m-fold product of X with itself endowed with the 
product topology. Of course, Xm is a Polish space. For any h E BX(X)9 define 
^m{h)onXmby 

*«(A)(*i> • * • • *m) - l*(*i) ~ g(*i)\ + • • • + |A(*J - g ( x j | 

for all x„ . . . , xm in X. Then <J>m(Â) E Bx(X
m) and <j>m: £,(*) -» Bx(X

m) is a 
continuous map with $m{g) = 0. It follows that if Fm = $m{F\ then Fm is a 
relatively compact subset of Bx{X

m) consisting of nonnegativc functions with 
0 € Fm. Now it follows from Scholium 3.10 that there exists a countable 
nonempty set Hm<z F with "mîheHm 4>m(h)(y) < \/m for all y E Xm^ Then 
setting H — U ^ i Hm9 /Ms a countable subset of F with g E H. This 
completes the proof of Lemma 3.9. 

The preceding results and arguments are due to the author [54]. The 
remaining steps in the proof are due to Bourgain, Fremlin and Talagrand [7]. 
The heart of the entire matter is contained in the following lemma, which we 
refer to later as the main step: 

LEMMA 3.11. Let (ƒ„) be a sequence of continuous functions on X so that 0 is a 
point-wise cluster point of (ƒ,). Assume that every subsequence of (jÇ) has a 
further point-wise convergent subsequence. Then some subsequence of (fj) 
converges point-wise to zero. 

Let us say that an (infinite) M c N is good provided 0 is a point-wise 
cluster point of {fn: n E M). The proof of 3.11 requires three preliminary 
results about good sets, the first of which requires all of the machinery 
already developed. We first state these three results, then deduce (3.11) from 
them, and finally prove the three results. 

SCHOLIUM 3.12. Given good sets Mx> Af2, . . * with Mx Da M2 

Da . • - DaMn Da Mn+U . . . , there exists a good set M with Mn Da M for 
all n. 

Now fix t > 0 and for any M C N9 let KM denote the closure of {x E X: 
K™mçMfm(x) > *}• 

SCHOLIUM 3.13. For any good set N' there exists a good set M with M c N' 
so that KM » KL for any good L Q N' with L Ca M. 

SCHOLIUM 3.14. Let M be as in 3.13. Then KM is empty. That is, 
linimeJV \fm(x)\ < tfor all x E X. 

3.11 now follows quickly. Indeed the preceding two Scholia show that for 
every good N' and any e > 0, there exists a good M c N' with 
limm€JV |/m(*)| < t for all x E X. It follows that we may choose good sets 
Mx, M2, *.. so that for all /i, MnD Mn+l and limm€A/;> \fm(x)\ < l/n for all 
x E X. Now choose integers m, < m2 < . . . with mn E Mn for all n. Then 
L -> 0 point-wise. 

We pass now to the proof of the three Scholia. We first note the following 
immediate stability properties of good 4 
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If M is good and M * L, u L2, then either L, or L2 is good. (16) 
If M is good, e > 0, and G is a finite subset of AT, then 
{m e Af: |/m(x)| < c for all x E G} is good. (17) 

Next, we note that any subsequence of (ƒ„) has a Baire-1 cluster point. 
Indeed, the subsequence has a further point-wise convergent subsequence by 
hypothesis; the limit function is Baire-1 since them's are continuous. Thus by 
Lemma 3.7, {ƒ„ / 2 , . . . } is a relatively compact subset of BX(X). 

PROOF OF SCHOLIUM 3.12. Let F denote the set of all limits of point-wise 
convergent sequences UJ)JBM w^h M Ca Mn for all n. Since F is contained in 
the point-wise closure of {/i,/2, .^. }, F is a relatively compact subset of 
BX(X). We first observe that OEF. Indeed, let e > 0 and let G be a finite 
subset of X. We need to show that there is an ƒ E F so that 

| / (x) | <£fora l lxE(? . (18) 

Since the Mfs are good, we may choose m„ m 2 , . . , so that for all j9 
mj < m;+i> mj e Mp anc* l//^(*)l < £ / 2 f o r a^ x E G. Now let M be an 
(infinite) subset of {mX9 m 2 , . . . } so that (fm)m<=M converges point-wise to a 
function/. Then M ca Mj for ally so ƒ E F and | f(x)\ < e/2 for all x E G; 
thus ƒ satisfies (18). 

Now by Lemma 3.9, 0 is in the closure of some countable subset 
{£i> ft» • • • } of F. For each j9 we may choose an Nj so that (fn)neN. 
converges point-wise to gy and 

Nj Ç Af„forallrt. (19) 

We now assert that 

there exists an M with Nj C M C Mn for ally and n> (20) 

Once (20) is established, we have that M is the desired good set. Indeed, 
gj E {ƒ„: m E M] for ally, hence 0 E {gl9g2,... } c { / m : m E M). 

(20) in turn is a classically known consequence of the fact that (19) holds 
for all j . Here is a quick proof: For each j9 set Aj = U/=i iVf and Bj = 
n^-i A//- Then also A; ca Bn for ally and n. Now choose nx < n2 < • . . so 
that for ally, Aj f) (nj9 oo) c ^. Then Af = UfL\ Aj n (/̂ -, «,+i] serves as the 
desired set. 

REMARK. The above argument may be "abstracted" to yield the following 
result: Let Y be a regular sequentially compact Hausdorff space so that for 
any subset F of Y9 any point in the closure of F is in the closure of some 
countable subset of F. Then given sequences Yl9 Yl9. . . in Y and y E F so 
that for ally, Yj+X is a subsequence of Y} and/ is a cluster point of YJ9 there 
exists a sequence Z in Y which is a subsequence of all the Y/s so that y is a 
cluster point of Z. 

Scholium 3.13 follows easily from 3.12 by transfinite induction. Indeed, if 
M DaM' then KM D K^. Thus were 3.13 false, using 3.12 and (9) we could 
choose a family (Afa)a<COt of good subsets of N' so that for all a < (i < co„ 
Ma Da Mo and KM D KM, which is impossible since X is Polish. 

PROOF OF SCHOLIUM 3.14. Let M be as in 3.13 and suppose K - KM is 
nonempty. We shall exhibit a point-wise cluster point ƒ of (fm)meM and dense 



824 H. P. ROSENTHAL 

subsets A and B of K so that ƒ vanishes on A and ƒ is at least e on B, i.e. 
I/(*)I > € f°r a^ b E B. Then ƒ | Â  has no points of continuity relative to K, 
hence ƒ £ 2*i(^0 contradicting the fact that [fl9 f 2 , . . . } is a relatively 
compact subset of BX(X). 

We may take for A a countable dense subset {a1? a 2 , . . . } of ^- It follows 
from (17) that we may choose good sets Ll9 L2,... so that for all n and 
1 < i < /!, M D A, D Lw+1 and |jÇ.(af.)| < l//t for ally G L„. Now by the 
crucial Scholium 3.12, choose a good L with L ca Ln for all n. It follows that 
any point-wise cluster point of (//)/GL vanishes on A since (//) / eL tends 
point-wise to zero on A; moreover by the definition of M, Â  * A'. The 
discovery of the set B is more delicate. 

To simplify notation, we now let L = N itself (which we could certainly do 
by just renumbering (//)/GL). Thus for any good R9 KR** K and fn-*0 
point-wise on A. We shall also just work in the topological space K, which of 
course is a Polish space, being a closed subset of one. (Thus, "open subset of 
K" refers to a subset of K open in its relative topology.) We note next that if 
U is a nonempty open subset of K and M' is a good set, then Lx = {/ E Af': 
I//(M)l > € for some u G [/} is a good set. If not, then by (16), L2

x M' ~ Lx 

is good. However then KLi n U *= 0, which implies Kl2 ¥= K, contradicting 
the definition of K. It follows immediately by induction that 

for any finite number [ / „ . . . , Uk of nonempty open subsets of 
K, G is good (and hence infinite), where G = {n G N: for all 
1 < i < k there is a u G V, with \fH(u)\ > e). (21) 

At last we shall use in an essential way the continuity of the fn's and the 
completeness of K under some appropriate metric. Choose a complete metric 
inducing K9s topology and let B{, B2,... be a base for the nonempty open 
subsets of K. We shall exhibit a sequence mx < m2 < . . . of integers so that 
for each i, there exists a bt G Bt with lim \fm.(b^)\ > e. Then we set B = {bt: 
i « 1, 2 , . . . }; any cluster point ƒ of (fm) produces the desired contradiction. 

The idea of the construction of the m/s and 6/s is quite simple. For 
example, to produce bx alone, we just use the "k =•= 1" version of (21) along 
with the continuity of the j^s to produce lx < l2 < . . . and nonempty closed 
neighborhoods UXD U2D ... with diameters going to zero, Ux c Bx, and 
ƒ/ > e on Uj for ally. By completeness there exists a point bx belonging to all 
the Uf$ and then lim |fr(bx)\ > e. Now we just carry out this procedure 
simultaneously for all the J5,'s. Thus, we construct open sets U{ and integers 
mj having the following properties for all i with 1 < / < oo and j with 
i < j < oo: 

(!BL)U!-1 = BI9 

(b) U{ is nonempty with U{ C U{ \ 
(c) the diameter of U{ is at most l/j, 

and 
(d) |/m(w)| > c for all u G U{ and m, > my_, (where n% = 0). 

Once this is done, then fixing^, by completeness and (b) and (c) we may 
choose a (unique) bt G HJlt U{ = DJLi U{. By (a) and (b), bt G B{ and 
I fm (*/)l > e f°r all-/ > ' by (d) thus completing the proof, 

the construction by induction goes as follows: Define U}~x = Bs for all /. 
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By (21) there is an mx and a u E Bx with |/mj(w)| > £• By continuity of f we 
choose an open U} containing u with diameter at most equal to 1, Ux

l c Bx, 
and l/̂ CtOl > c for all v E U}. Suppose then mn and open nonempty sets 
Ux

n, ...\ Uf have been chosen. By (21), the set C = { ; 6 N: f or 1 < i < n 
+ 1, there is a « E U" with |jÇ(w)| > e] is infinite. Hence we may choose 
ffht+i > mn w^h w*+i e G- Now for each / with 1 < i < n + 1, choose by 
continuity of/^^a nonempty open set U?*1 of diameter at most \/{n + 1) 
with l^,+ l c iff and |/WW+I(M)| > e for all ti E U?+l. This completes the 
construction of the ƒ 's and U{% and thus the proof of our main step, 
Lemma 3.11, is complete. In order to complete the proof of Theorem 3.1, we 
need one final deep classical fact about Polish spaces. (This result is at least 
50 years old; for a proof, see [36].) 

LEMMA 3.15. Let X and Y be Polish spaces and <f>: X -> Y a Borel measurable 
map; set E * $(X). Then there exists a Polish space Z and a continuous 
surjection s: Z-± E. 

(It is known that Z may be chosen to be the "standard" Polish 
space NN. 3.15 may be rephrased as stating that analytic sets are 
closed under Hausdorff Borel images, where an analytic set is defined as a 
continuous Hausdorff image of some Polish space.) 

COMPLETION OF THE PROOF OF THEOREM 3.1. Let F be a relatively compact 
subset of BX(X) and let ƒ belong to the closure of F. Since BX(X) is a linear 
topological space, F — f={g—f: g E F] is also a relatively compact 
subset of BX(X) and 0 belongs to the closure of F - ƒ. Once we show there is 
a sequence in F — ƒ converging point-wise to zero, we obtain that ƒ is in the 
sequential closure of F. Hence we may and shall assume that ƒ = 0. Now by 
Lemma 3.9 there exists a sequence fx,f2,... in F so that 0 is a cluster point 
of (jÇ). By Lemma 3.8 F is sequentially compact and hence every subsequence 
of (fj) has a further point-wise convergent subsequence. If the jÇ's were all 
continuous, the Main Step 3.11 would complete the proof. But Lemma 3.15 
implies that countably many real-valued Borel measurable functions defined 
on a Polish space are all continuous under some finer Polish topology on the 
space. We prefer to go through a direct proof of the part of this (known) 
implication that we need. Let Y denote the Polish space X XR00 and denote 
its elements by sequences (x, rx, r2,... ). Since the jÇ's are Baire-1 they are 
Borel measurable. It is readily verified that </>: X -> Y defined by <f>(x) « 
(x, ƒ,(*), f2(x), • • • ) f or all x E X9 is a Borel measurable map. Let E = <f>(X) 
and choose by Lemma 3.15 a Polish space Z and a surjection s: Z-+E. For 
each n, define fn: Z-*R by fn(z) = (s(z))„+x. Then (fn) is a sequence of 
continuous functions on Z. It is easily verified that a subsequence of (fn) 
converges point-wise on Z if and only if the corresponding subsequence of 
/„'s converges point-wise on X, and moreover 0 is in the point-wise closure of 
(fn). It follows that (f„) satisfies the hypotheses of Lemma 3.11 on the Polish 
space Z and hence there is a sequence nx < n2 < . . . with fn, -> 0 point-wise. 
Then ƒ„ -» 0 point-wise completing the proof. 

We conclude with a brief discussion of some generalizations of Theorem 
3.1 also due to Bourgain, Fremlin and Talagrand [7]. One says that a regular 
Hausdorff space Y is angelic (as in [47]) if any subset F of Y such that every 
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countable subset of F has a cluster point in Y is relatively compact and 
sequentially dense in its closure. Thus Theorem 3.1 asserts precisely that 
BX(X) is angelic (where X as always denotes a fixed Polish space). Now let 
B(X) denote the space of all Borel measurable real-valued functions defined 
on X, endowed with the topology of point-wise convergence. Then it is proved 
in [7] that countable relatively countably compact subsets ofB(X) have compact, 
angelic closed convex hulls. In particular, this implies that compact subsets of 
B(X) are sequentially compact and countable relatively compact subsets are 
sequentially dense in their closures, thus answering several questions raised in 
[54]. It also implies that if A is a subset of the continuous functions on X such 
that every sequence in A has a Borel measurable cluster point, then A is a 
relatively compact subset of BX(X). For then A is sequentially compact in 
B(X), and any limit of a convergent sequence of elements of A is Baire-1. 
The last fact, however, is in reality the base for the more general results. 
Using generalizations of our Lemma 3.7 and combinational Theorem 2.2, it is 
shown in [7] that if (ƒ,) is a point-wise bounded sequence in C(X) with no 
point-wise convergent subsequence, then (ƒ„) has a subsequence (ƒ„') with no 
Borel-measurable cluster points. (We give a somewhat different proof of this 
below.) Assuming only this result, suppose that F is a relatively countably 
compact separable subset of B(X) and let ƒ„ / 2 , . . . be a sequence in F with 
F = { ƒ„ / 2 , . . . }. Then there exists a finer Polish topology T on X so that 
ƒ , , / 2 , . . . are all continuous on (A", T) (see our remarks in the proof of 
Theorem 3.1 following 3.15 above). But then every subsequence of (ƒ„) has a 
further point-wise convergent subsequence. Indeed, if not, there would exist a 
subsequence (ƒ„') with no cluster points in B(X, T). But by hypothesis there is 
a g E B(X) which is a cluster point of (ƒ„'); then g E B(X, T) also since T is 
a finer topology on X. Thus by Theorem 3.1 {f/.j * 1, 2 , . . . } is a relatively 
compact subset of BX(X, T) which is moreover sequentially dense in its 
point-wise closure H. But then H is a compact subset of B(X) since a 
point-wise limit of a sequence of Borel measurable functions is again Borel 
measurable, and, of course, H equals the sequential closure of F. Actually, we 
have seen that a separable compact subset of B(X) is angelic simply because it 
is homeomorphic to a compact subset of BX{Y) for some Polish space Y. It is 
apparently unknown if either of these assertions are true of arbitrary compact 
subsets of B (X). The authors of [7] also obtain further generalizations of 
Theorem 3.1 to more general classes of topological spaces X as well as more 
general classes of measurable functions. Most of these generalizations boil 
down to an elaboration of the following concrete fact established there: If a 
point-wise bounded sequence (ƒ„) in C([0, 1]) has no point-wise convergent 
subsequence, then it has a subsequence (ƒ„') so that every point-wise cluster 
point of (ƒ,') is nonmeasurable in every conceivable sense. 

Here is a proof of the existence of (ƒ„'), following the lines of argument of 
[7] but differing somewhat in detail. We first consider the simplest possible 
case, working on the Cantor set rather than [0, 1]. 

LEMMA 3.16. Let A equal (0, 1}^, the set of all infinite sequences ofQ's and 
Vs endowed with the product topology and let m denote the natural probability 
measure on the Borel subsets of A. Let en(x) * x(n) for all x E A and n E N, 
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and let h be a point-wise cluster point of (e„). Then h is not measurable with 
respect to the completion of m. 

PROOF. A is a compact abelian group under the operation (x + y)(n) = 
x(n) + y(n) mod 2 for all x, y E F and n E N, and m is the (unique) 
normalized Haar measure on G. 

Let us say that a subset of A is m-measurable if it is measurable with 
respect to the completion of m. Then it is a classical fact that if E is an 
m-measurable subset of positive measure, then E + E contains a nonempty 
open set, where E + E ** {e + f: e E E and f E E}. The simplest 
conceptual proof is to use convolution. Set XE * X£;O0 = /A XE^ + 
X)XE(X) dm(x). Then XE * XE *S continuous and supported on E + E, and of 
course (XE * XirXO) - m(E). 

For x E A, set x = 1 — JC, and for E c A, set E » {x: x E A}. Then it is 
also well known that if E is m-measurable, so is E and m(E) =•= m(E). 

Now let A be a point-wise cluster point of (e„) and let E = {x: h{x) = 1}. 
We then have by the definition of the topology of point-wise convergence 
that 

for any k and J C „ . . . , xk in G, there are infinitely many 
n E N with /*(*,) - x,(ri) for all i * 1, 2 , . . . , k. (22) 

We then easily obtain 

(i) E is dense in A, 

(ii) É=~E, 

and (iii) E + £ is disjoint from £". (23) 

Indeed, applying (22) f or k * 1, we obtain that x E E if x(n) = I for all /i 
sufficiently large, and of course the set of such x is dense. Let x E A. Then 
applying (22) for k « 2, xl « x, x2

 x x, we obtain that there is an n E N 
with h(x) = x(n) and h(x) * Jc(«) » 1 - x(w). Thus either x or x belongs to 
E while if x E E, h(x) *= 0 so x £ E9 proving (ii). Finally, let x,y E E. 
Applying (22) for k * 3, we may choose smn E N with h(x) « x(rt), MJO " 
y(n) and A(x + ƒ) * (x + .yX^)- Since x,y E E9 x(ri) * J>(H) * 1, hence 
(x + y\ri) * 0, so JC + y g £. 

It now follows immediately that is is nonmeasurable. Indeed, suppose not. 
Then also E would be m-measurable, so by 23 (ii), m(E) + m(E) = 2m(E) 
* 1, or m(£) * \ . Thus £ would be of positive measure, hence E + E would 
contain a nonempty open set. But then E would not be dense in A by 23 (iii), 
contradicting 23 (i). 

REMARKS. Define <J>: A -» [0, 1] by <X*) - SJLi x(j)/2j for all x E A. It is 
easily seen that ${E) is not Lebesgue-measurable, where E is as above. This is 
due to W. Sierpinski (see Fonctions additive non complètement additives et 
fonctions non-mesurables, Fund. Math. 30 (1938), 96-99). In fact, he obtains 
essentially that <f>(E) is of inner measure zero and outer measure one. In our 
context, to see this it suffices to show that any m-measurable subset of E is of 
measure zero, for then thanks to the fact that x -* x is a measure preserving 
transformation, any measurable subset of É » — E is also of measure zero; 
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and of course the outer measure of E equals the inner measure of Ê. Now 
setting D = {x G A: x(n) = 0 for all n sufficiently large}, then D is a 
subgroup of A and (22) implies that x G E if and only if x + */ G E for all 
d E D; i.e. E + D = E. Now if F were a subset of £ of positive measure, 
then (23) (ii) implies that 0 < m(F) < \9 since m{F) = m(F) and F n F -
0 . But then also F + D is a measurable subset of 2s, hence 
0 < m ( F + Z ) ) < j . However, it is a classical fact that since (F + Z>) + D 
« F + Z>, m(F + £>) = 0 or m(F + Z)) = 1. (This is essentially Sierpinski's 
proof that <f>(E) is nonmeasurable.) Now it is also easily seen using (22) that 
fyl = {H c iV: there is an x G E with ƒƒ = {/*: x(n) = 1}} is a nonprincipal 
ultrafilter, and conversely any nonprincipal ultrafilter gives rise to a cluster 
point h of (en). Thus the above lemma is equivalent to the assertion that any 
nonprincipal ultrafilter in N is nonmeasurable, as proved in Lemma 2D of [7]. 

Now let (en) be as in 3.16 and let Un = {x: en(x) = 0} for all n. Of course 
(£/„) is a Boolean and statistically-independent sequence of sets. The next 
result, similar to Lemma 2D of [7], shows that any sequence of closed pairs 
with no convergent subsequence contains a subsequence which looks exactly 
like (Un9 ~Un) relative to some compact set. 

THEOREM 3.17. Let X be a Polish space and (An, Bn)neN a sequence of pairs 
of subsets of X with An9 Bn closed and An D Bn = 0 for all n. Assume that 
(An9 Bn)neN has no convergent subsequence. Then there exists a compact subset 
Kof X homeomorphic to A, a homeomorphism o from K onto A, and a sequence 
nx< n2< . . . so that An. n K = a'l(UJ) and B^ n K = o~l(~Uj)for allj. 

PROOF. Endow X with a complete metric inducing its topology. We first 
observe that if X is a closed subset of X and M c N is such that (An, Bn)nGM 

has no subsequence convergent on X, then for any e > 0 there exists an 
L c M so that (A„, B„)nŒL has no subsequence convergent on a fixed closed 
subset of X of diameter less than e. Indeed, if not, choose closed sets 
2>„ Z>2,.. • of diameter less than e with X = Ujl i Dj. Then choose M, D 
M2 D . . . with Mj c M so that (An9 Bn)nŒM converges on Dj. Then choos­
ing L with L ca Mj for ally, (An9 Bn)nE:L converges on X, a contradiction. 

The construction of K and o now follows easily from Lemma 2.6, as in our 
proof of Theorem 2.2. First choose X^ a closed subset of X of diameter less 
than 1 and N' c N so that (Aj9 Bj)JeN> has no subsequence convergent on 
Xr Then by Lemma 2.6, choose nx G N' and Nx C N' with n > nx for all 
w G iV, so that (AJ9 Bj)JŒNi has no subsequence convergent on Ani n X^ or 
£„, n Xr Set * 0 « i4W| n J^ and * , * Bnx n A;. Suppose * > 1, **, A^ c 
Af, and closed sets Xe have been constructed for all ( e , , . . . , ek) with 
e, - 0 or 1 so that *,,,..'.** n *«-„...,< - 0 if («i>•••>«*) ^ (e\,..., ek) 
and {ApBj)j^Nk has no subsequence convergent on XCi) _ ^ for all 
( e , , . . . , ek). By applying our initial observation 2* times, we may choose 
Nk c JV* and closed sets <Yei,...>% so that for all (ex,..., e*), A^,...,^ C 
^ „ . . . , ek> ^e„... ̂  has diameter less than £, (v4y, Bj)JŒN> has no subsequence 
convergent on Jfei>...,^, and n > nk for all /* G JV*. We now apply Lemma 
2.6 to choose nk+x E Nk and Nk+X c Nk so that for all (el9 ...9ek)9 

M*. Bn)neNk+l h
as n o subsequence convergent on v4„^ n *«„...,* or B^ n 
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X .. We then set X. . 0 = An n î . and X. , , = B„ n 
*£ c, for a l le , , . . . , ek. 

We now simply set K = n ? - i U -^e,,..., v where the union is taken over 
all (e„ . . . , ek) with e, = 0 or 1 for all /. 

Define a: K-> A by o(k) = x provided fc E D *L i **(i>,..., *(*>• S i n c e X i s 

a complete metric space, it follows that a is a surjective homeomorphism 
satisfying the conclusion of 3.17. 

We now easily obtain the following result of [7]: 

THEOREM 3.18. Let X be a Polish space and (fn) a point-wise bounded 
sequence of continuous functions on X with no point-wise convergent 
subsequence. Then there exists a subsequence (f£) of (fn), a compact nonempty 
subset K of X, and a probability measure /x on the Borel subsets of K so that no 
point-wise cluster point of(f„) is measurable with respect to the completion of p. 
(Thus no cluster point of (ƒ„') is Borel-measurable or, in fact, universally 
measurable.) 

PROOF. By Lemma 2.4, there exists an N' c N and real numbers r and 8 
with 8 > 0 so that (An, Bn)n^N^ has no convergent subsequence, where 
Î„ = ( x 6 X: fn(x) > r + 8} and An = {x E X: fn(x) < r). But then if 
Bn - {x E X: fn(x) > r + 8},An = {xEX: fn(x) < r), (An, Bn)n^ has 
no convergent subsequence either. Since the /„'s are continuous, An and Bn 

are closed for all n. Now choose K c X, nx < n2 < . . . and a 
homeomorphism o from K onto A satisfying the conclusion of Theorem 3.17. 
Finally, let m be as in Lemma 3.16 and let /A be the Borel measure on K 
defined by fi(B) = m(o(B)) for all Borel B c K. Now let g be a point-wise 
cluster point of (fn)jL\. Then we claim g\K is not measurable with respect to 
the completion ot /*. Indeed, if it were and if h(x) = 1 if g(x) > r + 8, 
h(x) = 0 if g(x) < r, then h would be /i-measurable and a point-wise cluster 
point of (XB)T-\' I* follows that h = h ° o would be m-measurable and a 
point-wise cluster point of (e,), contradicting Lemma 3.16. 
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